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Smooth Sensitivity for Learning Differentially-Private yet Accurate Rule Lists

Timothée Ly ' Julien Ferry? Marie-José Huguet Sébastien Gambs* Ulrich Aivodji >

Abstract

Differentially-private (DP) mechanisms can be
embedded into the design of a machine learning
algorithm to protect the resulting model against
privacy leakage, although this often comes with a
significant loss of accuracy. In this paper, we aim
at improving this trade-off for rule lists models
by establishing the smooth sensitivity of the Gini
impurity and leveraging it to propose a DP greedy
rule list algorithm. In particular, our theoretical
analysis and experimental results demonstrate that
the DP rule lists models integrating smooth sensi-
tivity have higher accuracy that those using other
DP frameworks based on global sensitivity.

1. Introduction

Machine learning models are increasingly used for high-
stakes decision making tasks such as kidney exchange (Aziz
et al., 2021) or recidivism prediction (Angwin et al., 2016).
Because such tasks often require the use of sensitive data
(e.g., medical or criminal records), it is crucial to ensure
that the learnt models do not leak undesired information.
Another important aspect is to make sure human users can
verify and trust the models’ decisions. When possible, this
motivates the use of inherently interpretable models (Rudin,
2019), as opposed to more complex black-boxes. However,
such models are also vulnerable to privacy attacks such
as membership inference (Shokri et al., 2017), in which
the objective of the adversary is to infer the presence of a
particular profile in the training dataset, or reconstruction
attacks (Ferry et al., 2024), in which the aim of the adversary
is to reconstruct the training set.

To counter this issue and protect the output of a compu-
tation over private data, Differential Privacy (DP) (Dwork
et al., 2006; Dwork & Roth, 2014) has emerged as a de
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facto privacy standard. More precisely, DP aims at reconcil-
ing two antagonist purposes in privacy-preserving machine
learning: extracting useful correlations from data without
revealing private information about a particular individual.
For instance, (Ji et al., 2014; Gong et al., 2020) have pub-
lished a thorough survey on existing DP versions of clas-
sical machine learning algorithms. We can notably cite
the DP versions of the Principal Component Analysis algo-
rithm (Chaudhuri et al., 2013) and of the Stochastic Gradient
Descent (Abadi et al., 2016). However, much less work has
been dedicated to the DP implementations of interpretable
models. Nonetheless, Fletcher & Islam (2019) have re-
viewed the current existing adaptations of DP to tree-based
models (i.e., mostly decision trees and random forests). This
paper addresses one challenging future work they proposed,
namely establishing the smooth sensitivity of the Gini impu-
rity. More precisely, we first theoretically characterize the
smooth sensitivity of the Gini impurity. Then, we design a
DP mechanism based on smooth sensitivity with Laplace
noise that we integrate into a greedy algorithm for learning
rule lists models. Our experimental results show that the
proposed DP mechanism incurs a lower accuracy loss than
other mechanisms for a given privacy budget.

The outline of the paper is as follows. First in Section 2, we
recall the background on rule lists models and DP. After-
wards in Section 3, we introduce the building blocks of our
approach, namely greedy learning of rule lists, Gini impurity
and smooth sensitivity. Then, in Section 4, we present our
main contribution on the smooth sensitivity of the Gini im-
purity index as well as the DP greedy rule lists algorithm we
have designed. Finally in Section 5, we empirically evaluate
our proposed approach in terms of accuracy and robustness
to privacy attacks before concluding in Section 6.

2. Background

In this section, we first introduce rule lists models before
presenting the necessary background on differential privacy.

2.1. Rule Lists

We consider a tabular dataset D of n samples in which each
sample s corresponds to a set of binary features and has a
binary label y,. Rule lists, originally introduced as a way
to efficiently represent Boolean functions, are a common



type of interpretable models (Rivest, 1987; Angelino et al.,
2017). More precisely, a rule list RL is a sequence of K + 1
rules (ry,...,rg,r) € ZK+! in which & is the set of
possible rules (which, for instance, can be pre-mined). Any
rule r; € X is composed of a Boolean assertion p; called the
antecedent and of a label prediction ¢; € {0, 1} named the
consequent (i.e., r; = p; = ¢;). A sample s of D is said to be
caught by rule r; when p; evaluates to true for s, which leads
to s being classified with label g;. The default rule, ry =
True — g, classifies any sample not caught by the previous
rules to gy € {0, 1} fixed. Rule Lists can be built either with
an exact method such as CORELS (Angelino et al., 2018)
or with heuristic approaches (Singh et al., 2021), which we
specifically consider in this paper. Overall, rule lists are not
extensively used in the literature, despite their advantage
over decision trees in terms of compactness (Rivest, 1987).

if Prior-Crimes#0 then True
else if Juvenile-Felonies <3 and Juvenile-Crimes# 1—3 then False
else True

Rule Iist 1. Example of a rule-list generated on the Compas
dataset with our DP algorithm. The binary prediction is whether
the offendent will recidivate within two years or not.

An example of a rule-list that could be used for recidivism
prediction is provided in Rule List 1. Because the model
is inherently interpretable, the use of any directly discrim-
inating feature would easily be spotted (Voigt & Bussche,
2017). This is in contrast with black-box models, in which
such an undesired behaviour would be more difficult - or
even impossible (Merrer & Trédan, 2019) - to detect.

2.2. Differential Privacy

Differential privacy (DP) is a privacy model that provides
strong privacy guarantees with respect to queries or compu-
tations performed on a database (Dwork & Roth, 2014). In
particular in machine learning, DP can be integrated into
the learning algorithm to ensure that the resulting model
does not leak too much information with respect to the in-
put dataset. In this context, a differentially-private learning
algorithm ensures that the distribution over outputs (i.e., pos-
sible models) is not impacted significantly by the addition
or removal of a sample from the training set.

More formally, two datasets D and D’ are said to be neigh-
bouring if they differ at most by one sample, which we
denote by |[D—D'||; < 1 for (D,D) € NI (see Ap-
pendix B.1) in which X is the finite set of all possible
samples in a dataset. Similarly, the number of elements
in a dataset D is ||D||;. An algorithm M : NIZT - 4
is (g, 6)-differentially private if VS C %,V(D,D') €
(NITHY2 1D - D'||; < 1, we have: P(M(D) € S) <

exp(e)P(M(D') € S) + 8 (Dwork & Roth, 2014).

