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4th Sébastien Gambs
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Abstract—Differentially-private (DP) mechanisms can be em-
bedded into the design of a machine learning algorithm to protect
the resulting model against privacy leakage. However, this often
comes with a significant loss of accuracy due to the noise added
to enforce DP. In this paper, we aim at improving this trade-off
for a popular class of machine learning algorithms leveraging
the Gini impurity as an information gain criterion to greedily
build interpretable models such as decision trees or rule lists.
To this end, we establish the smooth sensitivity of the Gini
impurity, which can be used to obtain thorough DP guarantees
while adding noise scaled with tighter magnitude. We illustrate
the applicability of this mechanism by integrating it within a
greedy algorithm producing rule list models, motivated by the
fact that such models remain understudied in the DP literature.
Our theoretical analysis and experimental results confirm that the
DP rule lists models integrating smooth sensitivity have higher
accuracy that those using other DP frameworks based on global
sensitivity, for identical privacy budgets.

Index Terms—Differential Privacy, Interpretability, Rule Lists,
Machine Learning

I. INTRODUCTION

Machine learning models are increasingly used for high-
stakes decision-making tasks such as kidney exchange [1] or
recidivism prediction [2]. As such tasks often require the use of
sensitive data (e.g., medical or criminal records), it is crucial to
ensure that the learned models do not leak undesired informa-
tion. Another important aspect is to make sure human users
can verify and trust the models’ decisions, which motivates
the use of inherently interpretable models when possible [3].
However, such models are also vulnerable to privacy attacks
such as membership inference [4], [5], in which the objective
of the adversary is to infer the presence of a particular profile
in the training dataset, or reconstruction attacks [6], [7], in
which the aim of the adversary is to reconstruct the training
set. To counter this issue, Differential Privacy (DP) [8], [9] has
emerged as a de facto privacy standard, thoroughly bounding
the amount of information any adversary can gain regarding
any single individual in the dataset.

For instance, recent works [10], [11] survey the literature
on existing DP variants of different typical machine learning

algorithms, such as the DP versions of the Principal Compo-
nent Analysis algorithm [12] and of the Stochastic Gradient
Descent [13]. However, much less work has been dedicated
to the DP learning of interpretable models. Nonetheless, a
line of works have studied different adaptations of learning
algorithms producing tree-based models (i.e., mostly decision
trees and random forests) [14]. These works rely on popular
greedy induction algorithms such as CART [15]. An important
challenge they had to face is that the Gini impurity, a popular
information gain criterion widely used at each iteration of
these greedy algorithms, has very high global sensitivity. This
leads to the addition of a considerable amount of noise to
comply with DP, hence harming the utility of the resulting
model. In this paper, we address this issue by leveraging
the notion of smooth sensitivity [16]. More precisely, we
first theoretically characterize the smooth sensitivity of the
Gini impurity. Then, we design a DP mechanism based on
smooth sensitivity that we integrate into a greedy algorithm
for learning rule list models. Depending on the considered
noise distribution, our approach can provide either pure or
approximate DP guarantees. Our experimental results show
that the proposed DP mechanisms incur a lower accuracy loss
than other mechanisms based on global sensitivity for identical
privacy budgets.

The outline of the paper is as follows. First, in Section II,
we recall the background on rule lists models and DP. After-
wards, in Section III, we introduce the building blocks of our
approach, namely greedy learning of rule lists, Gini impurity
and smooth sensitivity. Then, in Section IV, we present our
main contribution on establishing the smooth sensitivity of the
Gini impurity. We leverage it to design an effective algorithm
for learning DP rule lists. Finally, in Section V, we empirically
evaluate our proposed methods in terms of privacy-accuracy
trade-offs and robustness to privacy attacks before concluding
in Section VI.



II. BACKGROUND

A. Rule Lists

We consider a tabular dataset D of n samples in which
each sample s corresponds to a set of binary features and has
a binary label ys. Rule lists, originally introduced as a way to
efficiently represent Boolean functions, are a common type of
interpretable models [17], [18]. More precisely, a rule list RL
is a sequence of K+1 rules (r1, . . . , rK , r0) ∈ RK+1 in which
R is the set of possible rules (which, for instance, can be pre-
mined). Each rule ri ∈ R is composed of a Boolean assertion
pi called the antecedent and a label prediction qi ∈ {0, 1}
named the consequent and can be denoted by ri = pi → qi.
A sample s of dataset D is said to be caught by rule ri when
pi evaluates to true for s, which leads to s being classified
with label qi. The default rule, r0 = True→ q0 classifies any
sample not caught by the previous rules to q0 ∈ {0, 1} fixed.

