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Abstract

Acting is an important decisional function for autonomous robots. Acting relies on
skills to implement and to model the activities it oversees: refinement, local recovery,
temporal dispatching, external asynchronous events, and commands execution, all done
online. While sitting between planning and the robotic platform, acting often relies on
programming primitives and an interpreter which executes these skills. Following our
experience in providing a formal framework to program the functional components of our
robots, we propose a new language, to program the acting skills. This language maps
unequivocally into a formal model which can then be used to check properties offline
or execute the skills, or more precisely their formal equivalent, and perform runtime
verification. We illustrate with a real example how we can program a survey mission for
a drone in this new language, prove some formal properties on the program and directly
execute the formal model on the drone to perform the mission.

1 Introduction and motivation

Acting is an important decisional function to ensure proper deliberation on an autonomous
system [Ingrand and Ghallab, 2017]. It often sits between planning and the platform, but
unlike planning it is an online process, which must stay reactive to the dynamic of the
environment and the platform and cannot devote resources to long computations and complex
searches. Acting often relies on models, called skills, which specify how to perform actions (as
an operational model), while the action models used for planning are more what is abstractly
needed to perform the action (as a descriptive model) [Ghallab et al., 2016].

The most basic skills need to connect to the commands made available by the functional
level to the acting component, call them asynchronously, get execution status and result,
but it also needs means to receive exogenous events as they occur in the environment. This
action/command dispatching may also rely on preconditions and invariants checking, inter-
ruptions, temporal constraints, etc. Above the basic skills one often finds more complex skills,
similar to programs with control structures to allow for local choices and local recoveries with
test, branching, looping, parallel and asynchronous execution.

Considering the expected functionalities of an acting component, its skill language/frame-
work should provide the following features:

• Support for Validation and Verification (V&V). Notwithstanding the other functional-
ities, this is the feature the work presented in this paper focuses on.
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• One cannot only rely on basic skills connecting to the robot commands, one also needs
some programming primitives (e.g., test, branching, loop).

• Controlling and managing multiple commands sent to functional components require
some primitives to handle parallelism, threads, resources.

• In embedded real-time systems, one needs an explicit time representation to wait, syn-
chronize, check temporal constraints, etc.

• The language should reflect the tight coupling and necessary consistency between plan-
ning and acting.

There are other less critical features which are now expected from an acting component:
human awareness (how does the acting component manage the human presence and activities),
link with motion/manipulation (most robots move and solving their motion planning problems
often require an elaborate coupling with acting). Acting skills can be programmed by hand,
but learning them or their parameters must also be investigated.

Nevertheless, all these considered, the work presented here focuses on the formal V&V
aspects of acting.

The paper is organized as follows. After introducing above the acting decisional function-
ality and its skills, a state of the art of the various approaches and formalisms, with respect to
V&V, is discussed in the next section concluding with a justification of the proposed approach
and its originality. Section 3 presents the ProSkill acting language and its primitives. The
Fiacre formal framework we use is presented in Section 4. Section 5 presents how ProSkill
primitives are mapped in Fiacre and then the type of formal properties one can show online
but also at runtime. In Section 6, we introduce a real robotic example on which we success-
fully deployed our approach. A discussion in Section 7 reassesses the pros and cons of the
ProSkill/Fiacre formal acting language, leading to possible future work and then to the
conclusion of the paper.

2 Acting: state of the art and proposed approaches

Over the years, the planning field has managed to define and agree on a number of common
languages and formalisms: PDDL [Ghallab et al., 1998]; NDDL [Frank and Jónsson, 2003];
ANML [Smith et al., 2008]; HDDL [Höller et al., 2020]; chronicle [Ghallab, 1996]; etc. Sim-
ilarly, for robotic functional components (nodes), ROS [Quigley et al., 2009] has emerged as
a de facto standard, at least to enable data and code sharing among roboticists. In both
domains, many would argue that it is good for the field as it allows systems interoperability,
comparison, competition, sharing, etc. while others would regret that it restricts and con-
strains the development of new original approaches, as researchers may remain too focused on
improving the associated algorithms. Meanwhile, the acting field remains mostly organized
along one system — one language tandems. Yet, we will see in the following sections that
there are large categories of approaches to model and execute skills to perform acting, and
we will stress how these approaches may support V&V.
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2.1 Reactive planners and procedural languages

Acting must cope with the real-world contingencies, although it cannot really plan, it can
reuse some plans parts, or choose among a set of “reactive plans” (e.g. RAP [Firby, 1987]),
and be able to synchronize and perform task decomposition (e.g., TDL [Simmons and Apfel-
baum, 1998]). These principles led to the development of many systems. Among them, PRS
(Procedural Reasoning System) first implementations (late eighties) were mostly used for
procedural maintenance [Georgeff and Ingrand, 1989]. It is only later that at LAAS, PRS
skills (called Operational Procedure) were used as an acting component in the LAAS archi-
tecture [Alami et al., 1998, Ingrand et al., 2007]. The Propice [Despouys and Ingrand, 1999]
fork is an attempt to infuse some planning in the acting functionality of the robots. Overall,
PRS was deployed in many robotic experiments. From a V&V point of view, there are some
attempts to transform PRS skills in Colored Petri Net [De Araújo and de Medeiros, 2004]
and later to give a formal semantics to the PRS skill language [de Silva et al., 2018]. But
both studies remain theoretical and were never applied, nor deployed to verify skills. Simi-
larly, some work was conducted to show how some formal properties on TDL [Simmons and
Apfelbaum, 1998] skills could be proven using NuSMV [Simmons and Pecheur, 2000]. But
again, this study remained mostly theoretical.

More recently, PLP [Brafman et al., 2016] proposes an acting language which borrows
some of the PDDL constructs and provides means to monitor the behavior of functional
components. [Kovalchuk et al., 2021] introduces a stochastic extension to their model based
on UPPAAL-SMC [David et al., 2015]. With respect to V&V, the goal to build a monitor of
the controller is interesting, but it did not go as far as deploying a formal V&V.

Behavior Trees [Colledanchise and Ögren, 2018] are becoming quite popular in the robotic
community. Initially developed for the video game industry, their simple yet powerful exe-
cution tree mechanism (skills) based on sequence, fallback and parallel nodes has been quite
successful in deploying reactive modular acting systems. Yet, they lack an explicit time rep-
resentation and even if the authors propose some mechanisms to check efficiency, safety, and
robustness, those mostly rely on ad hoc procedures, not a fully equivalent formal model (but
we will see in the discussion (Section 7) that this could be seriously considered).

RAE [Ghallab et al., 2016] introduces the basic algorithms which can drive a procedural
reactive acting engine. Inspired by the PRS [Ingrand et al., 2007] engine, it mostly differs on
its semantics of task (RAE) vs. goal (PRS) and on its handling of event-based skills execution.
The later implementations of RAE introduce a look ahead planning mechanism to evaluate
future outcomes and help make better choices while acting.

2.2 State machines and programming language

Finite state machines are often proposed as acting models. Yet, one should consider whose
states are considered? The states of the world and its components, or the states of the acting
program execution? In the former, they capture the acceptable states and state transitions of
the components, while in the later, they capture the possible execution states which can be
more difficult to maintain (some argue that they are then just a bunch of GoTo instructions).

Yet, there are acting systems which mostly rely on them. SMACH [Bohren and Cousins,
2010] is an acting system deployed along ROS which models skills with hierarchical state
machines. The states in SMACH are execution states, each with the possible outcomes and
one can have multiple state machines active at once. Similarly, RAFCON [Brunner et al.,
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2016] also proposes hierarchical state machines to program robotics systems and allow the
creation of concurrent flow controls. rFSM statecharts [Klotzbücher and Bruyninckx, 2012]
stresses the coordination aspect of the acting system and proposes to use Harel statechart to
implement it.

Interestingly, RMPL [Ingham et al., 2001, Williams and Ingham, 2003] mixes hierarchical
finite states machines, to represent the state of some devices used in the experiment and, a
programming language inspired by Esterel [Boussinot and de Simone, 1991] to program the
skills which need to be deployed and executed. This is an original combination, and we will
further discuss it in Section 7. More recently, Proteus [McClelland et al., 2021] also relies
on similar hierarchical finite states machines for components but proposes a more classical
programming language to deploy the system.

2.3 Acting/planning framework

We must also consider systems using skills which are common (or share a significant part)
between the planning (action model) and the acting language and could benefit from their
action model “part” to improve the verifiability of their skills. Indeed, most planners are
performing some kind of model verification, using states exploration, constraints satisfaction,
etc.

Cypress (i.e., SIPE/PRS) proposes the Act formalism [Wilkins and Myers, 1995] to unify
both functionalities, but this common skill/action model remains mostly syntactic, and both
engines pick the [art they need from the Act representation.

The IDEA [Finzi et al., 2004] and T-ReX [McGann et al., 2008] also proposes to merge
the planning and acting representation, arguing, with some truth, that they are similar pro-
cesses, with just a different horizon and response time. Organizing the state variables of the
problem along different planners/reactors, they use constraints to specify the acceptable state
variable values and value transitions. But writing the proper constraints to perform acting
and planning ends up being quite tedious and error prone.

OMPAS [Turi et al., 2023, Turi, 2024] proposes an acting language whose skills can be
automatically transformed in temporal chronicles to be used by a temporal planner for some
limited horizon planning and help the acting component to make better informed choices.
This is an interesting approach as it bridges skill models and action models.

2.4 Programming skills within a formal framework

Last, there are also many acting approaches which explicitly rely on some well-founded formal
frameworks:

Situation calculus Many systems propose Situation Calculus as an underlying model for
planning and acting: GOLEX [Hähnel et al., 1998], YAGI [Eckstein and Steinbauer,
2020], Golog++ [Mataré et al., 2021] to name a few. Yet despite the formal underlying
framework, their deployment in real systems remains confidential.

Petri net is a well-known formalism to model concurrent systems and is supported by many
formal tools. It is used in many acting systems: PROCOSA [Barbier et al., 2006],
ASPIC [Lesire and Pommereau, 2018], Petri net [Costelha and Lima, 2012] and Hier-
archical Petri Nets [Figat and Zieliński, 2022], etc. [Albore et al., 2023, Pelletier et al.,
2023] propose SkiNet, a skill language which automatically maps in Time Transition
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Systems (Time Petri Net with data)1. This approach has some commonality with the
one we propose, and we discuss their difference in Section 7.

