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Abstract: We consider interconnections of two dynamical systems in feedback configuration.
The dynamics of the individual systems are modeled by a differential inclusion, and the
corresponding set-valued mapping is (anti-) maximal monotone with respect to the state of
the system for each fixed value of the external signal that defines the interconnection. We
provide conditions on these mappings under which the dynamics of the resulting interconnected
system are (anti-) maximal monotone. An interpretation of our main result is provided: firstly,
by considering dynamical systems defined by the gradient of a saddle function, and secondly,
by considering an interconnection of incrementally passive systems. In the same spirit, when
we associate more structure to the individual systems by considering linear complementarity
systems, we allow for more flexibility in describing the interconnections and derive more specific
sufficient conditions in terms of system matrices that result in the overall system being described
by (anti-) maximal monotone operator.

Keywords: Maximal monotone mappings, Interconnections, Passivity, Linear complementarity
systems.

1. INTRODUCTION

In the study of dynamical systems, one can often break-
down the complexity of analysis by viewing the dynamics
as an interconnection of more than one subsystems coupled
to each other. This way, the analysis of overall system can
be decomposed into studying relevant properties of the
smaller sized subsystems. In this regard, depending upon
the system dynamics and the nature of interconnections,
several tools and methods have been developed in the
literature. Our focus in this article is on studying the
interconnection of certain nonsmooth dynamical systems,
modeled by differential inclusions with maximal monotone
mappings, and we use tools from disspativity theory and
variational analysis for our purposes.

The first of these tools, dissipativity, comes from the pio-
neering work in (Willems, 1972) and continues to develop
as a fundamental building block for analysis and design of
control systems, as evident by several monographs. We
see its utility in control design (Sepulchre et al., 1997;
Ortega et al., 2013), analyzing interconnections (Arcak
and Martins, 2021; Brogliato et al., 2020), input-output
gains (van der Schaft, 2017), robustness (Scherer, 2022),
optimal control (Grüne, 2021) and many more system-
theoretic properties.

Our second set of tools is primarily motivated by the class
of dynamical systems considered in this paper. In partic-
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ular, we consider ordinary differential equations coupled
with static set-valued relations, which under certain struc-
tural assumptions can be embedded within differential
inclusions having maximal monotone operators. Such sys-
tems are particularly useful in modeling trajectories with
constraints, or the evolution of optimization algorithms
(Schumacher, 2004; Attouch and Peypouquet, 2019). An
extensive overview of such systems has been presented in
(Brogliato and Tanwani, 2020), where one sees the utility
of tools from variational analysis (Rockafellar and Wets,
1998) and set-valued analysis (Aubin and Frankowska,
1990) for understanding the basic system properties. Most
of the earlier works on the aforementioned system class
have focused on proving existence of solutions. The book
(Brézis, 1973) nicely captures the results for autonomous
differential inclusions with static maximal monotone oper-
ators. On the other hand, studying existence of solutions
for differential inclusions driven by an external signals
continues to attract attention of the researchers; one may
refer to (Moreau, 1977; Monteiro Marques, 1993) for earlier
results and a recent article (Camlibel et al., 2022) gener-
alizes some of these results.

All these advancements on the mathematical side about
proving the existence of solutions have naturally con-
tributed to a better understanding of the system behavior.
Researchers in systems theory have therefore been able to
study the relevance of these models for certain physical de-
vices (van der Schaft and Schumacher, 1998), and develop
algorithms for numerical simulations (Acary et al., 2011).
In more recent works, we also see an emphasis on studying



system design problems, such as, observers (Brogliato and
Heemels, 2009; Tanwani et al., 2014), and output regula-
tion (Tanwani et al., 2018). At an abstract level, in most
of these design problems, as well as in certain optimization
algorithms, one sees an interconnection of two nonsmooth
dynamical systems and the well-posedness and stability
of overall system is often concluded by showing that the
overall interconnected system is described by a maximal
monotone operator with a negative sign.