Rule List 1 provides an example model trained for a recidi-
vism prediction task. As evidenced through this illustrative
example, the use of any discriminatory feature would imme-
diately be spotted, which is an advantage of using inherently
interpretable models [3]. This is in contrast with black-box
models, in which such an undesired behaviour would be
difficult - or even impossible [19] - to detect.

i f Prior-Crimes ̸= 0 then True
e l s e i f Juvenile-Felonies ≤3 and Juvenile-Crimes /∈ J1, 3K

then F a l s e
e l s e True

Rule list 1: Example rule list learnt on the Compas dataset [2].
The binary prediction is whether the offendent will recidivate
within two years or not.

Rule lists are provably more expressive than decision trees
of comparable size [17], mainly because there can be any
arbitrary overlap between the supports of the different rules
within the rule list (since they are ordered), while the supports
of the leaves of a decision tree are inherently disjoint. Hence,
any decision tree with depth d can be translated into an
equivalent rule list using rules involving at most d boolean
conditions, while the opposite is not true. A direct conse-
quence from an information theory perspective is that rule lists
encode more information regarding their training data than
decision trees of comparable size [6]. Nevertheless, despite
their advantage in terms of compactness, rule lists remain less
studied than decision trees in the privacy literature, which
is why we focus on them in this work. There are a few
notable exceptions, although they consider different setups
and have different objectives [20], [21]. On the one hand,
Daniely and Feldman [21] discuss the sample complexity of
learning decision lists in a non-interactive local differential
privacy context. On the other hand, Thaler et al. [20] consider
the problem of privately releasing a database whose rows
consist of pre-defined decision lists, in the context of privacy-
preserving data publishing.

Rule lists can be built either with exact methods (producing
certifiably optimal models) such as the CORELS [22] tree-
based algorithm or with heuristic approaches [23], which

we specifically consider in this paper. More precisely, we
chose to focus on greedy learning algorithms (as introduced
in Section III-A), because this framework encompasses a
wide range of interpretable models beyond rule lists, such as
decision trees or random forests. This makes our results easily
applicable to these other models.

B. Differential Privacy

Differential privacy (DP) is a mathematical property that
yields strong privacy guarantees with respect to queries or
computations performed on a database [9]. The underlying
idea is the following: an algorithm is differentially private
if its distribution over outputs does not change much after
adding or removing one sample (corresponding to one indi-
vidual with personal information). The objective of privacy-
preserving machine learning is to reconcile two antagonist
purposes: extracting useful correlations from data without
revealing private information regarding any single individual.
In particular in machine learning, DP can be integrated into the
learning algorithm to ensure that the resulting model does not
leak too much information with respect to the input dataset. In
this context, a differentially private learning algorithm ensures
that the distribution over outputs (i.e., possible models) is not
impacted significantly by the addition or removal of a sample
from the training set.

More formally, two datasets D and D′ are said to be
neighbouring if they differ at most by one sample, denoted
by ∥D − D′∥1 ≤ 1 for (D,D′) ∈ N|X | in which X is the
finite set of all possible samples in a dataset. Similarly, the
number of elements in a dataset D is ∥D∥1. More details
regarding these definitions and notations are provided within
the Appendix A-A.

An algorithmM : N|X | 7→ Y is (ε, δ)-differentially private
if ∀ S ⊆ Y ,∀ (D,D′) ∈ (N|X |)2, ||D − D′||1 ≤ 1, we
have:

P(M(D) ∈ S) ≤ exp(ε)P(M(D′) ∈ S) + δ [9].

The parameter ε controls the level of privacy of the algo-
rithm as it defines how much the probability of an output
can vary when adding or removing a sample. Typically,
ε = 1 is considered a reasonable value in terms of provided
protection [24]. Pure DP refers to when δ = 0, while
approximate DP corresponds to values of δ > 0. Indeed, δ
can be interpreted as a probability of “total privacy failure”.
One possible instance of this δ-failure could be that with
probability 1 − δ, the model will behave like pure DP while
with probability δ (i.e., the failure probability), there will be
no privacy guarantees at all. δ ≪ 1

∥D∥1
is considered to be

an absolute requirement since a δ of order O(1/ ∥D∥1) could
enable the total release of some samples of the dataset.