The parameter € controls the level of privacy of the algo-
rithm as it defines how much the probability of an output

can vary when adding or removing a sample. Typically,
€ = 1 is considered a reasonable value in terms of provided
protection. The parameter 6 can be interpreted as a prob-
ability of “total privacy failure". One possible instance of
this 6-failure could be that with probability 1 — 6, the model
will behave like pure DP (i.e., € differential privacy) while
with probability 6 (i.e., the failure probability), there will be

no privacy guarantees at all. 6 < ﬁ is considered to be
1

an absolute requirement since a 6 of order O(||D||;) could
enable the total release of some samples of the dataset.

Intuitively, differentially-private mechanisms often revolve
around the idea of adding noise of a magnitude of order
close to how steep the output function can change with
slight variations of the input. More precisely, for a given
function f € R, its global sensitivity precisely quantifies
this aspect. The global sensitivity of f is denoted by A, 1, in
which [, stands for the /; or I norms. Let f : NI¥1 — RK,
its global sensitivity for any neighbouring dataset D and D’
ist A, f = max 5, izt [1/(D) = FD)],,
[ID-D'||;=1

One of the shortcomings of global sensitivity is that it does
not take into account the position in the latent space of
the points considered. One straightforward approach to
achieve DP is by adding noise to the output of a given
function f € Rk, Two common differentially-private mech-
A (D, f,¢e) and

N LAPLACE
the Gaussian mechanism M GZU s S(D, f,&,c) are based on

this principle (Dwork & Roth, 2014). For each compo-

anisms, the Laplace mechanism M

A
nent of f, the amplitude of this noise Nj ? varies accord-
A
ingly to the global sensitivity A, f: M ', s (D, f.€) 1=

FD)+ (N ... N,

A .
The /%L;PLACE(D, f,€) mechanism is based on A; and
on Laplace noise: Vi € {1, ..., k}, N; ~ Lap(A, f /¢). The

probability density function of the Laplace distribution is

Lap(x | b) = % exp (%) and the Laplace mechanism has
been proven to be (g, 0)-DP.

A .
/%GZUSS(D, f,€,¢) was shown to satisfy (g, 6)-DP. It uses

A, for the global sensitivity together with the addition of
Gaussian noise: Vi € {1,...,k},N; ~ /V(u = 0,0 =

%) with ¢2 > 2log(12),

In contrast, another common and very generic mecha-
nism, called the Exponential mechanism M é’;( P(D, u,R),
considers the set of possible outputs valuated in a range
VY and samples one of them v with respect to their util-
ity. More precisely, let u (D,v) » u(D,v) de-
note the utility function of element v with respect to
dataset D. The global sensitivity of the utility func-



tion is: Au = max, gy MaX 1 7y 2] |u(D, v) — u(D’, v)|.
IID-D'||; <1

MAE (D, u, R) samples an element r € & with probabil-

EXP
ity p exp(gg(AD £4D1)y and has been proven to satisfy (¢, 0)-
DP (Dwork & Roth, 2014).

Finally, we will also use the Noisy Max Report mecha-
nism (Dwork & Roth, 2014), /%,w,-sy, which satisfies (g, 6)-
DP, and returns: argmax ./ (D, u(-, v), €).

noisy
vey

Among others, DP comes with two fundamental properties:
the composability property, which enables the composition
of different differentially-private mechanisms (sequentially
or in parallel) and the computation of the global privacy leak-
age incurred, and the post-processing property, which en-
sures that DP guarantees are not affected by post-processing
the output of a DP mechanism (see Appendix B.2 for more
details).

3. Building Blocks

In this section, we introduce the different building blocks
that are necessary for the design of our framework. We first
describe the greedy algorithm as the baseline for learning
rule lists models as well as the computation of the Gini impu-
rity index. We then review the notion of smooth sensitivity,
before showing how it can be used to get DP guarantees.

3.1. A Greedy Algorithm for Learning Rule Lists

Greedy algorithms are widely used for learning decision
tree models. For instance, the commonly used CART algo-
rithm (Breiman et al., 1984) iteratively builds a decision
tree in a top-down manner, by successively selecting the
feature (and split value) yielding the best information gain
value according to some pre-defined criterion. While algo-
rithms for learning rule lists in a greedy manner are far less
popular than their counterparts for learning decision trees,
some implementations exist in the literature. For instance,
the imodels library (Singh et al., 2021) contains algo-
rithms for learning different types of interpretable models,
including rule lists (denoted GreedyRL). More precisely,
GreedyRL iteratively calls CART to build a depth-one de-
cision tree at each level of the rule list, optimizing a given in-
formation gain criterion. Just like for decision trees, greedy
algorithms for building rule lists successively select the
best rule r; = p; — ¢; given some information gain cri-
terion. Thus, at each level of the rule list being built, the
GreedyRL algorithm iterates through all possible rules and
keeps the one leading to the best information gain value.

3.2. Gini Impurity for Rule Lists

In this paper, we consider the Gini impurity index originally
used in the CART (Breiman et al., 1984) algorithm as a

measure of the information gain. In a nutshell, this index
quantifies how well a rule separates the data into two cate-
gories with respect to different labels, with the value of zero
being reached when the examples are perfectly separated.
The algorithm stops when all the samples are classified,
but other stopping criteria can be implemented such as a
maximum length on the list of rules or a minimum support
condition on each rule (i.e., number of points left to be
classified).

Consider a given rule r of a pre-existing list of rules, which
means that some samples were already captured by previous
rules and are not accounted for. Let C(r) C D be the subset
of samples captured by rule r, in which n,.(r) is the number
of samples in C(r) and n;(r) the number of samples not
captured by rule . For arule list RL = (ry, ..., rg, rg), and
a given position j in the sequence, let 7i(j) be the number
of samples not captured by previous rules ry...r;_;. In
particular, this means that ii(j) = n.(r;) + n/(r;) = n—

Zj I .(r;). In addition, let y,.(r) the average outcome (i.e.
the predlcted label) of the rule r, .(r) = - (r) > ccr) Vs-

Slmllarly, the average outcome of the remaining samples is
nn =2 (r) ZseD\(U{;lC(r,-) uem) Vs

The Gini impurity reduction with respect to rule r is denoted
as Z(r). It can be divided into two terms &,(r) and &;(r),
respectively for the samples caught and the ones not caught
by the rule: ©(r) = &.(r) + &;(r) Note that we not only
consider the samples caught by the rule (through &, (r)) but
also those which are not (through &;(r)) as it matters for the
following rules in the rule list. For binary classification, the
Gini impurity reduction for a rule r at position j is given by:

G.(r) = "f((.')) (1= 5,072 = (1 = 5,()?).
€ (r) = ’((J)) (1=9,)* = (1 = 9,(r)?).