Motivated by this observation where system design prob-
lems, and certain optimization algorithms, involve inter-
action between different nonsmooth dynamical systems,
we consider a somewhat abstract, but related, problem
of analyzing such interactions. In our problem setting, we
start with two dynamical systems, each of which is de-
scribed by a differential inclusion. Each of these differential
inclusions involves a set-valued mapping that depends on
the two arguments: first one being the state of system
for which the differential inclusion describes the set of
possible vector fields, and the second one being the variable
that describes the interconnection. We assume that this
mapping is maximal monotone with respect to state of
the system, for each fixed value of the coupling variable.
With appropriate regularity assumptions on each of these
mappings, we can show that the overall system is indeed
maximal monotone. With similar ideas, we also study
interconnections of linear complementarity systems, which
can be written as differential inclusions with maximal
monotone mappings. However, the particular structure
allows us to define more generic interconnections and we
provide sufficient conditions for the interconnected system
to be maximal monotone.

2. OVERVIEW AND MOTIVATION

The class of dynamical systems considered in this paper
are broadly described by

ẋ ∈ −M(x) (1)

where M : Rn ⇒ Rn is maximal monotone, that is, there
exists α ≥ 0 such that for every (x?i , xi) ∈ graph(M),
i = 1, 2, it holds that

〈x?2 − x?1, x2 − x1〉 ≥ α‖x1 − x2‖2, (2)

and moreover, for every (x?1, x1) 6∈ graph(M), there exists
(x?2, x2) ∈ graph(M) such that

〈x?2 − x?1, x2 − x1〉 < 0. (3)

If α > 0, we call M strongly maximal monotone. The
property (2) is referred to as monotonicity, and the prop-
erty in (3) is called maximality. It is useful to recall that
the effective domain of M is defined as dom(M) := {x ∈
Rn |M(x) 6= ∅}.
The following elegant result describes some properties of
the solution of (1) and appears in (Brézis, 1973, Theo-
rem 3.1).

Theorem 1. Consider system (1) with M being maximal
monotone. For ever x0 ∈ dom(M), there exists a unique
solution x : [0,∞)→ dom(M), with x(0) = x0. Moreover,
if x1, x2 represent two solutions of system (1), then

‖x2(t)− x1(t)‖2 ≤ e−αt‖x2(0)− x1(0)‖2. (4)

In other words, if system (1) has an equilibrium point then
the equilibrium is Lyapunov stable. In case,M is strongly

maximal monotone, the equilibrium point is exponentially
stable.

2.1 Motivation

Our interest in this paper lies in studying interconnections
of two dynamical systems of the form (1) and is motivated
by the examples of the following form:

Example 1. Consider the constrained optimization prob-

lem: min
x∈X

g(x), where Rn ⊇ X ∆
= Ω ∩ {x |Ax ≤ b}, for

some A ∈ Rm×n. We assume that g : Rn → R is strictly
convex and Ω ⊆ Rn is convex, hence X is convex. Using the
Karush-Kuhn-Tucker (KKT) conditions, the optimization
problem is solved by finding a pair (x∗, λ∗) such that,
0 ∈ ∇g(x∗)+NΩ(x∗)+A>λ∗, and 0 ∈ b+NRm

+
(λ∗)−Ax∗,

where the notation NX(x) is used to denote the outward
normal cone to a closed convex set X at x ∈ X. We
can study this problem by considering the solution of the
following dynamical system and analyzing the convergence
of the state variables to the origin,

ẋ ∈ −(∇g(x) +NΩ(x))−A>λ
λ̇ ∈ −(b+NRm

+
(λ)) +Ax.

(5)

Note that, due to convexity assumption, the operators
(∇g(x) + NΩ(x)) and (b + NR+

(λ)) are both maximal
monotone. System (5) therefore defines an interconnection
of x- and λ-dynamics, and each of these dynamics contain
a maximal monotone operator and a coupling term. Using
the properties of the operators that describe subsystem
dynamics, and the interconnection term, we would like to
know if the overall system is maximal monotone. For this
example, the answer is indeed affirmative as we will see
from later developments.