Synchronous language Many approaches rely on a synchronous language “hypothesis”
(communication and computation in no time). Historically MAESTRO/ORCCAD [Coste-
Maniere et al., 1992, Espiau et al., 1996, Kim and Kang, 2005], relying on Esterel, al-
ready nailed down the idea of an acting skill language able to map in a formal model.
ReX [Kaelbling and Wilson, 1988]/GAPPS [Kaelbling, 1988] can also be seen as a
synchronous approach skill implementation. Plexil [Verma et al., 2006] executes skills
modeled with different types of nodes along some control structures. A formal, but
adhoc, extension is presented in [Dowek et al., 2007].

Robot Chart The Robot Chart [Cavalcanti, 2017] framework is also deeply grounded in
formal models, and numerous extensions have been proposed. But the language does
not seem to grab much popularity or use in the robotics community which probably
discards it as too complex or cumbersome to use.

2.5 Our approach

On one hand, most of the approaches presented in Section 2 (Subsection 2.4 apart) lack
support for V&V with an automatic and systematic translation of their skills in a formal
framework. On the other hand, the ones presented in section 2.4 have a strong potential to
provide formal V&V, yet they often remain difficult or cumbersome to use for roboticists as
most of them require some knowledge of the underlying formalism. Moreover, none of them
provide a model which can be used both for offline and runtime verification.

In the survey [Bjørner and Havelund, 2014], the authors write:

“We will argue that we are moving towards a point of singularity, where specifi-
cation and programming will be done within the same language and verification
tooling framework. This will help break down the barrier for programmers to write
specifications.”

Similarly, in [Nordmann et al., 2016] the authors survey robotic DSL, and they argue that:

“Both communities should foster collaboration in order to make formal meth-
ods more practicable and accepted in robotic software development and to make
DS(M)L approaches more well-founded in theory to foster work in the field of
model validation and verification.”

Following these advices again (we have already presented a formal framework for functional
components [Dal Zilio et al., 2023]), we now want to extend the use of formal models toward
the acting component. Hence, the proposed approach presents the following characteristics:

• Programming the acting component using our proposed skill language does not require
any knowledge in formal models and languages,

• The language can be automatically, fully, and unequivocally translated in Fiacre [Berthomieu
et al., 2008, 2020], a preexisting formal language, with a clear semantics,

1We borrow some of SkiNet semantics in ProSkill.
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• The obtained Fiacre formal model can be used both offline with model checking to
prove some properties of the acting program, but also online to execute the formal
model on the robot.

• The skill programs are equivalent to a formal specification, and the formal specification
is verifiable and executable on the robot.

As we will see, providing a skill language, whose equivalent formal model is directly
executing on the robot, has several advantages: it increases the credibility that the skills are
doing what they are intended too, and it improves the acceptability by roboticist as no extra
step is needed to run the skills within a formal framework, so there is no need to develop a
new “skill” execution engine.

3 The ProSkill language

The ProSkill language and specifications rely on four basic primitives: state variables,
events, basic skills, and composite skills. The first three are inspired by similar objects in the
SkiNet skill language [Albore et al., 2023].

For each of these objects, we explain their role, and how they relate to each other, the
platform, and the environment.

3.1 State variables

State variables are variables which take their value in either a bounded natural number or
among several enumerated values. They always have an initial value, and for the latter, one
can allow transition to any other values, or more restrictively to some limited number of
transitions.

In ProSkill they are defined with statements such as the ones on Listing 1.

Listing 1: Example of State Variables definition
1 (defsv flight_levels
2 :init 1
3 :min 1
4 :max 3)
5

6 (defsv battery
7 :states (Good Low Critical) ; the possible values the state variable can take
8 :init Good ; the initial value
9 :transitions ; use the :all keyword if all transitions are allowed,

10 ((Good Low)(Low Critical) ; list them otherwise.
11 (Critical Low)(Low Good)))

In this example the state variable battery can change from any values to any other values
except from Critical to Good and vice versa.

3.2 Events

Events correspond to external events which can occur at any time. The effects of an event
are to produce some state variables value change.

In the following example, some sensors will issue the battery to critical event, which leads
to updating the battery state variable (see Listing 2).

6



Listing 2: Example of an event definition
1 (defevent battery_to_critical
2 :effects (battery Critical))

3.3 Basic skills

The basic skills are the lowest level skills. They are the ones which act on the underlying
robotic system, i.e., they launch commands with arguments, and when the command com-
pletes, the basic skill gets the status (success, failure, failed inv or interrupted) and the
results, if any. The underlying commands can be programmed in ROS ROS [Quigley et al.,
2009] (e.g., using ROS Actions), or other robotic frameworks, such as Gen

oM [Dal Zilio et al.,
2023].

Although the syntax is slightly different, the basic skills semantics is equivalent to the
one described in [Albore et al., 2023, Section 4.5, Figure 7]. Listing 3 shows an example,
withdrawn from the drone use case we present in section 6, of a basic skill specifying and
commanding the takeoff of the drone.

Listing 3: Example of a Basic Skill takeoff
1 (defskill takeoff
2 :input ($height float $duration float) ; The expected arguments
3 :precondition (not_moving (motion Free) ; a list of tag (state_variable value)
4 on_ground (flight_status OnGround) ; all four preconditions need to be satisfied
5 battery_good (battery Good)
6 origin_valid (localization_status Valid))
7 :start (motion Controlled) ; state_variable to set upon starting this skill
8 :invariant (in_control (:guard (motion Controlled)) ; all the guards are monitored during
9 battery (:guard (˜ (battery Critical)) ; the execution of this action, if one

10 :effects (motion Free))) ; fails its effects, if any, are set
11 ; and the action is interrupted
12 :time_interval [1,3] ; this is the interval of time in seconds this action should take
13 :action (takeoff) ; this is linked to the C/C++ code which will be invoked
14 :interrupt (:effects (motion Free)) ; when interrupted, set this state_variable
15 :success at_altitude ; success, and their effects on state_variable
16 (:effects (motion Free) ; postcondition are just checked for
17 :postcondition (flight_status InAir)) ; model consistency
18 :failure (grounded (:effects (motion Free) ; they are not enforced
19 :postcondition (flight_status OnGround))
20 emergency (:effects (motion Free)
21 :postcondition (flight_status InAirUnsafe))))

Most of the basic skill fields are self-explanatory, state variable values are checked (in
:precondition, :guard, :postcondition) and set (in :start and :effect). Note that all :guard
and :effect are enforced, but :postcondition (lines 3.17,2 3.19 and 3.21) are just checked
(they are expected as an effect of the success or failure, but not enforced). :time interval

(line 3.12) is a specification of the duration the action should take, and the :action field
(line 3.13) specifies the command to call on the robot when this skill runs.

3.4 Composite skills

Composite skills are hierarchically above basic skills and act more like a programming lan-
guage where one can call other skills (basic or composite), test the returned status and values,

2Listing lines are referenced with the <listing number>.<line number>, example: 3.17, Listing 3, line: 17.
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test state variable values, branch according to these test, loop, wait for some time or condi-
tions, and even execute multiple branches in parallel. Composite skills are inspired by PRS
procedures [Ingrand et al., 1996].

Listing 4 shows an example of composite skill withdrawn from the experiment presented in
section 6. The fields common to the basic skills have the same semantics and are treated alike.
The most important and new field here is the :body field (line 4.8), instead of the :action field
(line 3.13), which lists the program instructions to execute when the skill is called.

Listing 4: Example of a Composite Skill: uav mission
1 (defskill uav_mission
2 :time_interval [60 , 120] ; expected min and max time to perform this skill.
3 :success mission_accomplished ; success and
4 (:effects (mission_status Succeeded)) ; its effect
5 :failure mission_failed ; failure and
6 (:effects (mission_status Failed)) ; its effect
7 :start (mission_status Ongoing) ; setting the mission status SV upon starting
8 :body
9 ((start_drone) ; This will call the start_drone basic skill

10 (ˆ (localization_status Valid)) ; wait for the localization to be Valid
11 (takeoff height 3.0 duration 0) ; call the takeoff basic skill (3 meters)
12 (if (= takeoff.status success) ; if the takeoff status is success
13 (// ((camera_survey)) ; execute two branches in parallel camera_survey on one
14 ((goto_waypoint x 1 y 2 z 3 yaw 0 duration 0) ; navigation on the other one
15 (ˆ 2) ; wait 2 seconds
16 (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0) ; navigating to a new position
17 (camera_survey.interrupt))) ; interrupt the camera_survey skill
18 (if (= goto_waypoint.status success) ;the last goto_waypoint was a success
19 (landing) ; call the landing skill
20 (if (= landing.status success) ; if successful
21 (shutdown_drone) ; call the shutdown_drone skill
22 (printf "Mission Accomplished") ; print a message
23 (success mission_accomplished)))) ; return the mission_accomplished success
24 (printf "Mission failed") ; otherwise, print and report failure.
25 (failure mission_failed)))

Note that for any skill, one can access skill.status (lines 4.12, 4.18 and 4.20) and
skill.res to respectively check the status (success, failure, failed inv or interrupted) and
the result of the skill’s last execution. Moreover, one can also call skill.interrupt to interrupt
an executing skill (line 4.17).

Monitor skills

Monitor skills are a particular type of composite skill which are called immediately upon
starting the execution of the ProSkill program (like the main composite skill). Their first
instruction is usually to wait for a condition they monitor, then they execute the rest of the
body like any other composite skill.

4 A formal framework for offline and runtime verification: Fi-
acre, language, models, and tools

Although the goal of this paper is not to present in detail the formal framework we use, it is
necessary to clarify some terminology and give some explanations to make it self-contained.
The more curious readers can check the specific papers and websites referenced below.
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Listing 5: Example of a Monitor Skill to gently land the drone when the battery level becomes
critical.
1 (defskill monitor_battery_critical
2 :monitor t ; Mark this skill as a monitoring one (hence it gets started upon startup)
3 :body ((ˆ (battery Critical)) ; wait until the battery becomes critical
4 (printf "We will try to land the drone safely...") ; print a message
5 (set_velocity vx 0.0 vy 0.0 vz -0.1) ; force landing by setting -10cm/s vertical speed
6 ))

4.1 Terminology, models, languages, and tools

We first clarify the following terms:

Time Petri nets [Berthomieu and Diaz, 1991] are an extension from regular Petri nets
model where each transition has a time interval (by default [0,∞)) which specifies that
the transition is sensitized and can be fired only during this time interval.

TTS Time Transition Systems are an extension of Time Petri nets with data, and where
transitions can call data processing functions.

Tina stands for “TIme petri Net Analyzer”, it is a toolbox for the editing, simulating and
analysis of Petri nets, Time Petri nets and TTS. Among these tools, sift and selt can
be used to respectively build the set of reachable states of the model and check LTL
properties on the model.3

Fiacre stands (in french) for ”Intermediate Format for Embedded Distributed Component
Architectures”. Fiacre is a formally defined language to compositionally represent
the behavioral and timing aspects of embedded and distributed systems for formal
verification and simulation purposes. Fiacre formal specifications can be compiled in
a formally equivalent TTS with the frac compiler.4

H-Fiacre is an extension of the Fiacre language to make the specified model “executable”
by adding Event Ports and Tasks both linked to C/C++ functions.