Intuitively, differentially private mechanisms often revolve
around the idea of adding noise of a magnitude of order close
to how steep the output function can change with slight varia-
tions of the input. More precisely, for a given function f ∈ Rk,
its global sensitivity precisely quantifies how much the value of
f can differ between any two neighbouring datasets. Formally,



the global sensitivity of a function f : N|X | 7→ Rk for norm
lp (usually l1 or l2), denoted by ∆pf , is defined for any
neighbouring datasets D and D′ as follows:

∆pf = max
D,D′∈N|X |

||D−D′||1=1

||f(D)− f(D′)||p.

One of the shortcomings of global sensitivity is that it
does not take into account the position in the latent space
of the considered datasets. Nevertheless, it can effectively be
used to obtain thorough DP guarantees. A straightforward
approach to achieve DP is by adding noise to the output
of the given function f . Two popular differentially private
mechanisms [9] are based on this principle: the Laplace
mechanism M∆1

LAPLACE(D, f, ε) and the Gaussian mecha-
nism M∆2

GAUSS(D, f, ε, c). In these mechanisms, for each
component j of the function f , the amplitude of the added
noise Nj is scaled to its global sensitivity.

The Laplace mechanism M∆1

LAPLACE(D, f, ε) is based on
∆1 (global sensitivity with l1 norm) along with Laplace
noise: ∀j ∈ {1, . . . , k}, Nj ∼ Lap(∆1f/ε). The probability
density function of the Laplace distribution is Lap(x | b) =
1

2b
exp

(−|x|
b

)
and the Laplace mechanism satisfies (ε, 0)-DP.

The Gaussian mechanism M∆2

GAUSS(D, f, ε, δ) satisfies
(ε, δ)-DP. It uses ∆2 (global sensitivity with l2 norm) together
with Gaussian noise:
∀j ∈ {1, . . . , k}, Nj ∼ N

(
µ = 0, σ = c·∆2f

ε

)
with

c2 > 2 log(1.25δ ).
Another common DP mechanism, called the Exponential

mechanism M∆u
EXP (D, u,V), considers a (discrete) set of

possible outputs V and randomly samples one of them with
respect to a utility metric. Thus in this mechanism, the noise
added to comply with DP is introduced through a random
sampling of the candidate outputs rather than added on the
outputs themselves. More precisely, let u : (D, v) 7→ u(D, v)
denote the utility function of element v with respect to dataset
D. The global sensitivity of this utility function is defined as:

∆u = max
v∈V

max
D,D′∈N|X |

||D−D′||1≤1

|u(D, v)− u(D′, v)|

The Exponential mechanism M∆u
EXP (D, u,V) samples an

element v ∈ V with probability p ∝ exp( ε·u(D,v)
2·∆u ) and satisfies

(ε, 0)-DP [9].
Finally, we will also use the Noisy Max Report mecha-

nism [9], which satisfies (ε, δ)-DP. Considering a noisy mech-
anism Mnoisy satisfying (ε, δ)-DP, the Noisy Max Report
mechanism returns: argmax

v∈V
Mnoisy(D, u(·, v), ε).

Among others, DP comes with two fundamental properties.
First, the post-processing property ensures that DP guaran-
tees are not affected by post-processing the output of a
DP mechanism. Second, the composability property enables
the composition of different differentially private mechanisms
(sequentially or in parallel) and the computation of the global
privacy budget. In a nutshell, sequential composition states that
if several DP mechanisms are applied on overlapping datasets,

their privacy budgets sum up, whereas parallel composition
considers the application of several DP mechanisms on dis-
joints datasets, in which case there is no need to sum up their
budgets. More details regarding these properties are provided
in the Appendix A-B.

III. BUILDING BLOCKS

A. A Greedy Algorithm for Learning Rule Lists
Greedy algorithms are widely used for learning decision tree

models. For instance, the commonly used CART algorithm [15]
iteratively builds a decision tree in a top-down manner, by
successively selecting the feature (and split value) yielding
the best information gain value according to some pre-defined
criterion. While algorithms for learning rule lists in a greedy
manner are far less popular than their counterparts for learning
decision trees, some implementations exist in the literature.
For instance, the imodels 1 library [23] contains algorithms
for learning different types of interpretable models, including
rule lists (denoted GreedyRL). More precisely, GreedyRL
iteratively calls CART to build a depth-one decision tree at
each level of the rule list, optimizing a given information gain
criterion. Just like for decision trees, greedy algorithms for
building rule lists successively select the best rule ri = pi →
qi given some information gain criterion. Thus, at each level
of the rule list being built, the GreedyRL algorithm iterates
through all possible rules and keeps the one leading to the best
information gain value.