2.2 Outline of the paper

Motivated by this example, in Section 3, we study intercon-
nected dynamical systems with (anti-) maximal monotone
mappings:

ẏ ∈ −My(y, z), ż ∈ −Mz(y, z)

where My(·, z) : Rn ⇒ Rn is (strongly) maximal mono-
tone for each z ∈ Rm, and Mz(y, ·) is (strongly) maximal
monotone for each y ∈ Rn. We will develop conditions
in this note under which the mapping M := (My,Mz)
is (strongly) maximal monotone. The formal description
of such systems appears in Section 3, and we provide
conditions on the component dynamics and coupling terms
such that the overall system is (anti-) maximal monotone.
This allows us to invoke Theorem 1, showing that the
trajectories of the interconnected system exponentially
converge to each other. As an illustration of our conditions,
we consider some well-studied systems from the literature
where our results can be applied.

In Section 4, we consider a particular class of maximal
monotone systems called the Linear Complementarity Sys-
tems (LCS), which has found several applications and are
computational friendly. The dynamics of such systems are
described by

ẋ = Ax+Bλ (6a)

w = Cx+Dλ (6b)

0 ≤ λ ⊥ w ≥ 0 (6c)



with state x ∈ Rn and the complementarity variables
λ,w ∈ Rm. The notation 0 ≤ λ ⊥ w ≥ 0 encodes three
static relations, that is, w ≥ 0, λ ≥ 0 and 〈λ,w〉 = 0,
and the inequalities are interpreted as componentwise.
Using some identities from convex analysis, it is possible
to rewrite system (6) as a differential inclusion:

ẋ ∈ −F(x)
∆
= Ax−B(D +N−1

Rm
+

)−1
(
Cx).

The following result, from (Camlibel and Schumacher,
2016), uses passivity of the quadruple matrix (A,B,C,D)
to rewrite the LCS as a differential inclusion with a
maximal monotone operator.

Theorem 2. Suppose that (A,B,C,D) in (6) is pas-
sive with storage function x 7→ x>x, and Im(C) ∩
rint(Im(N−1

Rm
+

+ D)) 6= ∅. Then, the mapping F(·) is

maximal monotone.

The interconnections of LCS involve coupling of (x, λ)
variables. Because of the additional coupling due to the
complementarity variables λ, these interconnections need
to be studied differently than the approach adopted in Sec-
tion 3. In our treatment, we provide sufficient conditions
involving passivity of the matrix quadruples associated
to each subsystem, which allow us to establish maximal
monotonicity of the overall system.

3. INTERCONNECTED SYSTEMS WITH MAXIMAL
MONOTONE MAPPINGS

We now consider the interconnections of the form:

ẏ ∈ −My(y, z) (7a)

ż ∈ −Mz(y, z) (7b)

where My(·, z) : Rn ⇒ Rn, and Mz(y, ·) : Rm ⇒ Rm
define set-valued mappings for a given z ∈ Rm, and a given
y ∈ Rn, respectively. We impose the following conditions
on these mappings:

(M1) There exist αy ≥ 0 and a function γy : Rn ×
Rm → R such that, for every y?1 ∈ My(y1, z1),
y?2 ∈My(y2, z2), we have

〈y?1 − y?2 , y2 − y1〉 ≤ −αy‖y2 − y1‖2

+ γy(y1, z2)− γy(y1, z1)

+ γy(y2, z1)− γy(y2, z2). (8)

(M2) There exist αz ≥ 0 and a function γz : Rn ×
Rm → R such that, for every z?1 ∈ Mz(y1, z1),
z?2 ∈Mz(y2, z2), we have

〈z?1 − z?2 , z2 − z1〉 ≤ −αz‖z2 − z1‖2

+ γz(y2, z1)− γz(y1, z1)

+ γz(y1, z2)− γz(y2, z2). (9)

(M3) For each z ∈ Rm, and every (y?1 , y1) ∈ Rn×Rn that
satisfies y?1 6∈ My(y1, z), there exists (y?2 , y2) with
y?2 ∈My(y2, z) such that

〈y?2 − y?1 , y2 − y1〉 < 0.