Hippo is an engine to execute TTS obtained from H-Fiacre specifications [Hladik et al.,
2021].5

This framework has been deployed in numerous projects and applications,6 and, not sur-
prisingly, is also the framework we used to validate and verify the functional components of
our robotics experiments [Dal Zilio et al., 2023].

4.2 Fiacre semantics

Although we refer the reader to specific papers and websites (see above) for the formal model
presentation and the tools, we think it is important to get an idea of the semantics of the
Fiacre language with a small example: the specification of a mouse triple clicks detector.

3https://projects.laas.fr/tina/index.php
4https://projects.laas.fr/fiacre/index.php
5https://projects.laas.fr/hippo/index.php
6https://projects.laas.fr/fiacre/papers.php
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This example is specified on Listing 6 along the illustration Figure 1. It defines three Fiacre
processes, each with its own automata. The first process, clicker, produces a click at any time.
It waits between 0 and∞ and then synchronizes on the click port with the detect triple click
process. This second process has four states, waiting for synchronization on click, or that the
maximum acceptable time between two clicks (0.2 sec) has elapsed. Note the select on the
wait second and wait third states, which is a non-deterministic choice which will be explored
by the model checker. When the detected state is reached, a synchronization on the triple click
is made and this allows the transition of the triple click receiver process to the received tc
state.

Following these process specifications, one component is specified by putting three process
instances in parallel (line 6.56) and connecting them with two ports (line 6.54). This example
is intentionally simple, but the Fiacre language supports complex data type, directional
ports exchanging data (in and out), local and global variables, tests, switch/case, guards on
transitions and calls to functions (internal to Fiacre or external with C/C++ code) making
complex computations. More complex Fiacre specifications will be introduced and can be
found in A and B.

Listing 6: Fiacre specification for a triple click detector (Fiacre offline version).
1 process clicker [click:sync] is // synthesize clicks and sync them on its port at any time
2 states wait_click, make_click
3

4 from wait_click
5 wait [0, ...[; // wait any time from zero to infinity
6 to make_click
7

8 from make_click
9 click; // issue a click sync on the Fiacre port

10 to wait_click
11

12 process detect_triple_click [click:sync,triple_click:sync] is
13 states wait_first, wait_second, wait_third, detected
14

15 from wait_first
16 click; // first click
17 to wait_second
18

19 from wait_second
20 select // we wait either
21 wait [0.2,0.2]; // exactly 0.2 second
22 to wait_first // then reset the detector
23 []
24 click; // or for the second click
25 to wait_third // whichever comes first
26 end
27

28 from wait_third
29 select // again for the third click
30 wait [0.2,0.2];
31 to wait_first
32 []
33 click; // third
34 to detected
35 end
36

37 from detected
38 triple_click; // sync on the triple_click port
39 to wait_first
40

41 process triple_click_receiver[triple_click:sync] is
42 states waiting_tc, received_tc
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43

44 from waiting_tc
45 triple_click; // just wait for a sync on this port
46 to received_tc
47

48 from received_tc
49 /* do what needs to be done when a TC has been detected */
50 to waiting_tc
51

52 component comp_tc is //we now specifiy the component
53

54 port click:sync in [0,0], triple_click:sync in [0,0] // two ports
55

56 par * in // 3 processes composed in parallel
57 detect_triple_click[click, triple_click]
58 || clicker[click]
59 || triple_click_receiver[triple_click]
60 end
61

62 comp_tc // this instantiates the component
63

64 // some properties to check
65 property ddlf is deadlockfree // deadlock free (TRUE)
66 assert ddlf
67

68 property cannot_receveice_tc is absent comp_tc/3/state received_tc
69 assert cannot_receveice_tc // we cannot detect a triple click (FALSE)

detect_triple_click

wait_first

triple_click

wait_second

wait_third
detected

click

click

click

triple_click_receiverclicker

wait_click

make_click

wait [0,…[click

waiting_tc

received_tc

triple_click
wait [0.2,0.2]

wait [0.2,0.2]

click [0,0] triple_click [0,0]

Figure 1: The Fiacre processes modeling the Fiacre specification on Listing 6.

4.3 Offline formal verification

The frac compiler compiles the Fiacre specifications on Listing 6 in an equivalent TTS. Then
using the sift tool from the Tina toolbox, one builds the set of reachable states of the system,
and then using selt, one checks the properties included in the Fiacre initial specifications as
well as new properties, if needed. There are many other tools available in the Tina toolbox,
which the interested reader can check.
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Listing 6 proposes some properties which will be checked on this specification: is the
model deadlock free (line 6.65)? which ends up being TRUE. Can it succeed in detecting a
triple click (line 6.68)? (by checking that reaching the received tc is impossible), and this is
FALSE, so it means that the model can detect a triple click. More complex properties such
as proving that there is at most 0.4 sec between the first and the last click could be added,
etc.

Note that the verification approach used by the Tina tools is based on model checking, and
as such suffers from state explosion [Clarke et al., 2012] which can jeopardize the usefulness
of such an endeavor. Nevertheless, we will see in the results section of the example we present
in section 6.1, that we are still able to produce interesting nontrivial results.

4.4 H-Fiacre runtime extensions

Although the Fiacre language was initially designed for offline verification, it has been
extended with two primitives which enable it to be used for runtime verification [Hladik
et al., 2021], by connecting the model to C/C++ functions which send events or execute some
commands. To distinguish it from pure Fiacre we call the extended version H-Fiacre.

The goal of the H-Fiacre runtime version is to make the model “executable” while being
connected to the real world.

Listing 7 (along Figure 2) shows the executable version of the specification on Listing 6.

Event ports are declared in the preamble of the specification (see line 7.1) and they associate
a C function to a Fiacre port. In this example, the event click is associated with
the c click C/C++ function. Whenever this port is among the possible transitions
(lines 6.16, 6.24 and 6.33), the C/C++ function is called, and the port is activated
when the function returns (the C/C++ functions can take and return Fiacre typed
arguments).

Tasks are also declared in the preamble (see line 7.2) and they associate a task (here re-
port triplec) to a C/C++ function (here c report triple click), which will be called
asynchronously upon a start (see line 7.17) and will enable the corresponding sync (see
line 7.21) when the C/C++ function returns. Here also, values can be passed upon
calling the task and returned when complete.

Listing 7: H-Fiacre processes implementing a triple click detector.
1 event click : sync is c_click // declare the Fiacre event port which transmits click
2 task report_triplec () : nat is c_report_triple_click // The C/C++ function called by this task
3

4 process detect_triple_click [triple_click:sync] is
5 // this process is exactly the same than in the regular Fiacre version
6 // only the click port is now an event port
7

8 process triple_click_receiver[triple_click:sync] is
9 states waiting_tc, received_tc, sync_report

10 var ignore : nat
11

12 from waiting_tc
13 triple_click;
14 to received_tc
15

16 from received_tc // show an example of an external call
17 start report_triplec();
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18 to sync_report
19

20 from sync_report
21 sync report_triplec ignore; // wait until the call return
22 to waiting_tc
23

24 component comp_tc is
25 port triple_click:sync
26

27 par * in
28 detect_triple_click[triple_click]
29 || triple_click_receiver[triple_click]
30 end
31

32 comp_tc

In this example, we have replaced the clicker process, which synced click at any time, by
the click event port (in purple), and we have added a task (report triplec in light blue) to
execute when we synchronize with a triple click in the triple click receiver process. The
rest of the model remains the same, so we moved from a model to specify a triple click detector,
to a program/controller which implements it. The specification is now also a program.

detect_triple_click

wait_first

triple_click

wait_second

wait_third
detected

click
cheat := false

click

click
cheat := true

triple_click_receiver

waiting_tc

received_tc

triple_click

wait [0.2,0.2]

wait [0.2,0.2]

triple_click [0,0]event port click ⇨ c_click

sync_report

task report_triplec 
⇨c_report_triple_click

start report_triplec

sync report_triplec

cheat_detector

state1

state2

on (not cheat)

cheat_
detected

cheat: bool

on (cheat) 

wait[0.05,0.05]
cheat := true 

Figure 2: Illustration of the H-Fiacre program on Listing 7.

4.5 Runtime (online) verification

The resulting H-Fiacremodel is then compiled (with frac) in TTS and linked with the Hippo
engine and the C/C++ functions needed to run the model (i.e., c click and c report triple click).
The Hippo engine literally runs the resulting TTS model and makes the appropriate calls (in
separate threads) to the C/C++ functions associated with event ports and tasks. Note that
we can also enrich the model with properties to check on the fly by adding a monitor process.
For example, if this controller is used in a video game where the game programmer wants
to detect sequence of triple click produced so fast that they are not humanly possible, and
must come from a cheating device, than we could add a new cheat detector process (on the
left Figure 2 and Listing 8) with three states, sharing a Boolean variable cheat set to false in
the transition to waiting second of process detect triple click, and true in the transition to
detected.
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Listing 8: cheat detector process detecting a cheating device by monitoring the cheat

Boolean variable.
1 process cheat_detector(&cheat:bool) is
2

3 states state1, state2, cheat_detected
4

5 from state1
6 on (not cheat); // guard on (not cheat)
7 to state2
8

9 from state2 // cheat was set to false
10 select // either
11 wait [0.05,0.05]; // 50 ms elapsed
12 cheat := true; // reset the cheat variable
13 to state1 // go back to monitoring
14 []
15 on (cheat); // cheat became true again before the 50ms above.
16 to cheat_detected //caught cheating
17 end
18

19 from cheat_detected
20 // the player is cheating, do what needs to be done.
21 to state1

In the cheat detector process state1, it would guard on (not cheat) and then would
transition to state2 and wait either 50ms or (cheat). If cheat becomes true before the 50ms
(i.e., a super-fast triple click has been issued), then it transitions to cheat detected and reports
a suspicious behavior, otherwise, it sets cheat to true and goes back to state1.

So, we synthesize a controller which runs the specification. This is one of the critical
advantages of the Fiacre framework: the same ¡formal model can be checked offline and run
online. Beyond verification, on one hand, you get the real controller performing what the
model specifies, and on the other hand, observing the behavior of the running model confirms
that your initial specifications do what you intended it to do, and thus the properties you
check offline are indeed, applied to the same online “behaviorally” good model. Of course,
observing the proper behavior of the running specified model is a necessary but not sufficient
condition. Yet, it is better than having no link between the specification and the execution.
Note that if the runtime model is wrong, you can start debugging it (the same way you debug
regular programs). Also note that from a formal point of view, for a given model, all the
traces of the H-Fiacre version are included in the ones of the Fiacre version.