3.3. Smooth Sensitivity

The mechanisms described in Section 2.2 rely on the no-
tion of global sensitivity. However, some functions only
display a very loose bound for their global sensitivity. For
instance, the global sensitivity of the Gini impurity is 0.5,
irrespective of the actual number of samples left to be clas-
sified. To address this limit, Nissim et al. (2007) have in-
troduced the notion of the local sensitivity of a function
f : NIl RK at a dataset D, denoted LS/ (D), as:
max gyt 1/(D) = FDII,.
ID-D'||;=1

However, replacing directly the global sensitivity by local
sensitivity does not yield strong privacy guarantees. Thus, a
more refined sensitivity notion denoted as smooth sensitivity
was proposed in (Nissim et al., 2007). This notion exploits



a smooth upper bound of LS f(D), denoted by S ’, ﬁ(D), as
follows. For f > 0, S; 4(D) : NI > R* is a f-smooth
upper bound on the local sensitivity of f if it satisfies :

vD e NI vD e Nl st ||D-D'||, =1,
S; (D)2 LS;(D) and S;4(D)<e’S, 4D (1)

The smallest function to satisfy Equation 1 is called the
smooth sensitivity and denoted S;j ﬂ(D):

For >0, 8% (D) = max LS (D)ePIP-D'lh
’ D

eNI]

Nissim et al. (2007) proposed an iterative computation of
the smooth sensitivity (Lemma 3.1) considering datasets
than can vary up to k samples rather than 1. Let 7, de-
note the local sensitivity of f at distance k: T, (D) =

max {LS;(D') | ||D’ - D||, < k}.

Lemma 3.1. §* /(D) = max {e- ﬂka(D)'k e N}. (proof
recalled in Appendtx B.3)

As stated by (Fletcher & Islam, 2017; Zafarani & Clifton,
2020; Sun et al., 2020), smooth sensitivity is a very powerful
tool to replace global sensitivity for differentially-private
machine learning models. However, finding a closed form
for S;‘,’ 5(D) is difficult and sometimes requires to make
stronger assumptions on the model. Nonetheless, two DP
mechanisms were proposed by Nissim et al. (2007) based
on the smooth sensitivity. The first one is based on Cauchy
noise and uses a parameter y:

9 .
‘%CAUCHY(D’f’g) :
with f < 0 +1), y>landn ~ h(z)

noise. This mechanism satisfies (£,0)-DP.

20y + DS /(D)
D fD)+ —L .

1+| T the Cauchy

The second one uses Laplace noise and satisfies (e, §)-DP:

2- S;i ﬂ(D)
/%LAPLACE(D,f,e) :Dw f(D) +
with f < W and n ~ Lap(1), the Laplace noise. Note
that in contrast to global sensitivity, adding Laplace noise

within the framework of smooth sensitivity does not yield
pure DP anymore but approximate one.

4. A Differentially-Private Greedy Learning
Algorithm for Rule Lists

We now introduce our framework for learning differentially-
private rule lists leveraging smooth sensitivity. Unlike
Fletcher & Islam (2017) who integrate smooth sensitivity to
determine the majority class for a leaf in a tree, we integrate
it to determine the rule with the best Gini impurity. We first
demonstrate how to precisely compute the smooth sensi-
tivity of the Gini impurity before leveraging it to design a
differentially-private GreedyRL algorithm.

4.1. Smooth Sensitivity of the Gini Impurity

The local sensitivity for the Gini impurity has been charac-
terized in Fletcher & Islam (2015). Considering the support
7i(j) of the jth rule, it is defined by:

LSg(a(j) =1- <ﬁ(f~§j_i 1 )2 B (ﬁ(j)1+ 1 >2

Given the minimal support A imposed for each selection of
rule, we have derived in Theorem 4.1 a method to compute
the smooth sensitivity of the Gini impurity.

Theorem 4.1 (Smooth Sensitivity of the Gini impurity). Let
A € N* be the given minimum support. By inverting the
parameter k and the variable D in the function T, (D), we
define the following function :

o - N — Rt
s e g [max(A DI, - k)]
in which
Rt — [0,1]
: (29) - ()
x — 1- -
x+1 x+1

The smooth sensitivity of a rule with a dataset D
of points that remains to classify is : Sé ﬂ(D) =

max |&p,(0), :Dﬁqm £y, :D,,<||D||1 = )| with

v(l - P> -

1-
t =Dl -

f well defined and

otherwise 0.

The detailed proof is provided in Appendices A.1 and A.2
where we first prove it for A = 1 and generalize the proof for
A € N*. Crucially, recall that the smooth sensitivity is the
same for any rule at a given position since we have proven
that the smooth sensitivity of the Gini impurity only takes
into account the number of elements left to be classified
(and not how the rule captures them or not). Figure 1 gives
an overview on the amount of noise one has to add to the
computed Gini impurity to get a target DP guarantee, using
either global or smooth sensitivity. More precisely in this
figure, we display the noise distortion generated for a fixed
€ = 1 by each DP mechanism as a function of the number of
examples captured by the rule. Importantly, we observe how
the use of smooth sensitivity allows to scale down the gen-
erated noise when considering more examples. This is not
the case for global sensitivity, which is dataset-independent.

Many learning algorithms use a regularization parameter
scaling with the length of the model to reduce overfit-
ting (Domingos, 2012). In our case, apart from being a
key factor for the smooth sensitivity, the minimum support
leads to a better comprehensibility of the model (there can
only be as many as % rules) and plays the role of the regu-
larization parameter as it helps the model to not overfit.
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Figure 1. Comparison of the amplitude of Smooth and Global Sen-
sitivities for the Laplace Mechanism, log scaled.

4.2. Differentially-Private Greedy Rule Lists

Our differentially-private algorithm for learning rule lists,
DP-GreedyRL, is detailed in Algorithm 1. Note that con-
sistent with the literature, the set of rules &£ is assumed to
be publicly known and is not obtained as a computation
from the data. This algorithm iteratively adds a new rule to
the rule list RL. At each step, it checks whether the support
in the current remaining dataset X, verifies the minimum
support condition (Line 4), including the confidence thresh-
old computed once for all (Line 2). For each rule r € £,
its Gini impurity is computed at Line 11 and the rule R*
whose noisy Gini is the lowest is returned. R* is then added
to RL with its DP prediction ¢* ( Line 14) and removed
from &%. The main loop is stopped when (1) the rule list
reaches the maximum length, (2) the support condition is
not verified anymore or (3) when adding a rule does not
improve the Gini index.