(M4) For each y ∈ Rn, and every (z?1 , z1) ∈ Rm × Rm
that satisfies z?1 6∈ Mz(y, z1), there exists (z?2 , z2)
with z?2 ∈Mz(y, z2) such that

〈z?2 − z?1 , z2 − z1〉 < 0.

(M5) For each z ∈ Rm, dom(My(·, z)) 6= ∅, and for each
y ∈ Rn, dom(Mz(y, ·)) 6= ∅.

The conditions (M1) and (M2) basically describe the
(strong) monotonicity of the mappings My(·, z) and
Mz(y, ·), respectively, for a given z ∈ Rm, y ∈ Rn. We
will present some case studies in this section which would
clarify these inequalities further. At this moment, in (M1),
it could be readily seen that if y?i ∈ My(yi, z) for some
z ∈ Rm and i = 1, 2, then the inequality (8) reduces to
the inequality in (2). The same observation can be made
for (M2). Conditions (M3) and (M4) basically refer to
the maximality of My(·, z) and Mz(y, ·), respectively, for
a given z ∈ Rm, y ∈ Rn. In this paper, we use (M5) for
simplifying some technical arguments used in the proof of
the main result and it would be natural to think about
relaxing this assumption in future work.

Theorem 3. Consider the interconnected dynamical sys-
tem (7) under the conditions (M1), (M2), (M3), (M4),
(M5). Suppose that the function γy + γz is bilinear, so
that there exist Cγ ≥ 0 that satisfies

‖(γy + γz)(y, z)‖ ≤ Cγ(‖y‖2 + ‖z‖2), (10)

for all (y, z) ∈ Rn × Rm. If, it holds that,

min{αy, αz} ≥ Cγ (11)

then (My,Mz)
∆
= M : Rn+m ⇒ Rn+m in system (7) is

maximal monotone. If the inequality in (11) is strict, then
M is strongly maximal monotone.

Proof. Let x1
∆
= (y1, z1), and x2

∆
= (y2, z2), where yi ∈

domMy(·, zi) and zi ∈ domMz(yi, ·), for i = 1, 2. Also,

let α
∆
= min{αy, αz}, and γ

∆
= γy + γz. In the sequel, we

will prove monotonicity and maximality separately.

Monotonicity: To check the monotonicity of the map-
ping M(·), we consider x?1 ∈ M(x1) and x?2 ∈ M(x2).
We can then write x?1 = (y?1 , z

?
1) with y?1 ∈ My(y1, z1),

and z?1 ∈Mz(y1, z1). Similarly, we can write x?2 = (y?2 , z
?
2)

with y?2 ∈My(y2, z2), and z?2 ∈Mz(y2, z2). It then follows
that

〈x?2 − x?1, x2 − x1〉
= 〈y?2 − y?1 , y2 − y1〉+ 〈z?2 − z?1 , z2 − z1〉
≥ αy‖y2 − y1‖2 + αz‖z2 − z1‖2 + γ(y1, z1)− γ(y1, z2)

+ γ(y2, z2)− γ(y2, z1)

= αy‖y2 − y1‖2 + αz‖z2 − z1‖2 + γ(y1 − y2, z1 − z2)

≥ α‖y2 − y1‖2 + α‖z2 − z1‖2

− Cγ
(
‖y1 − y2‖2 + ‖z1 − z2‖2

)
≥ (α− Cγ)

(
‖y2 − y1‖2 + ‖z2 − z1‖2

)
and hence, under the condition (11), the mappingM(·) is
monotone, or strongly monotone if the inequality in (11)
is strict.

Maximality: Next, we use (M3), (M4) and (M5) to
show the maximality of M. Towards this end, fix any
(y1, z1) ∈ Rn ×Rm and any (y?1 , z

?
1) ∈ Rn ×Rm such that

(y?1 , z
?
1) 6∈ M(y1, z1). One of the two statements is true: ei-

ther y?1 6∈ My(y1, z1), or z?1 6∈ Mz(y1, z1). For definiteness,
let us suppose the former, that is, y?1 6∈ My(y1, z1). From
(M5), dom(My(·, z1)) 6= ∅. It then follows from (M3)
that there exists (y?2 , y2) ∈ graph(My(·, z1)) such that

〈y?2 − y?1 , y2 − y1〉 < 0.