5 The ProSkill language and its mapping in Fiacre models

We introduced the ProSkill language primitives in Section 3, we now show how each of them
translates to Fiacre variables and processes, how they interact (through Fiacre ports) and
how we instantiate and compose them in a global Fiacre component.

5.1 State variables Fiacre version

ProSkill state variables are automatically transformed to Fiacre variables which can only
take values among the one specified in the ProSkill specifications. Their allowed value
transitions are automatically specified in a Fiacre process. Note that if the state value
change is not consistent with the ProSkill specified ones, an error occurs (lines 9.15, 9.32).
For natural number state variables, we must specify the accepted values interval. Listing 9
implementing the state variables specified in Listing 1.
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Listing 9: Fiacre type and Fiacre process specifying the State Variable acceptable value
changes.
1

2 type sv_flight_levels is 1..3 /* state variable integer types*/
3

4 process sv_battery_automata (&battery:sv_battery) is
5 // for each sate variable, an automata enforces the allowed transition
6 states Good, Low, Critical, error
7

8 from Good
9 wait [0,0];
10 select
11 on (battery = Low);
12 to Low
13 []
14 on (battery = Critical);
15 to error // forbidden transition
16 end
17

18 from Low
19 wait [0,0];
20 select
21 on (battery = Good);
22 to Good
23 []
24 on (battery = Critical);
25 to Critical
26 end
27

28 from Critical
29 wait [0,0];
30 select
31 on (battery = Good);
32 to error // forbidden transition
33 []
34 on (battery = Low);
35 to Low
36 end

5.2 Events Fiacre version

The example introduced in Section 3.2 is automatically translated to the following simple
Fiacre process. Each ProSkill event become a Fiacre sync port which will be connected
to an “Environment” Fiacre process in the offline verification and then to the real environ-
ment, with event ports7, in the runtime version (i.e., some C/C++ functions will trigger and
synthesize the event accordingly).

Listing 10: Fiacre process specifying how the battery to critical event is handled.
1 process event_battery_to_critical_automata
2 [battery_to_critical : sync] // a Fiacre sync port on which we get the event
3 (&battery: sv_battery) is // the battery state variable
4

5 states start_
6

7 from start_
8 battery_to_critical; // when this port interact
9 battery := Critical; // the battery value is updated to Critical
10 to start_

7Although ProSkill events end up mapped in Fiacre event ports in the H-Fiacre version, they should
not be confused.
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5.3 Basic skills Fiacre version

As expected, the basic skills are the ones “executing” the commands on the robot. The
automata Fiacre offline version of the basic skill presented Section 3.3 is illustrated on
Figure 3, while the automata H-Fiacre runtime is illustrated on Figure 4 and listed in A,
Listing 13.

An important Fiacre variable which appears in the various Fiacre listing is the skill[]

array, indexed for each skill (basic and composite) and for each parallel branch, whose elements
(a Fiacre record) contain for each skill/branch, information as whether it is currently running
or not, which skill called it, what are its argument, and what are its last status and result.

Basic Skill

interrupt skill[ ] state variables ….

Done

Check 
Precondition Precondition 

Satisfied

Precondition 
Unsatisfied

Failure
Success

…

Success
…

Failure

Interrupted

Failed 
Invariant

Success 
Postcondition

Failure 
Postcondition

start

Ether

ports shared variables

Failed Failure 
Postcondition

Failed Success 
Postcondition

skill.caller := None

NOT skill.caller = None
NOT pred

pred
skill.status := interrupted

skill.status := fail_inv

skill.status := fail_pred

Unless specified, all transitions are wait [0,0]

Action

start

skill.status := 
successskill.status := 

failure

interrupt?
NOT inv

wait [t,T]

Figure 3: The Offline Verification Basic Skill Automata Fiacre model (Tina).

As expected, the only differences between these two models (Fiacre and H-Fiacre)
is how they handle the execution in the Action state. In the offline version which will be
explored by model checking, the Action state has a large select (line 11.26 which lists the
various possible outcomes of the action execution:

• An external interruption from the interrupt port of the process,

• An invariant guard failure,

• All the possible successes and failures within the [t, T ] time interval specified to perform
the action (e.g., line 3.12).

In the runtime verification version, the Action state leads to the call to the Fiacre task
action task, and then waits (sync) in the Action Sync state one of the possible outcomes:

• An external interruption from the interrupt port,

• An invariant guard failure,

• Not undershoot andOvershoot states which will monitor in real-time these timing errors,
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Basic Skill

interrupt skill[ ] state variables ….

Done

Check 
Precondition Precondition 

Satisfied

Precondition 
Unsatisfied

Failure
Success

…

Success
…

Failure

Interrupted

Failed 
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Failure 
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start

Ether

ports shared variables

Failed Failure 
Postcondition

Failed Success 
Postcondition

skill.caller := None

NOT skill.caller = None
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skill.status := interrupted

skill.status := fail_inv

skill.status := fail_pred

Unless specified, all transitions are wait [0,0]

Action 
Sync

C/C++ action_task

Overshoot
Not_Undershoot

start action_task

sync action_task

start
sync

wait [T,T]
wait [t,t]

Action

Action 
Dispatch

start

skill.status := 
successskill.status := 

failure

interrupt?
NOT inv

internal variables: 
overshoot
undershoot

Figure 4: The Online Verification Basic Skill Automata H-Fiacre model (Hippo).

• The return of the Action task call (with the sync) which makes a transition to the
Action Dispatch state, which will dispatch to Failure or Success states according to the
returned status and result.

Listing 11 shows a compact version of the offline takeoff basic skill with only two states,
idle and run. Semantically, it is equivalent to the expanded version, but it is better suited for
model checking as it removes some null time state transitions interleaving in the model. Note
how a skill gets activated by guarding on its caller skill field not equal to None (line 11.11).
Similarly, it gives control back to the caller by setting it back to None (line 11.56). Similar
Fiacre code can be found in Listing 13 in appendix A which shows the complete H-Fiacre
version of the takeoff basic skill.

Listing 11: Fiacre process specifying the takeoff basic (offline verification compact version)
(Figure 5).
1 process skill_takeoff
2 [interrupt_takeoff: sync] // interruptible skills get this port
3 (&skill: skill_array, &flight_status: sv_flight_status, &target: sv_target,
4 &mission_status: sv_mission_status, &localization_status: sv_localization_status,
5 &motion: sv_motion, &battery: sv_battery, &camera: sv_camera) is
6

7 states idle, run
8

9 from idle
10 wait [0,0];
11 on (not (skill[takeoff].caller = None)); // a composite skill has called us
12 if (not (invariant_active(skill, flight_status, target, mission_status,
13 localization_status, motion, battery, camera))) and // invariant not propagating
14 ((motion = Free) and (flight_status = OnGround) and (battery = Good) and
15 (localization_status = Valid) and true) then // precondition satisfied
16 motion := Controlled; // start state_variable set
17 skill[takeoff].inv_active := true; // skill is active and its invariant monitored
18 skill[takeoff].status := no_status; // reset status
19 to run // go to the run state
20 else // the precondition is not satisfied
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21 skill[takeoff].caller := None; // the call is not possible
22 to idle
23 end
24

25 from run // Action: (takeoff)
26 select // the wait interval values correspond to the values specified in the time_interval field
27 wait [1, 3]; // at_altitude success
28 skill[takeoff].val := takeoff_ret_val(takeoff_success_at_altitude);
29 motion := Free; // success effect
30 skill[takeoff].status := success // report success
31 []
32 wait [1, 3]; // grounded failure
33 skill[takeoff].val := takeoff_ret_val(takeoff_failure_grounded);
34 motion := Free; // failure effect
35 skill[takeoff].status := failure // report failure
36 []
37 wait [1, 3]; // emergency failure
38 skill[takeoff].val := takeoff_ret_val(takeoff_failure_emergency);
39 motion := Free; // failure effect
40 skill[takeoff].status := failure // report failure
41 []
42 interrupt_takeoff; // the interrupt event port sync
43 motion := Free;
44 skill[takeoff].status := interrupted // report interruption
45 []
46 wait [0,0];
47 on (not (motion = Controlled)); // invariant guard failed
48 skill[takeoff].status := failed_inv // report failed inv.
49 []
50 wait [0,0];
51 on (not (not (battery = Critical))); // invariant guard failed
52 motion := Free; // effects of the invariant failure
53 skill[takeoff].status := failed_inv
54 end;
55 skill[takeoff].inv_active := false;
56 skill[takeoff].caller := None; // return to idle state and inform the caller we are done
57 to idle

Figure 5 illustrates the compact version of this Fiacre takeoff basic skill process.

5.4 Composite skills Fiacre version

The mapping of the composite skills to Fiacre is also systematic and automatic. It follows
the “program to automata” algorithm used in PRS [Ingrand et al., 1996]. We illustrate it
with some examples withdrawn from the composite skill in Listing 4.

Skill call The call to takeoff on line 4.11 translates to:

1 from NS5
2 wait [0,0];
3 skill[takeoff].caller := uav_mission;
4 to NS5_NS4_sync
5

6 from NS5_NS4_sync
7 wait [0,0];
8 on (skill[takeoff].caller = None);
9 to NS4

We set the caller field of the skill array element for the takeoff index to the caller
(uav mission) (line 3). Note that as explained in the previous section, this will wake up the
takeoff skill (line 11.11). Then we wait in the next state until takeoff is done (line 11.56)
which triggers the guard (line 8).
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Basic Skill (simplified)

interrupt skill[ ] state variables ….

runidle

ports shared variables

NOT skill.caller = None AND pred
wait [0,0]

skill.status := no_status
start action

NOT called.caller = None AND NOT pred
wait [0,0]

skill.status := fail_pred
skill.caller := None

wait [t,T]
skill.status := failure
skill.caller := None

interrupt?
skill.status := interrupted

skill.caller := None
NOT inv
wait [0,0]

skill.status := fail_inv
skill.caller := None

wait [t,T]
skill.status := success

skill.caller := None

Figure 5: A more compact version of the online verification basic skill Fiacre process (List-
ing 11).

Sequence Sequences are straightforward, just progress to the next state in the Fiacre
automata.