B. Gini Impurity for Rule Lists
In this paper, we consider the Gini impurity index origi-

nally used in the CART [15] algorithm as a measure of the
information gain. In a nutshell, this index quantifies how well
a rule separates the data into two categories with respect to
different labels, with the value of zero being reached when the
examples are perfectly separated. The algorithm stops when
all the samples are classified, but other stopping criteria can
be implemented such as a maximum length on the list of rules
or a minimum support condition on each rule (i.e., number of
points left to be classified).

Consider a given rule r for a specific node of a pre-existing
list of rules, which means that some samples were already
captured by previous rules and are not accounted for. Let
C(r) ⊂ D be the subset of samples captured by rule r, in
which nc(r) is the number of samples in C(r) and nl(r)
the number of samples not captured by rule r. For a rule
list RL = (r1, . . . , rK , r0), and a given position j in the
sequence, let ñ(j) be the number of samples not captured
by previous rules r1 . . . rj−1. In particular, this means that
ñ(j) = nc(rj) + nl(rj) = n −

∑j−1
i=1 nc(ri). In addition, let

ŷc(r) denote the average outcome (i.e. the predicted label) of
the rule r, ŷc(r) = 1

nc(r)

∑
s∈C(r) ys. Similarly, the average

outcome of the remaining samples is

ŷl(r) =
1

nl(r)

∑
s∈D\

(
∪j−1

i=1C(ri) ∪ C(r)
) ys

1https://github.com/csinva/imodels



The Gini impurity reduction with respect to rule r is denoted
as G (r). It can be divided into two terms Gc(r) and Gl(r),
respectively for the samples caught and the ones not caught
by the rule: G (r) = Gc(r) + Gl(r). Note that we not only
consider the samples caught by the rule (through Gc(r)) but
also those which are not (through Gl(r)) as it matters for the
following rules in the rule list. For binary classification, the
Gini impurity reduction for a rule r at position j is given by:

Gc(r) =
nc(r)

ñ(j)

(
1− ŷc(r)

2 − (1− ŷc(r))
2
)

(1)

Gl(r) =
nl(r)

ñ(j)

(
1− ŷl(r)

2 − (1− ŷl(r))
2
)

(2)

C. Smooth Sensitivity

The DP mechanisms described in Section II-B rely on
the notion of global sensitivity. However, some functions
only display a very loose bound for their global sensitivity.
For instance, the global sensitivity of the Gini impurity is
0.5, irrespective of the actual number of samples left to
be classified. This is considerably high, given that the Gini
impurity takes values in [0, 1]. To address this limit, previous
work [16] proposed a way to compel a tighter bound on the
added noise. Firstly, they have introduced the notion of the
local sensitivity of a function f : N|X | 7→ Rk at a dataset
D, denoted LSf (D), as: max D′∈N|X |:

||D−D′||1=1

||f(D) − f(D′)||1.

However, replacing directly the global sensitivity by local
sensitivity does not yield privacy guarantees.

This motivated the formulation of a refined sensitivity
notion denoted as smooth sensitivity. This notion exploits a
smooth upper bound of LSf (D), denoted by Sf,β(D), as
follows. For β > 0, Sf,β(D) : N|X | 7→ R+ is a β-smooth
upper bound on the local sensitivity of f if it satisfies :

∀D ∈ N|X |,∀D′ ∈ N|X | s.t. ||D − D′||1 = 1,

Sf,β(D) ≥ LSf (D) and Sf,β(D) ≤ eβSf,β(D′) (3)

The smallest function to satisfy Equation (3) is called the
smooth sensitivity and denoted S∗

f,β(D):

For β > 0, S∗
f,β(D) = max

D′∈N|X |
LSf (D′)e−β||D−D′||1

Nissim et al. [16] proposed an iterative computation of the
smooth sensitivity (Lemma III.1) considering datasets than can
vary up to k samples rather than 1. Let Tk denote the local
sensitivity of f at distance k:

Tk(D) = max
{
LSf (D′)

∣∣ ||D′ −D||1 ≤ k
}
.