Consider the point (y2, z1), and once again, using (M5),
we have that dom(Mz(y2, ·)) 6= ∅. If z1 ∈ dom(Mz(y2, ·)),
then we pick z2 = z1 and z?2 ∈Mz(y2, z1), so that

〈z?2 − z?1 , z2 − z1〉 = 0.

Else, if z1 6∈ dom(Mz(y2, ·)), then using (M4), there exists
(z?2 , z2) ∈ graph(Mz(y2, ·)) such that

〈z?2 − z?1 , z2 − z1〉 < 0.

We thus have (y?2 , z
?
2) ∈M(y2, z2) such that

〈y?2 − y?1 , y2 − y1〉+ 〈z?2 − z?1 , z2 − z1〉 < 0,

which shows the maximality of the mapping M(·). 2

3.1 Saddle-Point Dynamics

As a first instance of the illustration of the interconnection
considered in (7), and the result presented in Theorem 3,
let us consider a saddle function f : Rn × Rm → R ∪
{−∞,+∞}, and the dynamics defined by its subdiffer-
ential. In particular, we assume that f(·, ·) satisfies the
following:

(SF1) For each z ∈ Rm, the function f(·, z) is concave,
and upper semicontinuous.

(SF2) For each y ∈ Rn, the function f(y, ·) is convex, and
lower semicontinuous.

(SF3) The function f(·, ·) is finite-valued everywhere on
Rn × Rm.

For such functions, we let ∂zf(y, z) denote the subdiffer-
ential of the convex function f(y, ·) at z ∈ Rm, which is
well-defined due to (SF2). Similarly, for each z ∈ Rm, we
let ∂yf(y, z) denote the superdifferential of the concave
function f(·, z) at y ∈ Rn, which is well-defined due to
(SF1). Condition (SF3) is somewhat restrictive in the
context of saddle functions as considered in (Rockafellar,
1970), but it simplifies the analysis. We can now introduce
the saddle-point dynamics as follows (Goebel, 2017):

ẏ ∈ ∂yf(y, z) (12a)

ż ∈ −∂zf(y, z) (12b)

Proposition 4. Consider the dynamical system (12) with
f(·, ·) satisfying (SF1), (SF2), (SF3). Then, the set-
valued mapping (x, y) 7→ (−∂yf(y, z), ∂zf(y, z)) is max-
imal monotone.

Proof. The proof basically relies on showing that the
conditions (M1)–(M5) hold, and so the result follows due
to Theorem 3.

Consider the points (yi, zi) ∈ Rn × Rm and (y?i , z
?
i ) ∈

−∂yf(yi, zi)× ∂zf(yi, zi). By definition,

〈y?1 , y − y1〉 − f(y1, z1) ≤ −f(y, z1), ∀ y ∈ Rn

〈y?2 , y − y2〉 − f(y2, z2) ≤ −f(y, z2), ∀ y ∈ Rn

This results in

〈y?1 − y?2 , y2 − y1〉 ≤ f(y1, z1)− f(y1, z2)

− f(y2, z1) + f(y2, z2) (13)

so that (M1) holds with αy = 0 and γy(·, ·) = −f(·, ·).
Similarly, using the definition of the subdifferential of the
convex function, we get

〈z?1 , z − z1〉+ f(y1, z1) ≤ f(y1, z), ∀ z ∈ Rm

〈z?2 , z − z2〉+ f(y2, z2) ≤ f(y2, z), ∀ z ∈ Rm

This results in

〈z?1 − z?2 , z2 − z1〉 ≤ f(y1, z2)− f(y1, z1)

+ f(y2, z1)− f(y2, z2) (14)

so that (M2) holds with αz = 0 and γz(·, ·) = f(·, ·).
Recalling the fact that the subdifferential of a proper, con-
vex, lower semicontinuous function, and the superdifferen-
tial of a proper, concave, upper semicontinuous function
are maximal monotone, the statements in (M3), (M4),
(M5) follow from (SF1), (SF2), and (SF3). 2