Test and branching The test on the takeoff success status on line 4.12 translates to:

1 from NS4
2 wait [0,0];
3 if (skill[takeoff].status = success) then
4 to N3_T
5 else
6 to NS8
7 end

N3 T and NS8 correspond to the true and false branches following the test. In this example,
there is no else branch in the skill, hence it jumps to the end of the if.
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Parallel branches Parallel branches involve the synthesis of additional Fiacre processes
(one for each branch). The initial executing skill or branch relinquishes the control to the
parallel branches and waits until they all terminate. Hence the code line 4.13 get translated
too:

1 from N3_T // Pass the parallel control...
2 wait [0,0];
3 skill[uav_mission_branch_1_0].caller := uav_mission; // ... to the camera_survey branch
4 skill[uav_mission_branch_1_1].caller := uav_the; // ... to the navigation branch
5 to N3_T_NS6_sync
6

7 from N3_T_NS6_sync // wait the control back from all branches
8 wait [0,0];
9 on ((skill[uav_mission_branch_1_0].caller = None) and
10 (skill[uav_mission_branch_1_1].caller = None));
11 to NS6

One can see that using the skill array element for the considered caller, the control can
be passed from the main body to the branches (lines 3 and 4) and then wait for the control
to come back to the main body when they are finished (lines 9 and 10).

B lists the four H-Fiacre processes synthesized to model the uav mission (§ 3.4) com-
posite skill. Listing 14 is the main process and handles the execution of the main part of the
body, while Listing 15 and Listing 16 handle respectively the two parallel branches (one doing
the camera survey, while the other one does the navigation with the two goto waypoint).
Last, listing 17 presents the process in charge of checking the temporal over and under shoot-
ing of the skill.

5.5 Environment and final component

For the resulting formal model to be properly fully analyzed and run, one needs to connect it
to the real environment (or a model of it). For the offline verification version, we synthesize a
Fiacre process (e.g., Listing 12) which produces, at any time, all the ProSkill events and
interrupts, both modeled with Fiacre ports, present in the model (like the clicker process
in the triple click detector example).

Listing 12: The Fiacre process modeling the environment, which synthesizes all the possible
ProSkill events and interrupts of the UAV experiment.
1 process basic_environment_drone // ports to produce all possible events and interrupts
2 [localization_status_to_invalid : sync, ..., flight_status_to_in_air_unsafe : sync,
3 battery_to_good : sync, battery_to_low : sync, battery_to_critical : sync,
4 interrupt_takeoff: sync,... ] is
5

6 states start_
7

8 from start_
9 select

10 localization_status_to_invalid
11 []
12 ... // ProSkill event ports sync removed for conciseness
13 flight_status_to_in_air_unsafe
14 []
15 battery_to_good
16 []
17 battery_to_low
18 []
19 battery_to_critical
20 []
21 interrupt_takeoff
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22 []
23 ... // interrupt ports sync removed for conciseness
24

25 end;
26 to start_

This is perfect for model checking and to explore all the possible occurrences of asyn-
chronous events and interrupts in the model. Yet, if the application environment follows a
more restrictive pattern, then the user can modify this process which hopefully may lead to
smaller (but no larger) reachable states set.

For the runtime version, we also provide a simple process handling the Fiacre ports in
the model. But in this case, this environment process has two Fiacre event ports, one for
ProSkill events and one for interruptible skills (they can be interrupted by an external
“signal”). These two Fiacre event ports are each linked to a C/C++ function which will
appropriately trigger when these external events or interrupts are received on the real robot.

5.6 The final Fiacre component

We have presented all the processes which model the various ProSkill objects. To create a
complete Fiacre component, these processes must be instantiated, and their Fiacre ports
properly connected. Thus, the final Fiacre component defines:

• The Fiacre variables definition including all the state variables used in the experiment
and an array of a skill structure which stores the various information needed for each
skill instance (section 5.3).

• The Fiacre ports definition for all the possible ProSkill events and interrupts.

• The Fiacre process instances:

– State variables automata, which control the allowed transitions for enumerated
state variables.

– Event effects, whose Fiacre event port will be connected to the Event and Inter-
rupt environment processes (see Section 5.5).

– Basic skills with an interrupt port, for each interruptible skill.

– Composite skills

– Composite skill temporal watchdog to monitor possible (reachable) overshoot or
undershoot.

– Composite skill parallel branches, if any.

– Event and interrupt environment process for ProSkill event.

5.7 Offline and online formal verification of ProSkill programs

Figure 6 presents the workflow from the ProSkill program to the executable version (top
part), and the verifiable version and its analyzed properties report (bottom part). One should
keep in mind, that the robotic programmers just write the ProSkill program, the C/C++
code which glue basic skill actions and ProSkill events to the real robot and the additional
LTL properties to check (all in light blue on Figure 6), the rest is fully synthesized and
compiled automatically.
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Figure 6: The Fiacre/Hippo-Tina toolchain (only the data in the blue box need to be given,
the rest is fully synthesized).

5.7.1 Offline formal verification

As shown on Figure 6, the offline verification is often done in two steps, one to synthesize the
set of reachable states of the model (with sift), and one to check some properties in the mode
(with selt).

When the Fiacre model for ProSkill program is synthesized, a number of default
properties are also synthesized and checked with selt.

• Check for each variable that there is no forbidden transition.

• For each basic skill that: it can run; it can succeed, for all successes; it can fail, for all
failures; its invariant may fail; and it can be interrupted.

• For composite skill, we also add if it can undershoot or overshoot its time interval
specification.

When these properties are checking that a particular state cannot be reached, if they are
false, a counter example is given, to help the programmer to identify the problem and fix it.

5.7.2 Online (or runtime) verification

Unlike the offline verification which “model checks” the ProSkill program, the runtime
verification literally runs the same model. Thanks to the Hippo engine, the TTS model is
run, and commands are called, events are received, and the robot executes the mission it has
been programmed to do in ProSkill.
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The H-Fiacre model already contains several tests which may lead to warnings and error
messages at runtime:

• overshoot and undershoot skill execution,

• state variable illegal value transitions,

• command illegal returned value.

In the ProSkill experiment, the Hippo engine runs at 100Hz, which is sufficient for the
type of program and temporal constraints we handle.

Note that similarly to the cheat detector monitor presented in Section 4.5, we can
augment the H-Fiacre model with processes to monitor specific situations requiring actions.

6 An example: an UAV controller

We demonstrate our approach with an UAV for which we program in ProSkill a survey mis-
sion. The functional layer of this experiment (Figure 7) has already been presented in [Dal
Zilio et al., 2023], but suffice to say that it provides robust localization, navigation, flight
control and allows us to command the drone. It is deployed using the Gen

oM specification
language (which also maps in a formal framework to validate and verify the functional com-
ponents) [Dal Zilio et al., 2023].

Functional Level

actual
velocity
rotor_meas

ure

imu
pose_es

nhfc
Task: main 
Period:1ms
Services:
perm
servo

cmd
velocity
rotor_input

desired
state

 pose_es

maneuverpom

state
pose_es

rotorcraft

Task: plan 
Period: ap
Services:
goto
waypoint
take_off
stop, wait

Task: exec 
Period: 5ms
Services:
perm

Task: main 
Period: 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task: comm 
Period: ap
Services:
perm
connect
disconnect
monitor

mocap
pose_es

optitrack
Task: publish 
period: ap
Services:
perm
connect
disconnect
ping

pose_es = or_pose_estimator::state
rotor_input = sequence<double, max_rotors>
rotor_measures = sequence<rotor_state, max_rotors> 
frame = or::sensor::frame
ct_plates = CT_drone::PlateSeq

Task: io 
Period: 1ms
Services:
perm, 
add_me

port name
type

GenoM Port

Attribute Service
Function Service
Activity Service

Task: filter 
Period:1ms
Services:
perm

mag
pose_es

set_…, 
get_…

Stop

Task: wo 
10ms
Services:
perm
set_wo_zero

set_…, 
get_…

set_…, 
get_…

set_…, 
get_…

CT_drone
Task: track 
Period: 1ms
Services:
FindTarget

LocalizeBlob
MakeBlob 

plates
ct_plates

Arucotag

tag
pose_es

Task: detect 
Period: ap
Services:
perm

add_marker
remove_marker

image
frame

Camera
Task: main
Period: ap
Services:
perm

connect
disconnect

Decisional Level

Acting

Skills

Planning

Acting
EventsState Variables

 (deffsm flight_status
    :states (NotReady OnGround InAir InAirUnsafe)
    :init OnGround
    :transitions :all)

  (deffsm localization_status
    :states (Invalid PartialIMU PartialOT Valid)
    :init Valid
    :transitions :all)

 (defevent flight_status_to_not_ready 
    :effects (flight_status NotReady))

  (defevent flight_status_to_on_ground
    :effects (flight_status OnGround))

  (defevent flight_status_to_in_air
    :effects (flight_status InAir))

Basic Skills
 (defskill takeoff
    :input ($height Float)
    :precondition (not_moving   (motion Free)

  on_ground    (flight_status OnGround)
  battery_good (battery Good)
  origin_valid (localization_status Valid))

    :start (motion Controlled)
    :invariant (in_control (:guard (motion Controlled))

    battery (:guard (~ (battery Critical))
                 :effects (motion Free)))

    :time_interval [1 , 3]
    :action (take_off) ; this will call the maneuver take_off service
    :interrupt (:effects (motion Free))
    :success at_altitude (:effects (motion Free)

                  :postcondition (flight_status InAir))
    :failure (grounded (:effects (motion Free)

              :postcondition (flight_status OnGround))
         emergency (:effects (motion Free)

               :postcondition (flight_status InAirUnsafe))))

Composite Skills

 (defskill test_mission
    :body ((takeoff 3.0)

       (if (= takeoff.status success)
            (// ((goto_waypoint 5.0 -9.0 3.0))
                 ((find_target)))

               (if (= goto_waypoint.status success)
        (landing)
    ))))

…

Skills

…

……

…

Figure 7: Architecture of the drone experiment.

Although eight functional components are required for this experiment, the set of prim-
itive commands available for the acting component are takeoff, landing, goto waypoint,
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start drone, shutdown drone, and camera survey. Each of them has a corresponding
basic skill (like the one presented on Listing 3 for takeoff), to which we add a composite
skill uav mission (presented on Listing 4), and one skill to monitor for the battery level
(Listing 5).

The state variables handled by the model are flight status with values: NotReady, On-
Ground, InAir, InAirUnsafe and Lost; target : NotFound and Found; mission status: Unknown,
Ongoing, Failed and Succeeded; localization status: Invalid, Coarse and Valid; motion: Free and
Controlled; battery : Good, Low and Critical; and camera: On and Off.

Similarly, the available ProSkill external events are handling localization status and
battery status updates.