Rule’s prediction. In Algorithm 1, it is necessary to make
the choice of the prediction for each rule differentially-
private. Indeed, in the non-DP setup, the prediction is com-
puted as the majority class among the examples caught by
the rule. However, such a deterministic selection of the best
prediction is not compatible with DP. For instance, consider
two neighbouring datasets D and D’. Let r be a rule picked
from the rule list built on D. If D’ is D deprived from one
element that would flip the outcome of r, the probability of
observing this outcome in the built rule list is also flipped
from 1 to 0 breaking any DP guarantee. Thus, the rules’ pre-
dictions have to be determined using DP-protected counts.
In our implementation (Algorithm 2), we use the Laplace
mechanism based on the global sensitivity to compute the
counts for each rule that are later used to determine the
rule’s prediction.

Confidence threshold for minimum support. One of the
remaining issue with the proposed smooth sensitivity frame-
work is the minimum support requirement may jeopardize

Algorithm 1 Approximate (g, 6)DP-Greedy Rule List with
Smoothed Sensitivity

Input: Dataset x € N1 Rule set

Parameters: Min support of the dataset 4, Max length of a

rule list K, DP budget (¢, 6), Confidence C

Output: Rule List RL (and noisy counts ¢, ¢;)
1D Xyom < X, Rygpy < X, RL <[],

A < [|Ix]ly X 4], Stop « False

2: T < confidence_threshold(C)
3: while RL - size() < K and -Stop do

{Initialisation }

4 M o e p Ko 1111+ €goge) < A+ T then
5 Stop « True
6 else o
E gbound “ MLXPLACE(g’ ?X,em(')’ €node> 6node)
8 G* < Gppuna {0 tule added gini}
9: R* < @, ¢* < pred_DP(#, X,,,,)
10: for r € R,,,, do
o
11: g “« ML::PLACE(V’ ?Xrem(')’ Enodes 5node)
12: if G < C* then
13: C* « G, R* «r
14: q* < pred_DP(r, X,,,)
15: end if
16: end for
17: if R* = (J then
18: Stop < True
19: else
20: RL - append(R*, g*)
21: update 5 (X,om < X,om \ C(R¥))
22: end if
23:  end if

24: end while

Algorithm 2 Function pred_DP :

Input: Rule r, Remaining samples X,,,,
Parameters: DP budget (¢, 6)
Output: Prediction g, (cy and ¢;)
€ < M?&PLACE
¢ = MY b acp(rcount (X, . ) €04e)
q < 0ifcy>cjelsel

(r,count_0(X,,,,. )s €40de)

the DP guarantees. For instance, consider D a dataset and
a fixed A and let r a rule. Suppose that after applying rule
r, the number of points remaining for classification »,(r) is
exactly equal to A. Let also D’ be a dataset neighbouring D
that misses one of the samples not caught by r in D. Then,
the support of D’ after applying rule r is strictly smaller
than A so any rule will necessarily be discarded because it is
a stopping condition. Again, this breaks any DP guarantees,
as the resulting model may change significantly due to the
absence of a single example in the dataset.



To solve this issue in the proposed algorithm, we consider a
threshold for minimum support that in most cases preserve
the DP guarantees. Knowing that counting queries have a
global sensitivity of 1, after each split of the dataset, we add

Laplace noise ~ Lap(ﬁ) to the noisy support. If the
noisy support is under a gieven predefined threshold then we
stop here and use the default classification, while otherwise
we keep adding rules. To determine the threshold, assume
that A and ¢ are fixed and we want a confidence C = 0.98.
When the added noise is negative (i.e., the noisy support is
lower than the exact support), the algorithm does not add
any rule even if the smooth sensitivity computation remains
exact. However, when the noisy support is above the exact
support, we need to assess how large the added noise can
be. This can be done by studying the distribution of the
Laplace noise to determine at what value ¢ it will be above
the confidence C. More precisely, we search for ¢ > 0 such

that : f_too Lap(x|b)dx > C < t> — log@)+log =€)

£

Algorithm 3 Function confidence_threshold:
Input: Confidence C

Parameters: DP budget (g, 6)

Output: Threshold 7

7_ l_log(2)+log(l—C)J +1

Enode

The confidence threshold is 7 = 1 + [f] (Algorithm 3).
For instance, with € = 0.1, and C = 0.98, we obtain t =
|6.733] + 1 = 7. This means that we can claim with a
confidence of 0.98 that if the algorithm decides to add rules,
then it respects the minimal support constraint. In practice,
the confidence C will only apply to the later rules of the rule
list when the number of samples left becomes scarce.

Privacy budget. Let (&, 6) the total privacy budget allocated
to the algorithm. Using the sequential and parallel compo-
sition for DP mechanisms, we must determine the fraction
of the privacy budget to allocate per node (i.e., how much
privacy budget should be allocated for the choice of each

rule). We will denote these quantities by & and 6

node node-

Let K the maximum length of a rule list. While it is com-
mon for tree-based models to display the counts for each
leaf (i.e., in our case for each rule), this information should
also be made differentially-private. First in Line 4, the mini-
mum support condition is verified with a global sensitivity
by applying the Laplace mechanism (satisfying (g, 0)-DP).
Then, the computation of the Gini impurity (Line 11) is
made inside the dataset for each candidate rule and only the
rule corresponding to the maximum of these noisy Gini is
returned to the algorithm, which is the Noisy Max Report
mechanism that only accounts for one access. Computing
the two noisy counts of the chosen rule (Algorithm 2) also
counts only for one access since the sets of samples caught

and not caught are disjoint, which leads to the application
of the parallel composition. Finally, with sequential compo-
sition, it gives us 3 operations per node, with 2 achieving
pure DP. For the default rule, only noisy counts are used
and no Gini index is computed. Therefore if the counts are
not displayed with the model, then the denominator is only

. e s
2K —1 for €, which leads to €,,,5, = KT and 6,,,4, = ok
For a Laplace noise using the smooth sensitivity, we can use

— Enode -
f= Tor/6r) for the f-smooth upper bound.

5. Experimental Evaluation

In this section, we assess experimentally the effect of smooth
sensitivity on the resulting models’ accuracy as compared
to other approaches based on the global sensitivity.