3.2 Dissipative Interconnection

Consider the dynamical system with state x, input u and
output ω, described by

ẋ = F (x, u)

ω = h(x)
(15)

for some continuous functions F : Rn × Rm → Rn, and
h : Rn → Rm. We say that the system (15) is incrementally
passive if there exists a continuously differentiable storage
function V , R2n 3 (x1, x2) 7→ V (x1, x2) ∈ R+ such that,
∂V
∂x1

F (x1, u1) + ∂V
∂x2

F (x2, u2) ≤ 〈ω1 − ω2, u1 − u2〉 , where

ω1 = h(x1) and ω2 = h(x2).

Let us now consider a negative feedback interconnection
of two incrementally passive systems. The first system is
described as

ẏ = Fy(y, uy), ωy = y (16)

with Fy : Rn×Rn → Rn continuous. The dynamics of the
second system are given by

ż = Fz(z, uz), ωz = z (17)

with Fy : Rn × Rn → Rn continuous. The interconnec-
tion between these systems is described via the negative
feedback as:

uy = −ωz, uz = ωy. (18)

The interconnection of incrementally passive systems has
been widely studied in the literature, see for example
(Zames, 1966), (Desoer and Vidyasagar, 1975, p. 184),
(Pavlov and Marconi, 2008), (van der Schaft, 2017,
Prop. 2.2.21). Here we show that such interconnections
are actually maximally monotone. We choose to work with
continuous single-valued functions so that the maximality
holds (Rockafellar and Wets, 1998, Example 12.7).

Proposition 5. Suppose that the system (16) is incremen-
tally passive with output ωy, input uy, the storage func-
tion Vy(y1, y2) = ‖y1 − y2‖2, and that the system (17)
is incrementally passive with output ωz, input uz, the
storage function Vz(z1, z2) = ‖z1− z2‖2. Then, the system
defined by their interconnection via negative feedback (18)
is maximal monotone.

Proof. The proof follows once again by an application of
Theorem 3, where we can show that (M1)–(M5) hold.
The statement (M1) basically follows from the incremen-
tal passivity of (16) with αy = 0 and γy(y, z) = 〈y, z〉.
Similarly, (M2) follows from the incremental passivity of
(17) with αz = 0 and γz(y, z) = −〈y, z〉. Thus, γy+γz = 0.
Statements (M3), (M4), (M5) basically follow from the
continuity of the mappings Fy(·, ·) and Fz(·, ·) over the
entire space Rn × Rn. 2



4. INTERCONNECTED LINEAR
COMPLEMENTARITY SYSTEMS

Let us now consider the interconnections of slightly differ-
ent, but closely related, class of nonsmooth systems where
the dynamics are described by linear complementarity
systems (LCS). In particular, the dynamics of the first
system are described by the LCS:

ẏ = A1y +B1λy + L1uy (19a)

wy = C1y +D1λy + E1uy (19b)

0 ≤ λy ⊥ wy ≥ 0 (19c)

and the dynamics of the second system are described by
the LCS:

ż = A2z +B2λz + L2uz (20a)

wz = C2z +D2λz + E2uz (20b)

0 ≤ λz ⊥ wz ≥ 0 (20c)

with Ai ∈ Rni×ni , Li ∈ Rni×mi , Li ∈ Rni×nui , Ci ∈
Rmi×ni , Di ∈ Rmi×mi , Ei ∈ Rmi×nui , and we let, n :=
n1 +n2, m := m1 +m2. The interconnection between (19)
and (20) is defined as(

uy
uz

)
=

(
ωz
ωy

)
=

(
H2z +G2λz
H1y +G1λy

)
. (21)

The outputs ωy and ωz can be seen as the measured
outputs for each subsystem, while wy and wz are inter-
nal variables (which can be considered as outputs of a
passive internal subsystem as seen below). This yields the
following interconnected system:(