The resulting Fiacre model has seven processes for the state variables, ten for external
ProSkill events, six for basic skills, one for the monitoring skill, one for a composite skill,
along two for its parallel branches (Listings 15 and 16) and one for a watchdog for its time
interval of the composite skill (Listings 17), and one for the environment process. This amount
to 1400 lines of Fiacre code, which compiles in a TTS with 97 places and 153 transitions.8

6.1 Offline verification results

Building the set of reachable states of the complete model of the whole ProSkill program
takes 112 h 17min on an AMD EPYC 7352 24-Core Processor (using one processor) and
results in a set of reachable states which has 1 545 614 784 classes, 372 325 248 markings,
12 761 domains, 23 154 942 608 transitions. We are able to check all the default properties
defined in section 5.7.1.

Some results are puzzling, but correct. For example, model checking shows that the in-
variant on the landing cannot fail. Indeed, checking the code, its invariant cannot be falsified
in this particular setup. Similarly, the main composite skill can overshoot and undershoot.
This can easily be explained as the wait for the localization status to be valid is unbounded,
hence it can take a priori any time.

All these results may indicate an error in the model, question some programming choices or
confirm something expected. In any case, it offers to the programmer a complete exploration
of the execution possibility to study and analyze.

Of course, state explosion is the limiting factor here, and we will explore some possible
improvements to address it in Section 7.

6.2 Runtime verification results

We build a runtime version of the ProSkill specification and link it with the client libraries of
the components which provide access to the sensors (i.e., events) and commands of the drone:
pom for the localization status; rotorcraft for battery status but also the start drone and
shutdown drone commands; camera for camera survey and maneuver for takeoff,
landing and goto waypoint. The Hippo engine executes the TTS model at 100Hz, it
evaluates preconditions, invariants; tests conditions on state variables, or sets them when
specified. It handles skill success and failure and detects runtime overshoot or undershoot
skills execution.

8The resulting code can be found in the examples subdirectory of git://redmine.laas.fr/laas/users/
felix/proskill.git.
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An important aspect of running the model itself is to confirm that the execution result is
consistent with what the programmer has in mind when he writes the ProSkill program.
The ProSkill program becomes a formal model, and we run this model. We did several
runs and showed that the drone acts as expected, surveys the area, and lands gracefully when
its battery becomes Critical.

7 Limits, discussion, future work, and conclusion

7.1 Features and limits

ProSkill offers many of the desired features for an acting skill language. Skills can call each
other with, if needed, a hierarchical organization. Resources management (not described
here) is easily handled with resource variables (a test for availability and reservation is trivial
to write in Fiacre, as all TTS transitions are atomically executed). Time management
is provided, at the basic skill level, but also in the composite ones. Commands, events,
and interruptions are properly handled too. This is another strong point of the ProSkill
language: modeling nondeterminism (using select), raising from external events and from
commands outcomes. Yet, the model remains predictable as all the execution paths resulting
from this nondeterminism will be explored by model checking. At the end, the whole language
can be mapped in a formal framework which opens a new realm for V&V of robotic systems.

Yet there are some limits to the expressiveness and power of the ProSkill language.
Some of them are due to our approach that the language must map in Fiacre. For example,
some basic types (e.g., float, string, etc.) are not currently handled by the Fiacre language.
Therefore, this aspect of the ProSkill language cannot be model checked, nevertheless,
these variables values can be made available at runtime and can even be involved in runtime
verification.

Another manageable limitation is that the skills are not reentrant, and you cannot have
skill with recursive calls (direct or indirect). In short there can only be one instance of
each skill active at one time. But nothing prevents the programmer from creating as many
instances of a particular skill as he may need.

If one considers most modern languages, those limits may seem extreme, but you have
also to consider that often, plans given by automatic planner are already fully instantiated,
and most variables are bound to a value. Overall, this is a classical tradeoff between the
expressiveness of a language and its verifiability.

Uncertainty management is another area where ProSkill has little to offer. If we consider
the localization in our drone example, we consider three discretized values Valid, Coarse,
Invalid. Currently the covariance of the position of the drone (computed by the Kalman filter
in pom) is checked and the proper event is synthesized accordingly. Similarly, Fiacre does
not provide uncertainties on time intervals to model approximate time execution evaluation.

The ProSkill language does not offer fancy algorithmic constructs which are sometimes
provided to ease the programming task. We want to keep the language as feature-limited
as possible but complete enough to provide a powerful programming language. With the
if-then-else, while, do-until, goto, wait, parallel branches execution and interrupt, we can
write any of the complex programs we encountered. But the language remains open to any
new constructs, assuming they cannot be programmed with the available ones and they can
be mapped in Fiacre.
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7.2 Discussion

The presented ProSkill framework has strong similarities with the SkiNet one [Albore et al.,
2023], which also relies on the TTS formalism and the Tina toolbox. Yet their modeling
choices and their runtime verification approach differ:

• Unlike ProSkill, they directly synthesize TTS (i.e., they skip the Fiacre language
and the frac compilation steps).

• Even if TTS (an extension of Time Petri net) supports time, they do not currently
model timing information in their basic and composite skills.

• They do not synthesize a controller which executes the ProSkill program as we do,
instead they synthesize a controller which will monitor the regular program.

These choices can be discussed and there are pros and cons to each approach, yet the
differences are sufficient to justify separate developments. Using Fiacre as an intermediate
language has some strong advantages (legibility, expressivity, etc.), without any performance
impact. Moreover, executing the program with the Hippo engine greatly improves the confi-
dence that the initial ProSkill program does what the user wants, and providing we have a
TTS player (Hippo), why not use it instead of writing another controller which needs to be
monitored using the TTS model.

Note that we designed the ProSkill language, having in mind the automatic trans-
formation to Fiacre. But if we consider again the systems presented in the state of the
art in Section 2, other languages/systems can probably be automatically and unequivocally
translated to Fiacre. Behavior trees and RMPL are probably suitable candidates for such
mapping and this could lead to a valuable “formally verified” implementation.

Our previous work presented in [Dal Zilio et al., 2023] also produces a Fiacre model
on which one can also perform offline and runtime verification. Although we could consider
merging the two models and then make some verification on the joint model, it is unlikely to be
effective considering we are already struggling to avoid state explosion. But for the runtime
verification, this makes more sense, and we have run experiments where all the functional
components are run with one Hippo engine running at 10 kHz along another engine executing
the acting specifications at 100Hz.

7.3 Future work

Although the current version of the language is fully operational, there are several improve-
ments to consider:

• Extend the data type handled directly by Fiacre.9

• To avoid the reachable states explosion while model checking, we could consider a more
abstract version of the offline verification model, yet we need to keep a faithful and
complete version of the model for the runtime to avoid a semantics gap between what
the programmer intended, and what is executed.

• We could consider performing some planning using the basic skills as an action model,
and have a planner synthesize “composite skills”,

9The Fiacre developper are working on adding rational numbers and strings types.
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• Statistical Model Checking [Foughali et al., 2019] could be used to better explore the
possible execution branches resulting from the Fiacre select instructions, based on
probability/distribution obtained from regular or simulated runs.

• As we now have a formal model of the acting component, and of the functional compo-
nents of the robot, we could consider making one of the middleware connecting them.

• Many autonomous robots are now deployed with humans present in the environment.
To properly model their uncontrollable behaviors while they interact with the robots is
quite challenging.

Nevertheless, all these improvements are extending the current implementation, while
none requires a deep redesign of the approach with respect to V&V of autonomous robots.

7.4 Conclusion

Acting is a critical decisional functionality of autonomous systems such as robots. We propose
ProSkill, a new skill language to program the acting component of robots. The basic build-
ing blocks of the ProSkill language are presented and so is the Fiacre formal framework.
We then show how the ProSkill primitives are mapped automatically and unambiguously in
Fiacre. The obtained formal model can be used offline with model checking to verify logical
and temporal properties, but also online for runtime verification while executing the pro-
gram/model. The offline verification explores the model (for desirable or undesirable states,
sequences, state variables values, etc.), while the runtime verification runs it and enforces
it. We illustrate our integrated approach on a real platform: a drone executing a survey
mission. The fact that the formal model is the one executing at run time ensures both its
operational “accuracy” and enforce the use of formal tools from specifications to verification
and runtime execution. This is a major step toward deploying V&V in the autonomous robot
acting component and making it available to roboticists, even without any V&V background.
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A Complete H-Fiacre process for a basic skill

Note: the H-Fiacre code presented in these appendices is automatically synthesized from
ProSkill specifications. As a result, some code may seem cumbersome (e.g., ignoreb vari-
ables not used) or unnecessary (e.g., if (true) then ... else ... end, or from x wait[0,0];

to y). The frac compiler keeps or simplifies these constructs as needed.

Listing 13: The H-Fiacre process specification of the takeoff basic skill.
1 process skill_takeoff
2 [interrupt_takeoff: sync]
3 (&skill: skill_array, &flight_status: sv_flight_status, &target: sv_target,
4 &mission_status: sv_mission_status, &localization_status: sv_localization_status,
5 &motion: sv_motion, &battery: sv_battery, &camera: sv_camera) is
6

7 states start_, check_precondition, precondition_satisfied, precondition_unsatisfied,
8 action, action_sync, action_dispatch, error, action_sync_overshoot,
9 action_sync_not_undershoot, interrupted, failed_invariant, failure_grounded,

10 check_failure_postcondition_grounded, failed_failure_postcondition_grounded,
11 failure_emergency, check_failure_postcondition_emergency,
12 failed_failure_postcondition_emergency, success_at_altitude,
13 check_success_postcondition_at_altitude, failed_success_postcondition_at_altitude, done,
14 ether
15

16 var ignoreb: bool, ret_val: takeoff_ret_val_type, overshoot, undershoot : bool
17

18 from start_
19 wait [0,0];
20 on (not (skill[takeoff].caller = None));
21 skill[takeoff].status := no_status;
22 // Skill ’takeoff’ has been called
23 to check_precondition
24

25 from check_precondition
26 wait [0,0];
27 on (not (invariant_active(skill, flight_status, target, mission_status, localization_status, motion,

battery, camera)));
28 if ((motion = Free) and (flight_status = OnGround) and (battery = Good) and (localization_status =

Valid) and true) then
29 to precondition_satisfied
30 else
31 to precondition_unsatisfied
32 end
33

34 from precondition_unsatisfied
35 wait [0,0];
36 // Skill ’takeoff’ precondition ((motion = Free) and (flight_status = OnGround) and
37 // (battery = Good) and (localization_status = Valid) and true) UNsatisfied
38 to done
39

40 from precondition_satisfied
41 wait [0,0];
42 // Skill ’takeoff’ precondition ((motion = Free) and (flight_status = OnGround) and
43 // (battery = Good) and (localization_status = Valid) and true) is satisfied
44 motion := Controlled;
45 skill[takeoff].inv_active := true;
46 to action
47