5.1. Experimental settings

For our experiments, we consider three common datasets:
German Credit, Compas and Adult in their binarized
version. Sensitive attributes were removed as their use
is prohibited to avoid disparate treatment. In German
Credit (Dua & Graff, 2017) the classification task is to
predict whether individuals have a good or bad credit score.
Features are binarized using one-hot encoding for categor-
ical ones and quantiles (2 bins) for numerical ones. The
resulting dataset contains 1,000 samples and we consider
49 premined rules. For Compas (Angwin et al., 2016), the
objective is to predict whether an individual will re-offend
within two years or not. Features are binarized using one-
hot encoding for categorical ones and quantiles (with 5 bins)
for numerical ones. The resulting dataset contains 6, 150
samples and we have 18 rules. The classification task in
Adult (Dua & Graff, 2017) is to predict whether an individ-
ual earns more than 50, 000$ per year. Categorical attributes
are one-hot encoded and numerical ones are discretized us-
ing quantiles (3 bins). The resulting dataset contains 48, 842
samples and we use 47 rules (attributes or their negation).

In our experiments, we build upon the baseline GreedyRL
implementation proposed by Ferry et al. (2024)! and further
modify their code to implement our proposed DP mech-
anisms within the DP—GreedyRL algorithm?. For each
value of &, the test accuracy was normalized over 100 runs
to account for train/test distribution (i.e., train/test split of
70/30) and the randomization due to the application of DP.

The value of 6 was set ||z;||2 and the maximum length for
1

rule lists was set to 5 as we empirically observed that lower
values could impede the model accuracy and higher values
do not substantially increase accuracy. The hyperparameters
were fixed with preliminary grid search leading to C = 0.99,

Thttps://github.com/ferryjul/ProbabilisticDatasetsReconstruction
Zhttps://gitlab.laas.fr/roc/timothee-ly/dp-greedy



A =0.12 for German Credit and A = 0.05 for Compas
and Adult. The rules are mined as conjunctions of up to
two Boolean attributes or their negation as longer rules make
the space exploration exponentially more time consuming.
All our experiments are run on an Inte]l CORE 17-8700 @
3.20GHz CPU.

5.2. Rule selection with Global Sensitivity on Gini index

At each step of Algorithm 1, the selection of the rule with
the best Gini index R* (Lines 7 and 11) is implemented
by Laplace noise with smooth sensitivity. To evaluate the
benefit compared to the global sensitivity, we first determine
the best rule based on the global sensitivity when computing
the Gini index. Thus, we implemented two versions of the
proposed algorithm using global sensitivity.

Noisy Gini. The first version replaces the smooth sensiv-
ity of the Gini impurity with its global sensitivity. More
precisely, the Laplace noise with global sensitivity is added
to the Gini Impurity and there is no need to compute the
minimum support (Line 3). Thus some privacy budget is
saved during that step.

Noisy counts. The second version leverages the global
sensitivity of counting queries (equal to 1) rather than using
the global sensitivity of the Gini impurity which is very high.
We have therefore used the noisy counts (accessed by a
Laplace mechanism) of each rule to compute the Gini index.
According to the post-processing property, this quantity
remains differentially-private. Nonetheless, this access is
not a Noisy Max Report mechanism anymore but a regular
access to all counts for each rule. This means that the
privacy budget per node needs to be further split for each
rule of the ruleset &%, which leads to a factor of 1/2| %] in
the denominator.

0650
0625

Training accuracy

0525

0500 —— Noisy counts
Noisy Gini
baseline algo

0475

10t 107 100 10t
Privacy budget €

Figure 2. Comparison of Noisy counts and Noisy Gini variants
applied on dataset Compas using global sensitivity (log-scaled)

In the experiments, we focus on the range [0.1, 20] for €. In
particular, when & goes over 20, it becomes hard to quantify
how the theoretical guarantees apply on realistic settings
while a value under 0.1 leads to poorly performing models.

Figure 2 shows that overall a rule list model built using
the Noisy Gini performs better than the model learnt based
on noisy counts but is slower to reach the accuracy of the
baseline model obtained with GreedyRL. When € is high
enough, the noise added is so low that the Gini impurity
scores are ranked according to their original value hence a
consistent result with GreedyRL. The model using only
the noisy counts remains nonetheless interesting in a setting
in which the mined ruleset is pre-processed beforehand to a
small cardinality (e.g. less than a hundred) as this yields the
best results of the two. Motivated by these findings, we now
focus on the noisy Gini version.

5.3. Prediction Performance

We now compare the test accuracy of rule lists obtained
by Algorithm 1 combined with several DP mechanism for
the selection of the best rule. We consider two mech-
anisms based on smooth sensitivity and either Cauchy
(sm—Cauchy) or Laplace (sm—Laplace) noise. We also
consider two mechanisms based on global sensitivity and
Gaussian (gl-Gaussian) or Laplace (gl-Laplace)
noise. Finally, we implemented the Exponential mechanism
using the Gini impurity as the utility function for sampling
the best rule at each node.

We vary the privacy budget € in [0.01, 100]. The results,
averaged over the 100 runs, are displayed in Figure 3 and
the test accuracy for € = 10 is reported in the right part of
Table 1. As shown in Figure 3, the two variants based on
smooth sensitivity perform particularly well for relatively
large datasets. We observe a high variance on accuracy
at low &, which is mostly due to the confidence threshold
becoming exceedingly high for these privacy values as it
might lead the model to output only one rule. However,
this asymptotic behaviour disappears quickly especially for
larger datasets. For € = 0.1, the mechanisms based on
smooth sensitivity either match or outperform the standard
pure DP approaches. In addition, for Compas and Adult,
the convergence of the approaches based on smooth sensi-
tivity to the baseline model is very steep. In contrast, DP
mechanisms based on the global sensitivity usually converge
around £ ~ 10°. Compared to the differentially-private ran-
dom forest of Fletcher & Islam (2017), we incur at € = 1
a significantly lower accuracy loss with respect to the non-
private model. The Cauchy distribution has a polynomial
decaying tail, which is much heavier than the exponential
decaying tail of the Laplace distribution. Thus, on many
random noises generated at each step of the algorithm, a few
might end up far from the average amplitude, which might
deteriorate significantly the accuracy. As a consequence
although the smooth Cauchy mechanism provides a good
alternative to DP mechanisms based on the global sensitiv-
ity, we advise to replace it by its Laplace counterpart even
if the privacy guarantees provided are slightly weaker.
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Figure 3. Comparison based on the test accuracy of different DP rule list algorithms.