ẏ
ż

)
=

(
A1 L1H2

L2H1 A2

)
︸ ︷︷ ︸

∆
=Ã

(
y
z

)
︸︷︷︸

∆
=x

+

(
B1 L1G2

L2G1 B2

)
︸ ︷︷ ︸

∆
=B̃

(
λy
λz

)
︸ ︷︷ ︸

∆
=λ(

wy
wz

)
︸ ︷︷ ︸

∆
=w

=

(
C1 E1H2

E2H1 C2

)
︸ ︷︷ ︸

∆
=C̃

(
y
z

)
+

(
D1 E1G2

E2G1 D2

)
︸ ︷︷ ︸

∆
=D̃

(
λy
λz

)

0 ≤ λ ⊥ w ≥ 0
(22)

The interconnection matrices are L1, L2, E1 and E2.

Assumption 1. The quadruples (Ai, Bi, Ci, Di), i = 1, 2,
define a passive system. Equivalently, there exist Pi =
P>i < 0 such that:(

−A>i Pi − PiAi PiBi − C>i
(PiBi − C>i )> Di +D>i

)
< 0, (23)

where the notation P < 0 (resp. P � 0) is used to denote
P being positive semidefinite (resp. positive definite).

This means that the passivity of the subsystem (19)
(resp. (20)) holds with supply rates λ>y wy (resp. λ>z wz),

and not u>y ωy (resp. u>z ωz) as usual. The passivity is
preserved under the interconnection constraint, if and only
if there exists an n× n matrix P = P> < 0 such that:

Q̃
∆
=

(
−Ã>P − PÃ PB̃ − C̃>
(PB̃ − C̃>)> D̃ + D̃>

)
< 0. (24)

Then the interconnected system is passive with the supply
rate w>λ and storage functions V (x) = x>Px.

As stated earlier in Theorem 2, it is possible to rewrite
(19), (20), (21), and hence the interconnection (22) in the
form of differential inclusions as follows:

ẏ ∈ A1y −B1(D1 +N−1
Rm1

+

)−1
(
C1y + E1H2z

+ E1G2λz
)

+ L1(H2x2 +G2λz)

ż ∈ A2z −B2(D2 +N−1
Rm2

+

)−1
(
C2z + E2H1y

+ E2G1λy
)

+ L2(H1x1 +G1λy)

λ ∈ −(D̃ +NRm
+

)−1(C̃x)

(25)

If G1 = 0 and G2 = 0, (25) can be recast into (7) under
Assumption 1 and suitable constraints qualification, which
guarantee the maximal monotonicity. The purpose of the
next analysis is to treat the general case. Our next result,
Theorem 6, analyzes conditions under which the LMI
in (24) is satisfied under Assumption 1, and for various
cases (passive, strongly passive). The link with maximal
monotonicity is made later in the section in Corollary 8. In
what follows, we use λmax(M) (resp. λmin(M)) to denote
the largest (resp. smallest) eigenvalue of a matrix M , and
σmax(M) for the largest singular value of M .

Theorem 6. Consider systems (19) and (20) under As-
sumption 1, and their interconnection in (22). Then the
following assertions are true:

1. Preservation of passivity: Assume that both subsystems
are passive. Then the quadruple (Ã, B̃, C̃, D̃) is passive
with storage matrix P = diag(P1, P2), if E1G2 = −G>1 E>2 ,
P1L1G2 − H>1 E

>
2 = 0, P2L2G1 − H>2 E

>
1 = 0, and

P1L1H2 + (P2L2H1)> = 0.

2. Preservation of strong passivity: Assume that both
subsystems are strongly passive, then the quadruple

(Ã, B̃, C̃, D̃) is also strongly passive with P =

(
P1 P12

P>12 P2

)
where P1 and P2 are solutions of (23), if conditions (26),
(27) and (29) are satisfied, where (a):

min(λmin(D1 +D>1 ), λmin(D2 +D>2 )) ≥

λ
1
2
max(E1G2G

>
2 E
>
1 ) + λ

1
2
max(E2G1G

>
1 E
>
2 ), (26)

(then D̃ + D̃> � 0), and (b)