48 from action // Action: (takeoff)
49 // Skill ’takeoff’ calling its action (start task)
50 overshoot := false;
51 undershoot := true;
52 start Fiacre_takeoff_action_task (skill[takeoff]);
53 to action_sync
54
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55 from action_sync
56 select
57 sync Fiacre_takeoff_action_task ret_val;
58 // Skill ’takeoff’ action returned (sync task)
59 if undershoot then
60 // WARNING: Action ’takeoff’ undershoot 1 s (100 ticks)
61 null
62 end;
63 to action_dispatch
64 []// undershoot
65 on undershoot;
66 wait [100, 100];
67 to action_sync_not_undershoot
68 []// overshoot
69 on not undershoot and not overshoot;
70 wait [200, 200]; // 200 because we already waited 100 for not_undershoot
71 // WARNING: Action ’takeoff’ overshoot 3 s (300 ticks)
72 to action_sync_overshoot
73 []//invariant
74 wait [0,0];
75 on (not (motion = Controlled));
76 // Skill ’takeoff’ failed invariant in_control: (motion = Controlled)
77 skill[takeoff].val := takeoff_ret_val(takeoff_failed_inv_in_control);
78 to failed_invariant
79 []//invariant
80 wait [0,0];
81 on (not (not (battery = Critical)));
82 // Skill ’takeoff’ failed invariant battery: (not (battery = Critical))
83 motion := Free;
84 // Skill ’takeoff’ failed invariant battery concluding effects: motion := Free;
85 skill[takeoff].val := takeoff_ret_val(takeoff_failed_inv_battery);
86 to failed_invariant
87 []// we got an interrupt from the event port...
88 interrupt_takeoff;
89 motion := Free;
90 // Skill ’takeoff’ interrupted from event port
91 // Skill ’takeoff’ is interrupting its own action takeoff
92 ignoreb := Fiacre_takeoff_interrupt_action();
93 to interrupted
94 end
95

96 from action_sync_overshoot
97 overshoot := true;
98 to action_sync
99

100 from action_sync_not_undershoot
101 undershoot := false;
102 to action_sync
103

104 from action_dispatch
105 wait [0,0];
106 if (ret_val = takeoff_success_at_altitude) then
107 to success_at_altitude
108 end;
109 if (ret_val = takeoff_failure_grounded) then
110 to failure_grounded
111 end;
112 if (ret_val = takeoff_failure_emergency) then
113 to failure_emergency
114 end;
115 if (ret_val = takeoff_interrupted) then
116 skill[takeoff].val := takeoff_ret_val(takeoff_interrupted);
117 // Skill ’takeoff’ has been interrupted while executing its action.
118 to interrupted
119 end;
120 to error // a priori unreachable
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121

122 from interrupted
123 wait [0,0];
124 skill[takeoff].inv_active := false;
125 skill[takeoff].status := interrupted;
126 to done
127

128 from failed_invariant
129 wait [0,0];
130 skill[takeoff].inv_active := false;
131 skill[takeoff].status := failed_inv;
132 to done
133

134 from success_at_altitude
135 wait [0,0];
136 skill[takeoff].val := takeoff_ret_val(takeoff_success_at_altitude);
137 // Skill ’takeoff’ success ’at_altitude’
138 skill[takeoff].inv_active := false;
139 motion := Free;
140 to check_success_postcondition_at_altitude
141

142 from check_success_postcondition_at_altitude
143 wait [0,0];
144 if (flight_status = InAir) then
145 skill[takeoff].status := success;
146 to done
147 else
148 // Skill ’takeoff’ failed success_postcondition ’at_altitude’: (flight_status = InAir)
149 to failed_success_postcondition_at_altitude
150 end
151

152 from failed_success_postcondition_at_altitude
153 wait [0,0];
154 skill[takeoff].status := success;
155 to done
156

157 from failure_grounded
158 wait [0,0];
159 skill[takeoff].val := takeoff_ret_val(takeoff_failure_grounded);
160 // Skill ’takeoff’ failure ’grounded’
161 skill[takeoff].inv_active := false;
162 motion := Free;
163 to check_failure_postcondition_grounded
164

165 from check_failure_postcondition_grounded
166 wait [0,0];
167 if (flight_status = OnGround) then
168 skill[takeoff].status := failure;
169 to done
170 else
171 // Skill ’takeoff’ failed failure_postcondition ’grounded’: (flight_status = OnGround)
172 to failed_failure_postcondition_grounded
173 end
174

175 from failed_failure_postcondition_grounded
176 wait [0,0];
177 skill[takeoff].status := failure;
178 to done
179

180 from failure_emergency
181 wait [0,0];
182 skill[takeoff].val := takeoff_ret_val(takeoff_failure_emergency);
183 // Skill ’takeoff’ failure ’emergency’
184 skill[takeoff].inv_active := false;
185 motion := Free;
186 to check_failure_postcondition_emergency
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187

188 from check_failure_postcondition_emergency
189 wait [0,0];
190 if (flight_status = InAirUnsafe) then
191 skill[takeoff].status := failure;
192 to done
193 else
194 // Skill ’takeoff’ failed failure_postcondition ’emergency’: (flight_status = InAirUnsafe)
195 to failed_failure_postcondition_emergency
196 end
197

198 from failed_failure_postcondition_emergency
199 wait [0,0];
200 skill[takeoff].status := failure;
201 to done
202

203 from done
204 wait [0,0];
205 skill[takeoff].caller := None;
206 // Skill ’takeoff’ returning control to caller and back to ’ether’
207 to ether
208

209 from error
210 wait [0,0];
211 // Skill ’takeoff’ has an error in its model, check the returned values from real actions
212 to ether
213

214 from ether
215 wait [0,0];
216 to start_

B Complete H-Fiacre processes for a composite skill

Listing 14: The H-Fiacre main process of the uav mission composite skill.
1 process skill_uav_mission
2 (&skill: skill_array, &flight_status: sv_flight_status, &target: sv_target,
3 &mission_status: sv_mission_status, &localization_status: sv_localization_status,
4 &motion: sv_motion, &battery: sv_battery, &camera: sv_camera) is
5

6 states start_, check_precondition, precondition_satisfied, precondition_unsatisfied,
7 body_branch, NS1, NS1_NS3_sync, NS3, NS5, NS5_NS4_sync, NS4, N3_T, N3_T_NS6_sync,
8 NS8, NS6, NS7, NS9, NS10, N2_T, N2_T_NS11_sync, NS12, NS11, N1_T, N1_T_NS13_sync,
9 NS14, NS13, NS15, failure_mission_failed, success_mission_accomplished, done, ether
10

11 var ignoreb: bool
12

13 from start_
14 wait [0,0];
15 on (not (skill[uav_mission].caller = None));
16 skill[uav_mission].status := no_status;
17 // Skill ’uav_mission’ has been called
18 to check_precondition
19

20 from check_precondition
21 wait [0,0];
22 on (not (invariant_active(skill, flight_status, target, mission_status, localization_status, motion,

battery, camera)));
23 if (true) then
24 to precondition_satisfied
25 else
26 to precondition_unsatisfied
27 end
28
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29 from precondition_unsatisfied
30 wait [0,0];
31 // Skill ’uav_mission’ precondition (true) UNsatisfied
32 to done
33

34 from precondition_satisfied
35 wait [0,0];
36 // Skill ’uav_mission’ precondition (true) is satisfied
37 mission_status := Ongoing;
38 to body_branch
39

40 from body_branch
41 wait [0,0];
42 to NS1 //
43

44 // from: NS1 to: NS3 type: ET_GOAL expr: (start_drone)
45 from NS1
46 wait [0,0];
47 // Pass the control to (start_drone)
48 // Skill ’uav_mission’ calling (start_drone)
49 skill[start_drone].caller := uav_mission;
50 // synthesized action arg index 0
51 skill[start_drone].ArgIndex := 0;
52 to NS1_NS3_sync
53

54 from NS1_NS3_sync
55 wait [0,0];
56 // Wait the control back from (start_drone)
57 on (skill[start_drone].caller = None);
58 // Skill ’uav_mission’ call to (start_drone) returned
59 to NS3
60

61 // from: NS3 to: NS5 type: ET_GOAL expr: (ˆ (localization_status Valid))
62 from NS3
63 // Wait on state variable value (localization_status Valid)
64 wait [0,0];
65 // Skill ’uav_mission’ waited on condition (localization_status = Valid)
66 on (localization_status = Valid);
67 to NS5
68

69 // from: NS5 to: NS4 type: ET_GOAL expr: (takeoff height 3.0 duration 0)
70 from NS5
71 wait [0,0];
72 // Pass the control to (takeoff height 3.0 duration 0)
73 // Skill ’uav_mission’ calling (takeoff height 3.0 duration 0)
74 skill[takeoff].caller := uav_mission;
75 // synthesized action arg index 1
76 skill[takeoff].ArgIndex := 1;
77 to NS5_NS4_sync
78

79 from NS5_NS4_sync
80 wait [0,0];
81 // Wait the control back from (takeoff height 3.0 duration 0)
82 on (skill[takeoff].caller = None);
83 // Skill ’uav_mission’ call to (takeoff height 3.0 duration 0) returned
84 to NS4
85

86 // from: NS4 to: N3 type: ET_IF expr: (= takeoff.status success)
87 from NS4
88 wait [0,0];
89 // Test on (= takeoff.status success)
90 // Skill ’uav_mission’ testing expression (= takeoff.status success)
91 if (skill[takeoff].status = success) then
92 // Skill ’uav_mission’ expression (= takeoff.status success) is TRUE
93 to N3_T
94 else
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95 // Skill ’uav_mission’ expression (= takeoff.status success) is FALSE
96 to NS8
97 end
98

99 // splitting on N3_T, level 1, index 0
100 from N3_T
101 wait [0,0];
102 // Pass the parallel control
103 skill[uav_mission_branch_1_0].caller := uav_mission;
104 skill[uav_mission_branch_1_1].caller := uav_mission;
105 to N3_T_NS6_sync
106

107 from N3_T_NS6_sync
108 wait [0,0];
109 // wait the control back from all // branches
110 on (
111 (skill[uav_mission_branch_1_0].caller = None) and
112 (skill[uav_mission_branch_1_1].caller = None) and
113 true);
114 to NS6
115

116 // from: NS8 to: NS7 type: ET_GOAL expr:
117 from NS8
118 wait [0,0];
119 to NS7
120

121 // from: NS6 to: NS9 type: ET_GOAL expr:
122 from NS6
123 wait [0,0];
124 to NS9
125

126 // from: NS7 to: NS10 type: ET_GOAL expr: (printf "Mission failed")
127 from NS7
128 wait [0,0];
129 // will print user trace: "Mission failed"
130 // Skill ’uav_mission’ prints a user message
131 to NS10
132