Lemma III.1. [16] S∗
f,β(D) = max

{
e−βkTk(D)

∣∣ k ∈ N}.
(proof recalled in Appendix A-C)

As stated by [25]–[27], smooth sensitivity is a very powerful
tool to replace global sensitivity for differentially private
machine learning. However, finding a closed form for S∗

f,β(D)
is difficult and sometimes requires to make stronger assump-
tions on the model. Nonetheless, two DP mechanisms were
proposed by [16] based on the smooth sensitivity.

The first one is based on Cauchy noise and uses an addi-
tional parameter γ:

M
S∗
·,β

CAUCHY (D, f, ε) : D 7→ f(D) +
2(γ + 1)S∗

f,β(D)
ε

· η

with β ≤ ε
2(γ+1) , γ > 1 and η ∼ h(z) ∝ 1

1+|z|γ the Cauchy
noise. This mechanism satisfies (ε,0)-DP.

The second one uses Laplace noise and satisfies (ε, δ)-DP:

M
S∗
·,β

LAPLACE(D, f, ε, δ) : D 7→ f(D) +
2 · S∗

f,β(D)
ε

· η

with β ≤ ε
2 log(2/δ) and η ∼ Lap(1), the Laplace noise.

Note that in contrast to global sensitivity, adding Laplace
noise within the framework of smooth sensitivity does not
yield pure DP anymore but approximate one. Furthermore,
to obtain pure DP guarantees along with smooth sensitiv-
ity, heavy-tailed noise distributions must be considered, such
as the Cauchy distribution. In the following, we fix β =

εnode

2 log(2/δnode)
for the β-smooth upper bound.

IV. A DIFFERENTIALLY PRIVATE GREEDY LEARNING
ALGORITHM FOR RULE LISTS

We now introduce our framework for learning differentially
private rule lists leveraging smooth sensitivity. Unlike [25]
who integrate smooth sensitivity to determine the majority
class for a leaf in a tree, we integrate it to determine the rule
with the best Gini impurity.

A. Establishing the Smooth Sensitivity of the Gini Impurity

The local sensitivity for the Gini impurity has been charac-
terized in [28]. Considering the support ñ(j) of the jth rule,
it is defined by:

LSG(ñ(j)) = 1−
( ñ(j)

ñ(j) + 1

)2

−
( 1

ñ(j) + 1

)2

Given a minimal support Λ imposed for each selection of
rule (i.e., a minimum number of samples that a rule must
capture in order to be considered for inclusion within the
built rule list), we have derived in Theorem IV.1 a method
to compute the smooth sensitivity of the Gini impurity.

Theorem IV.1 (Smooth Sensitivity of the Gini impurity). Let
Λ ∈ N∗ be the given minimum support. By inverting the
parameter k and the variable D in the function Tk(D), we
define the following function :

ξD,β(k) :

∣∣∣∣ N −→ R+

k 7−→ e−kβ · g
[
max(Λ, ∥D∥1 − k)

]
in which

g :

∣∣∣∣∣ R+ −→ [0, 1]

x 7−→ 1−
( x

x+ 1

)2

−
( 1

x+ 1

)2

The smooth sensitivity of a rule with a dataset D of points
that remain to classify is :

S∗
G,β(D) = max

[
ξD,β(0), ξD,β(⌊t⌋), ξD,β(⌈t⌉), ξD,β(∥D∥1−Λ)

]



with t = ∥D∥1−
1− β −

√
(1− β)2 − 4β

2β
if well defined and

otherwise 0.

Proof. The detailed proof is provided in Appendices B-A
and B-B in which we first prove it for Λ = 1 and generalize
the proof for Λ ∈ N∗. Crucially, recall that the smooth
sensitivity is the same for any rule at a given position since we
have proven that the smooth sensitivity of the Gini impurity
only takes into account the number of elements left to be
classified (and not how the rule captures them or not). The
proof is a proof by exhaustion, in which the smooth sensitivity
is computed as S∗