5.4. Robustness to Privacy Attacks

The protection provided by DP aims at hiding the contri-
bution of any individual example to the output of a com-
putation. Then, it is natural to evaluate it in practice using
Membership Inference Attacks (MIAs) (Shokri et al., 2017),
whose objective is to determine whether an individual was
part of a given model’s training set or not. Indeed, perform-
ing such attacks on both the original greedy rule lists and
their DP counterparts, and comparing the MIA success rate,
empirically quantifies the effectiveness of the DP protection.
However, this approach has two main drawbacks. First, one
has to select which MIA(s) to run, and different attacks can
come with different success rates. Second, we implemented
and used several popular attacks from the literature, and
they struggled attacking even the original (non-DP) model,
as reported in the Appendix C.2. An intuitive explanation
lies in the simplicity of our considered models: while the
output of a deep neural network is a numerical value which
can virtually take any value, a rule list classifies an example
using one of K rules in which K is reasonably small.

In this paper, we rather leverage the (model-agnostic) notion
of distributional overfitting of a model, introduced by Yagh-
ini et al. (2019). In a nutshell, it aims at quantifying how the
model output distribution varies between samples inside and
outside the training set. It is thus highly correlated to the vul-
nerability of a model to MIAs, and can be seen as an upper-
bound over their success. More precisely, for y € {0, 1}, we

1
define: 7(3) = 7 ¥,err ||]3’[r|y,M = 1] = P[r|ly, M = 0]
in which P[r|y, M] is the probability that a sample with
label y (from the training set (M = 1) or outside (M = 0))
is captured by rule r € RL. The overall vulnerability of the
model is given by : V = % + % 2 yeClasses PV X 7(9).

Intuitively, when measured on finite training and test sets, it
measures how much the proportions of samples from each
possible label differ among the different rules. If the model’s
outputs have the exact same distributions inside and outside

Table 1. Test Accuracy and Overall vulnerability of the greedy rule
lists algorithm and its DP counterpart over 100 runs.

Dataset Method Vulnerability ‘ Accuracy

Compas GreedyRL 0.507* +4e—6 | 0.660 + 8e—5
Compas DP-GreedyRL 0.507" £4e—6 | 0.658 +le—4
German GreedyRL 0.524 +3e-5 0.711 £5¢—4
German DP-GreedyRL  0.516 £5e-5 0.683 +1e-3
Adult GreedyRL 0.502 +7e-7 0.798 +1e-5
Adult DP-GreedyRL  0.502 +6e-7 0.795 +1e—5

the training set, the vulnerability is 0.5 which indicates that
the expected success of a MIA is that of a random guess.
We report in Table 1 the overall vulnerabilities measured
on rule lists built with or without the use of DP within the
greedy learning algorithm. Consistent with our preliminary
observations that the greedily-built rule lists are resilient to
MIAs, the vulnerabilities of both the DP and non-DP models
are very low. Nevertheless, we observe that non-DP models
consistently exhibit slightly higher vulnerability values (as
expected), than their DP counterparts.

6. Conclusion

In this paper, we have proposed a new mechanism for DP
that leverages the smooth sensitivity of the Gini impurity,
directly addressing a key challenge pointed out in the liter-
ature (Fletcher & Islam, 2019). Our experiments illustrate
that this new mechanism, with equivalent privacy guaran-
tees, offers a considerable reduction of the accuracy loss
compared to the differentially-private GreedyRL models
using global sensitivity. We leave as future work the use
of the Gini impurity’s smooth sensitivity for the implemen-
tation of differentially-private decision trees or other inter-
pretable machine learning models. Exploring the integration
of DP on certifiably optimal learning algorithms such as
CORELS is another promising avenue of research.



Impact Statement

Because machine learning models are increasingly used for
high-stakes decision making tasks, it is crucial to ensure
that their decisions can be understood by human users. Fur-
thermore, recent texts make this a legal requirement: for
instance, for a machine learning model to be compliant with
the GDPR legislation, it must satisfy the right to explana-
tion principle which states that the subject to an automatic
process should have a right to obtain an explanation on the
rationale behind the decision received. While the exact def-
inition of explainability remains a point of contention in
the scientific community, interpretable models are a simple
yet reliable way of implementing such transparency require-
ments. Another crucial aspect is to protect the private data
that may be used to train such machine learning models,
while preserving as much as possible the final model’s util-
ity.

Our framework provides a thorough technical solution
jointly handling these three aspects. More precisely, we
propose novel solutions to enforce strong privacy guaran-
tees with a limited impact on the resulting model’s perfor-
mances. We further demonstrate that these solutions can
be used to protect inherently interpretable models which
can then be safely released. On the one hand, making these
interpretable models differentially-private is a significant
step towards ensuring the ethical and responsible use of Al
in our society. On the other hand, the technical solutions we
provide (namely the use of smooth sensitivity) constitute
strong privacy-preserving mechanisms which can be applied
in other settings to better conciliate performance and privacy
concerns.
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A. Proof of the Smooth Sensitivity of the Gini Impurity (Theorem 4.1)
A.1. Case 1: for a minimum support of 1

To match with the notations used so far, we will consider a dataset x € N!?| and suppose we take interest at the first node
splitting this dataset (it is only a matter of notation), we can therefore rewrite the local sensitivity of the Gini impurity at x

> Ixll, 2 2
LSi(x)=1- <L> _ (#)
Ix]l; +1 x|, +1

Consider the function
Rt — [0,1]

- () -(5)
x +— 1- -
x+1 x+1

g is derivable on R* and Vx € R*:

, x x+1—-x 1 -1 —2x 2 2(1 —x)
gx)=-2x S = . = + =
x+1 (x+1)7? x+1 (x+12 (x+13 (x+1)3 (x+1)73
X 0 1 +00
g'(x) + 0 -
1
2
0 0

Note that : LSg =go |

As a reminder, we are trying to determine the smooth sensitivity of the Gini impurity:

S50 =gy €0

where
T.(x)= max LS, = max o = max
% (X) max, ¢(») max, go |yl may g
lly=x1, <k lly—x]], <k yellxll —k.llxll +k]

We consider that ||x||; > 1 as we do not build nodes when there are no samples to classify. We could eventually replace this
condition by ||x||; > An where A is the minimum support (in terms of ratio) and » the total size of the dataset.

[llx]l; — k, || x]l; + k] is an interval with integer bounds. With the previous study of g monotonicity, this maximum is reached
in y = max(1, l|x/l; - k).