σmax(Q̄) ≤ min(λmin(Q1), λmin(Q2)), (27)

where, we let

Q̄ =

(
P12L2H1 +H>

1 L
>
2 P

>
12 Q̄12

Q̄>
12 P>

12L1H2 +H>
2 L

>
1 P12

)
, (28)

with Q̄12
∆
= P1L1H2 +P12A2 +A>1 P

>
12 +H>1 L

>
2 P2; P12 is

such that σmax(P12) < λmin(P1)λmin(P2), Q1
∆
= −A>1 P1 −

P1A1 � 0 and Q2
∆
= −A>2 P2−P2A2 � 0. These conditions

hold if P12 = 0 and P1L1H2 = −(P2L2H1)> (then Q̄ = 0

and −Ã>P − PÃ � 0), and finally (c):

σmax

(
P12L2G1 + P1B1 − C>

1 P1L1G2 + P12B2 −H>
1 E

>
2

P>
12B1 + P2L2G1 −H>

2 E
>
1 P>

12L1G2 + P2B2 − C>
2

)
≤
(
λmin(diag(D1 +D>

1 , D2 +D>
2 ) + λmin(R)

) 1
2 ·(

λmin(diag(Q1, Q2)) + λmin(Q̄)
) 1

2 (29)

where

R =

(
0 E1G2 +G>1 E

>
2

E2G1 +G>2 E
>
1 0

)
.

The proof is omitted due to space constraints. It basically
uses the fact that the LMI in (24) is equivalent to following



four inequalities (Bernstein, 2009, Fact 8.2.4): (a) D̃ +

D̃> < 0; (b) PB̃− C̃> = (PB̃− C̃>)(D̃+ D̃>)†(D̃+ D̃>);

(c) Ã>P+PÃ 4 0; and (d) −Ã>P−PÃ < (PB̃−C̃>)(D̃+

D̃>)†(B̃>P − C̃).

Remark 7. Notice that the conditions in item 1, are differ-
ent from those in item 2, because preservation of passivity
is more stringent than preservation of strong passivity:
while the former calls for strong structural conditions, the
latter holds if perturbations are small enough.

As mentioned in Theorem 2, under some basic conditions,
the negative feedback interconnection of a passive system
with a maximal monotone static nonlinearity (possibly set-
valued) defines a differential inclusion

ẋ ∈ −F(x) = Ãx− B̃(D̃ +N−1
Rm

+
)−1(C̃x)

with F(·) a maximal monotone operator with dom(F) =

{x ∈ Rn | C̃x ∈ dom(D̃ + N−1
Rm

+
)−1 = Im(D̃ + N−1

Rm
+

)} =

C̃−1(Im(D̃ +N−1
Rm

+
)). This motivates the next result.

Corollary 8. Consider systems (19) and (20) under As-

sumption 1, and their interconnection in (22). Let Im(C̃)∩
rint(Im(N−1

Rm
+

+ D̃)) 6= ∅. If the conditions of item 1 (resp.

item 2) in Theorem 6 are satisfied, then the LCS in (22)
has a maximal monotone (resp. single-valued Lipschitz
strongly monotone) right-hand side mapping F(·).

Proof. If the conditions of item 1 hold, then (Ã, B̃, C̃, D̃)
is passive, and the mapping, x 7→ F(x) is maximal
monotone.

Let the quadruple (Ã, B̃, C̃, D̃) be strongly passive, then

there exists µ > 0 such that (Ã− µIn, B̃, C̃, D̃) is passive

(this holds for all 0 < µ < λmin(Q̃) with Q̃ in (24)).
Therefore, the mapping

x 7→ F̃(x) = −(Ã+ µIn)x+ B̃(D̃ +N−1
Rm

+
)−1(C̃x)

is maximal monotone, and 〈x?1−x?2, x1−x2〉 ≥ µ||x1−x2||2
for all xi ∈ dom(F̃), x?i ∈ F̃(xi), i = 1, 2. In addition

strong passivity implies D̃ � 0, hence applying (Brogliato

and Goeleven, 2011, Proposition 1) the mapping (D̃ +
N−1

Rm
+

)−1 is single-valued, well-defined and Lipschitz con-

tinuous with constant 1/λmin(D̃ + D̃>). 2
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