133 // from: NS9 to: N2 type: ET_IF expr: (= goto_waypoint.status success)
134 from NS9
135 wait [0,0];
136 // Test on (= goto_waypoint.status success)
137 // Skill ’uav_mission’ testing expression (= goto_waypoint.status success)
138 if (skill[goto_waypoint].status = success) then
139 // Skill ’uav_mission’ expression (= goto_waypoint.status success) is TRUE
140 to N2_T
141 else
142 // Skill ’uav_mission’ expression (= goto_waypoint.status success) is FALSE
143 to NS12
144 end
145

146 // from: NS10 to: NS38 type: ET_GOAL expr: (failure mission_failed)
147 from NS10
148 wait [0,0];
149 // Skill ’uav_mission’ is done executing and returns with failure mission_failed
150 to failure_mission_failed
151

152 // from: N2_T to: NS11 type: ET_GOAL expr: (landing)
153 from N2_T
154 wait [0,0];
155 // Pass the control to (landing)
156 // Skill ’uav_mission’ calling (landing)
157 skill[landing].caller := uav_mission;
158 // synthesized action arg index 0
159 skill[landing].ArgIndex := 0;
160 to N2_T_NS11_sync
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161

162 from N2_T_NS11_sync
163 wait [0,0];
164 // Wait the control back from (landing)
165 on (skill[landing].caller = None);
166 // Skill ’uav_mission’ call to (landing) returned
167 to NS11
168

169 // from: NS12 to: NS8 type: ET_GOAL expr:
170 from NS12
171 wait [0,0];
172 to NS8
173

174 // from: NS11 to: N1 type: ET_IF expr: (= landing.status success)
175 from NS11
176 wait [0,0];
177 // Test on (= landing.status success)
178 // Skill ’uav_mission’ testing expression (= landing.status success)
179 if (skill[landing].status = success) then
180 // Skill ’uav_mission’ expression (= landing.status success) is TRUE
181 to N1_T
182 else
183 // Skill ’uav_mission’ expression (= landing.status success) is FALSE
184 to NS14
185 end
186

187 // from: N1_T to: NS13 type: ET_GOAL expr: (shutdown_drone)
188 from N1_T
189 wait [0,0];
190 // Pass the control to (shutdown_drone)
191 // Skill ’uav_mission’ calling (shutdown_drone)
192 skill[shutdown_drone].caller := uav_mission;
193 // synthesized action arg index 0
194 skill[shutdown_drone].ArgIndex := 0;
195 to N1_T_NS13_sync
196

197 from N1_T_NS13_sync
198 wait [0,0];
199 // Wait the control back from (shutdown_drone)
200 on (skill[shutdown_drone].caller = None);
201 // Skill ’uav_mission’ call to (shutdown_drone) returned
202 to NS13
203

204 // from: NS14 to: NS12 type: ET_GOAL expr:
205 from NS14
206 wait [0,0];
207 to NS12
208

209 // from: NS13 to: NS15 type: ET_GOAL expr: (printf "Mission Accomplished")
210 from NS13
211 wait [0,0];
212 // will print user trace: "Mission Accomplished"
213 // Skill ’uav_mission’ prints a user message
214 to NS15
215

216 // from: NS15 to: NS14 type: ET_GOAL expr: (success mission_accomplished)
217 from NS26
218 wait [0,0];
219 // Skill ’uav_mission’ is done executing and returns with success mission_accomplished
220 to success_mission_accomplished
221

222 from success_mission_accomplished
223 wait [0,0];
224 skill[uav_mission].val := uav_mission_ret_val(uav_mission_success_mission_accomplished);
225 // Skill ’uav_mission’ success ’mission_accomplished’
226 mission_status := Succeeded;
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227 skill[uav_mission].status := success;
228 to done
229

230 from failure_mission_failed
231 wait [0,0];
232 skill[uav_mission].val := uav_mission_ret_val(uav_mission_failure_mission_failed);
233 // Skill ’uav_mission’ failure ’mission_failed’
234 mission_status := Failed;
235 skill[uav_mission].status := failure;
236 to done
237

238 from done
239 wait [0,0];
240 skill[uav_mission].caller := None;
241 // Skill ’uav_mission’ returning control to caller and back to ’ether’
242 to ether

Listing 15: The H-Fiacre process (first parallel branch) of the uav mission.
1 process skill_branch_uav_mission_1_0
2 (&skill: skill_array, &flight_status: sv_flight_status, &target: sv_target,
3 &mission_status: sv_mission_status, &localization_status: sv_localization_status,
4 &motion: sv_motion, &battery: sv_battery, &camera: sv_camera) is
5

6 states start_, body_branch, N3_T, N3_T_NS6_sync, NS6, done, ether
7

8 var ignoreb: bool
9

10 from start_
11 wait [0,0];
12 on (not (skill[uav_mission_branch_1_0].caller = None));
13 to body_branch
14

15 from body_branch
16 wait [0,0];
17 to N3_T //
18

19 // from: N3_T to: NS6 type: ET_GOAL expr: (camera_tracking)
20 from N3_T
21 wait [0,0];
22 // Pass the control to (camera_tracking)
23 // Skill ’uav_mission’ calling (camera_tracking)
24 skill[camera_tracking].caller := uav_mission_branch_1_0;
25 // synthesized action arg index 0
26 skill[camera_tracking].ArgIndex := 0;
27 to N3_T_NS6_sync
28

29 from N3_T_NS6_sync
30 wait [0,0];
31 // Wait the control back from (camera_tracking)
32 on (skill[camera_tracking].caller = None);
33 // Skill ’uav_mission’ call to (camera_tracking) returned
34 to NS6
35

36 // Joining on NS6, this branch is done
37 from NS6 // join
38 wait [0,0];
39 to done
40

41 from done
42 wait [0,0];
43 skill[uav_mission_branch_1_0].caller := None;
44 to ether
45

46 from ether
47 wait [0,0];
48 to start_

40



Listing 16: The H-Fiacre process (second parallel branch) of the uav mission.
1 process skill_branch_uav_mission_1_1
2 (&skill: skill_array, &flight_status: sv_flight_status, &target: sv_target,
3 &mission_status: sv_mission_status, &localization_status: sv_localization_status,
4 &motion: sv_motion, &battery: sv_battery, &camera: sv_camera) is
5

6 states start_, body_branch, N3_T, N3_T_NS1_sync, NS1, NS2, NS2_NS5_sync, NS5, NS6, done, ether
7

8 var ignoreb: bool
9

10 from start_
11 wait [0,0];
12 on (not (skill[uav_mission_branch_1_1].caller = None));
13 to body_branch
14

15 from body_branch
16 wait [0,0];
17 to N3_T //
18

19 // from: N3_T to: NS1 type: ET_GOAL expr: (goto_waypoint x 1 y 2 z 3 yaw 0 duration 0)
20 from N3_T
21 wait [0,0];
22 // Pass the control to (goto_waypoint x 1 y 2 z 3 yaw 0 duration 0)
23 // Skill ’uav_mission’ calling (goto_waypoint x 1 y 2 z 3 yaw 0 duration 0)
24 skill[goto_waypoint].caller := uav_mission_branch_1_1;
25 // synthesized action arg index 2
26 skill[goto_waypoint].ArgIndex := 2;
27 to N3_T_NS1_sync
28

29 from N3_T_NS1_sync
30 wait [0,0];
31 // Wait the control back from (goto_waypoint x 1 y 2 z 3 yaw 0 duration 0)
32 on (skill[goto_waypoint].caller = None);
33 // Skill ’uav_mission’ call to (goto_waypoint x 1 y 2 z 3 yaw 0 duration 0) returned
34 to NS1
35

36 // from: NS1 to: NS2 type: ET_GOAL expr: (ˆ 2)
37 from NS1
38 // Wait 2 seconds
39 // Skill ’uav_mission’ waited 2 seconds (200 ticks)
40 wait [200,200];
41 to NS13
42

43 // from: NS13 to: NS15 type: ET_GOAL expr: (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0)
44 from NS13
45 wait [0,0];
46 // Pass the control to (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0)
47 // Skill ’uav_mission’ calling (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0)
48 skill[goto_waypoint].caller := uav_mission_branch_1_1;
49 // synthesized action arg index 3
50 skill[goto_waypoint].ArgIndex := 3;
51 to NS13_NS15_sync
52

53 from NS13_NS15_sync
54 wait [0,0];
55 // Wait the control back from (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0)
56 on (skill[goto_waypoint].caller = None);
57 // Skill ’uav_mission’ call to (goto_waypoint x -3 y -2 z 4 yaw 1.4 duration 0) returned
58 to NS15
59

60 // from: NS15 to: NS6 type: ET_GOAL expr: (camera_tracking.interrupt)
61 from NS15
62 wait [0,0];
63 // will interrupt camera_tracking
64 // Skill ’uav_mission’ is interrupting camera_tracking
65 ignoreb := Fiacre_camera_tracking_interrupt_action();
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66 to NS6
67

68 // Joining on NS6, this branch is done
69 from NS6 // join
70 wait [0,0];
71 to done
72

73 from done
74 wait [0,0];
75 skill[uav_mission_branch_1_1].caller := None;
76 to ether
77

78 from ether
79 wait [0,0];
80 to start_

Listing 17: The H-Fiacre process monitoring under and over shooting of the uav mission
skill.
1 process skill_uav_mission_watchdog(&skill: skill_array) is
2

3 states start_, monitor, skill_overshoot, skill_not_undershoot
4

5 var ignorep: nat, overshoot, undershoot : bool
6

7 from start_
8 wait [0,0];
9 on (not (skill[uav_mission].caller = None)); // Skill ’uav_mission’ watchdog started

10 overshoot := false;
11 undershoot := true;
12 to monitor
13

14 from monitor
15 select
16 on (skill[uav_mission].caller = None);
17 if undershoot then // execution terminated before the undershoot elapsed
18 // WARNING: Skill ’uav_mission’ undershoot 60 s (6000 ticks)
19 null
20 end;
21 to start_
22 []// undershoot
23 on undershoot;
24 wait [6000, 6000]; // wait the undershoot time value
25 to skill_not_undershoot
26 []// overshoot
27 on not undershoot and not overshoot;
28 wait [6000, 6000]; // we already waited 600 for undershoot + 600 = 1200
29 // WARNING: Skill ’uav_mission’ overshoot 120 s (12000 ticks)
30 to skill_overshoot
31 end
32

33 from skill_overshoot
34 wait [0,0];
35 overshoot := true;
36 to monitor
37

38 from skill_not_undershoot // we got here before the execution terminated
39 wait [0,0];
40 undershoot := false; // hence we did NOT undershoot
41 to monitor
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