Explanation:

e if k > ||x]l; = 1 then 1 € [||x||; — &, [|x]|; + k] so the maximum is the global maximum of g : 1 = max(l, ||x||; — k)

e if k < ||x||{ then [||x||; — &, [[x]l; + k] C [1,4+o0] and g is monotonously decreasing on [1, +oo[ so the maximum is
the leftmost bound of the interval : ||x||; — k = max(1, [|x]|; — k)

T,.(x) = g[ max(1, [|x|l; — k)]
Now that we obtained a close formula for 7, (x), we can determine :

85500 = max 7 (x) = max ¢ g[max(l, |Ix|l, - k)]

11



Let
Rt — R*Y

i — e P g[max(l, |Ix|l, — )]

e g(1) ife> x|, — 1
EpD =1 : !
e P g(lxlly =0 ift < x|l =1

S p®) :

&y p 1s continuous on R* and derivable on [0, ||x||; — 1[ and ] [|x]|; — 1, +oo[. The monotonicity of &y p 1s trivial for high

values of ¢:
v €ll|x|l; = 1, +o0l, &, () = —=p x e Pg(1) <0

Ve e [0, [Ix]ly — 1L,

g)/c,ﬁ(t) = _ﬁ X e_tﬂg(“xlll - t) + e_tﬂ X (_1) X g,(llx“l - t) 2 y = ||X|| —
=—e"P[pg(y) + &' )] l
2
] Y SR SR | 2(1—-y)
(-G oe ) Y o)

e—tﬂxﬂ'(J’+1)3_ﬁ'y2(J’+1)_ﬁ‘(Y+1)+2(1_Y)
v+17

—Iﬁ
= X[ G D AP D A+ D=2 )
(I+y)
—l‘ﬁ
Since (le+ 7 > 0 the sign of é; ﬂ(t) on [0, ||x||; — 1[ is given by the polynomial P(Y) = —f - (Y + D3+p-Y2(Y + 1)+
y .

B-(Y+1)=2(1-Y)==28Y2+(2=28)Y —2.

Let Q := —pY? 4+ (1 — p)Y — 1 = P/2. P and Q share the same roots, we will therefore study Q. Let A the discriminant
of polynomial Q. We associate it to the function A(f) since its value depends on f. The value of the discriminant gives

whether or not the underlying function is monotonous. A(f) = (1 = f)> =4 = (f -3 — 2\/5)(ﬁ -3+ 2\/5)

p 0 B :=3-2V2 B, :=3+2V2 +00

A(B) + 0 - 0 +

e For f €]3 — 2\/5,3 + 2\/5[, A(f) < 0 so QO has no roots in R so it is negative on R.

' 0 Ixlly — 1 +o0
S0 - - -
sy
gxﬂ exp(=(llx[l,=DB)
> 2
—

In that scenario, \ Sgp(0) = &, 50) = gllxll}) = LSG(x) \

e Forf=3- 2\/5 orf=3+ 2\/5, A(f) = 0so Q admits a unique root y, = lz_—ﬂﬂ (we will ignore these two values of f
as there are enough f that we can choose.)

12



e For f €]0,3 — 2\/§[U]3 + 2\/5, +oo[, A(f) > 0 so Q admits two distinct roots :

_ 1=+ —pP—4p _1-p- U —pP—4p

d

»1 28 an Y2 25
y -00 »2 » +o0

o) - 0 + 0 -

The problem is that the roots ¢; := ||x||; — y; and #, := ||x||; — y, might overflow the interval [0, ||x||; — 1[.
l—-—) +o0 and ~ L-—-—) 0~
N =0 f -0 1 poto0 1 — f po+oo
! and -1
p 0 +0o
+o0
y1(6) G

3>->2

3>->2

) /

1

Since y + ||x||; — ¥ =: tis a strictly decreasing function (it is a bijection from R to R) we have that y, < y; =
t, > t;. What we want to study is the mapping from [y,, y;] to [#;, #,] with respect to the domain of validity for the
studied form of &, ;.

That gives us two cases to treat:

1. p €]0, ;. In the case that ||x||; > 5 e.g. (which is a reasonable assumption) 3* €]0, #;[,Vf > *,0 < t,(f) <
[[x]ly =1and 0 < #, < ||x]|; = 1 (for all g in the considered interval) which gives : 0 < | <1, < ||x|[; — 1

— So if f is too small, then the #’s associated to the interval [y,, y;] are ( < 0) partly outside the domain of

validity which yields
t I 0 Iy llxll; =1 +oo
o)
éx,ﬂ
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Hence :

S5.500 = max [£, 5112 £ p([12])]

5500 = max [ g(lxll = (1)), e T2 gl = [e2])]

- if g €]p”, p,[, then all the ¢’s associated to [y,, y;] are in the domain of validity.

t 0 1 15 x|y =1 +oo
o) - 0 + 0 -
g(llxIly) S p(t2)

fx,ﬁ \ / \
Eepty)

S50 = max [£,,5(0). &, 5112 & p([12])]

S50 = max [gCllxll ), e~ gl = L)) e Vgl = [1])]

2. p €]py,+o[. t, > ||x||; —1 and #; > [|x||; — 1 which means that the #’s associated to the [y,, y;] are (> ||x||; —1)
all outside the domain of validity.

t 0 lIxll; =1 t 1y +c0

o) -

g(lxllp

éx,/i’
0

Sg 50 = &.5(0) = g(lIxll) = LSg(x)

A.2. Case 2: for a minimum support 4 -n > 1

Let A = A - n and suppose it an integer to simplify the notations.

Ti(x) = g[ max(A, ||x|l; - k)]

8,500 = max T (x) = max ¢ - g max(A, ||xll; - k)]

Let
Rt — R*

s |, L g[max(A, |Ixll; 1)

¢ - e 1P g(A) if 1> [|x|l; — A
h P og(lxll, -0 ifr < |x]l; — A
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&\ p 1s continuous on R* and derivable on [0, ||x||; — Al and ] ||x||; — A, +ool. ¢y p derivatives remain unchanged but the
bounds are shifted (from 1 to A). The roots y; and y, are unchanged (they solely depend on f). Instead of re-doing the case
per case analysis, we will propose the following heuristic :

1. Compute ¢ and ¢, if the roots y; and y, exist
2. Compute the relative positions of ¢; and ¢, with respect to O and ||x||; — A

3. We know that &, ; is increasing between 7, and 7, granted that they are in the [0, ||x||; — A[ interval so there is an
eventual max in this interval, to compare to &, 4(0) and &, z([|x|l; — A)

B. Some key results for Differential Privacy
B.1. Distance between Databases

The datasets used in this article are tabular, features are 0 — 1 encoded and the label is also binary. Suppose that an element
of the dataset is made of m features and one label. Then, the universe of all possible elements of the dataset, denoted 2 is
therefore finite of cardinality 2*!. An element a of 2 can be expanded to its tuple form as (ay, ... , d,y, Gyyq) Where @,
is the label. We define the order relation < on X'. For (a,b) € X,

Jie[l,m+1],Vk € [l,i— 1], a;, < b and a; < b,
a<b < Jor
Vie[l,m+1],q; = b,

< yields the symmetric, reflexive and transitive properties and all elements can be compared within & so this is a total order
relation. As such, (2, <) is a totally ordered set. We can now introduce the expanded notation for datasets. A dataset x is a

collection of elements of 2" that we write as a tuple x = (xo, ..., X|q|) € NI?1 such that x; denotes the number of elements
of X of type i stored in the database x. The number of elements in a dataset x is given by the formula: ||x||; := Z!fol X;.

With this notation, it is easy to interpret the notion of distances between dataset as the L1-norm of their difference. We say
that two dataset x, y are adjacent if they vary only by 1 element i.e. ||x — y||; = 1.

B.2. Composition and Post-Processing Properties

The DP-mechanisms presented above possess nice properties to use them in conjunction. DP would not yield any relevance
were the entity using the privatized data able to untangle it. One cannot make a differentially-private algorithm less private
in post processing. This is the guarantee provided by the Post-Processing theorem.

Theorem B.1 (Post-processing theorem). Let M : NI = % be an (¢, 6)- differentially private algorithm. For any
function f © Y — Z, the composition foM : NI¥|  Z is (g, 6)-DP.

As stated above, the differentially-private mechanisms we presented all apply on a R¥ valued function. composition of
differentially-private mechanisms enables us to scale up from functions to algorithms. Composition tends to deteriorate the
privacy guarantees but to a measurable extent. It all depends on how the composition is applied.

Sequential composition happens when when several differentially-private mechanisms, denoted m;, ... , m, with respective
DP-coefficients (g4, ... ,€,) are applied onto the same dataset x then the generated output : (m;(x), ... ,mp(x)) satisfies

(Zf= | £1)-DP.
For Parallel composition, the differentially-private mechanisms denoted my, ..., m,
given dataset x = Hlex,- then the generated output : (m;(x), ..., m,(x)) satisfies (maxf=1 g;)-DP.

are applied into disjoints subsets of a
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B.3. Proof of the iterative Computation Lemma of Smooth Sensitivity (Lemma 3.1, from (Nissim et al., 2007))

Let D and D’ denote two datasets. Note that since : {D' € NIl : ||D' = D||, <k} c {D' eNHl : |D' - DJ||, <k+1}
we have that Vk € N, 7, (D) > T, (D).

* — /\,—BlID-D'||;
Sf,/;(D) D}Iel%)l(m LS (D)e
= max max LLS’f(D')e_ﬂ”D_DI||1
k€{0,...n} D'eNIZ]
ID-D'|l,=k
= max e’ max LS/(D")
kef0,...,n} D' eNI?I
ID-D'|1,=k
— —pk
= max e T (D
ke(0....n) WD)

The transition from the penultimate to the final line is tricky. 7; (D) is a max over the ball of elements at distance at most k
of D, not the sphere. Note that since we are using dataset, the distance can only be an integer.

Ties1(D) = max( max LS (D", max LS (D")

D'eNITl D'eN
||D'-D||; <k+1 ||D'-D||;=k+1
=max( max LS,D'), max LS/(D")
D'eNITl D'eNITl
[ID'-D||; <k [ID' =D =k+1
=max(T,(D), max  LS,(D"))
D'eNiTl
||D’'-D||;=k+1

Since f > 0, e Pk > ¢=PU+D) therefore e P*T, (D) > T,.(D)e Pk+D. But the quantity, e Pk T, (D) appears in the computation
of S;i /;(D) and since it is strictly greater than the left term of 7; . ; (D) we can ignore this term and it is equivalent to compute
LS f(D/ ) either on the ball or on the sphere of radius k in that case.

C. Additional Results
C.1. Additional Figures for Section 5.2

Figure 4 provides more results of the comparison between the two methods leveraging global sensitivity to output the best
rule. The two plots follow the same tendencies as for dataset compas that is to say, the method using the global sensitivity
of the Gini Impurity remains the best choice for the interval of € considered.

C.2. Membership Inference Attacks

Figure 5 illustrates how a dataset is split into different subsets to train a Membership Inference Attack (MIA) model. Note
that the \ symbol represents the minus operation on sets.

We consider two MIAs from the popular ART toolkit > (Nicolae et al., 2018). The results we obtained for a black-box MIA*
using Random Forests are presented in Figure 6. The ROC curves are displayed in log scale to highlight the results at low
FPR since it is the relevant regime for Membership Inference Attacks (Carlini et al., 2022). They show that, as mentioned in
Section 5.4, (even non-DP) rule lists are already resilient to MIAs. On the smallest German credit dataset, we observed
a slightly higher distributional overfitting, which results in slightly higher TPRs at low FPR.

Shttps://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks#
4-inference—attacks

“https://adversarial-robustness—-toolbox.readthedocs.io/en/latest/modules/attacks/
inference/membership_inference.html#membership-inference-black-box
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We also considered the Label Only Membership Inference Attack® (Choquette-Choo et al., 2021) but results were sub-par
due to the datasets used. Indeed, the rule lists use as input binarized features whereas the attack explores the latent variables
space by studying how the model output varies when the features values are tweaked. The issue here is that the model can
only read features that are O or 1 and therefore we had to truncate the latent space exploration to the much sparser space of
{0, 1}, making it inefficient. In addition, since the datasets are binarized, some features are actually a one-hot-encoding of
a categorical feature, which means it does not make sense that several of them can be set to 1. An interesting avenue of
research would be to use the latent space exploration on the non binarized features and re-apply the binarization process at
each step. This is unfortunately computationally expensive and we leave it as future research.

Shttps://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/attacks/
inference/membership_inference.html#membership-inference-label-only-decision-boundary
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Figure 6. ROC Curves of Membership Inference Attacks on the DP model and on the baseline GreedyRL
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