G,β(x) = maxk∈N e−kβTk(x). We first
determine the function Tk(x) in which x is a dataset. We
observe that it does not depend on the actual value of the
dataset but solely the number of samples it contains. We obtain
Tk(x) = g (max(1, ||x||1 − k)). Given that we managed to
obtain a closed form for Tk(x) in which k directly intervenes,
we now consider x to be a parameter and put k as a variable
of our function hence the introduction of function ξx,β(t) =
e−kβTk(x). Rather, we study this function on R+ since it is
differentiable. Through the cancellation of the derivative, we
are able to find the minima and the maxima of the function.
However, since these are R-valued maxima, we finally truncate
them to the closest higher and inferior integers to obtain the
smooth sensitivity. Note that since we associate the sign of
the derivative to a polynomial, it gives us extra control over
the monotony of the function ξ since we know a polynomial
takes the sign of the highest degree coefficient outside of the
roots (granted that they exist) and the opposite inside the roots.
For certain values of β such maxima may not exist because
they are computed as the roots of a polynomial whose values
depend on β. For this reason, we state that the formula should
encompass t only if it is well defined (i.e., the value inside
the square root is not negative) and otherwise replace it by 0.
Proving that the smooth sensitivity only depends on ||x|| is a
core result of our approach. Thanks to this, at each iteration
we only need to query the number of elements left to classify
and apply the same smooth sensitivity to all rules (the Gini
impurity depends on the split made by the rule but its smooth
sensitivity is independent of it).

Figure 1 gives an overview on the amount of noise one has
to add to the computed Gini impurity to get a target DP guaran-
tee, using either global or smooth sensitivity. More precisely in
this figure, we display the noise distortion generated for a fixed
ε = 1 by each DP mechanism as a function of the number of
samples captured by the rule. Importantly, we observe how the
use of smooth sensitivity allows to scale down the generated
noise when considering more samples. This is not the case
for global sensitivity, which is dataset-independent. Overall,
the noise added using smooth sensitivity is far inferior to the
noise generated by a global sensitivity mechanism for a similar
level of a privacy - which is a promising preliminary result for
the implementation of a private model relying on the smooth
sensitivity of the Gini Impurity.

Fig. 1: Comparison of the amplitude (log scale) of the noise
added by the Laplace mechanism scaled to either the Smooth
or Global Sensitivities.

Many learning algorithms use a regularization parameter
scaling with the size or complexity of the model to enhance
interpretability and reduce overfitting [29]. In our case, apart
from being a key factor for the smooth sensitivity computation,
the minimum support also leads to a better comprehensibility
of the resulting rule list by encouraging its sparsity, as there
can only be as many as 1

λ rules where λ is the relative
minimum support defined as λ = Λ

∥x∥1
. It also plays the role of

a regularization parameter as it helps the model to not overfit.
Note that other types of rule lists learning algorithms, such
as the CORELS exact method, also consider a regularization
term based on the number of rules within the built rule list.

B. Greedy Learning of Differentially Private Rule Lists Lever-
aging Smooth Sensitivity

The proposed differentially private algorithm for learning
rule lists, called sm-Laplace, is detailed in Algorithm 1.
This algorithm is based on the smooth sensitivity established
in the previous subsection and uses Laplace noise. It takes as
input a set of rules R that is assumed to be publicly known
and is not obtained as a computation from the data. Note
that this assumption is consistent with the literature. For a
set of parameters (Gini impurity computation, rule list size
and minimum support, and privacy guarantees) this greedy
algorithm iteratively adds a new rule to the rule list RL. At
each step, it checks whether the support in the current re-
maining dataset Xrem verifies the minimum support condition
(Line 4), including the confidence threshold computed once for
all (Line 2). For each rule r ∈ R, its noisy Gini impurity is
computed using our proposed Laplace mechanism based on
smooth sensitivity at Line 11 and the rule R⋆ with lowest
noisy Gini is returned. R⋆ is then added to RL with its DP
prediction q⋆ (Line 14) and removed from R. The main loop
is stopped when (1) the rule list reaches the maximum length,
(2) the support condition is not verified anymore or (3) adding
a rule does not improve the Gini impurity value.



Algorithm 1 Approximate (ε, δ)−DP-Greedy Rule List with
Smooth Sensitivity

Input: Dataset D ∈ N|X |, Rule set R
Parameters: Min support of the dataset λ, Max length of a
rule list K, DP budget (ε, δ), Confidence C
Output: Rule List RL (and noisy counts c0, c1)

1: Xrem ← D, Rrem ← R, RL← [], {Initialisation}
Λ← ⌊∥x∥1 × λ⌋, Stop← False

2: T ← confidence_threshold(C)
3: while RL · size() < K and ¬Stop do
4: ifM∆1

LAPLACE(Xrem, count(Xrem, ·), εnode) < Λ+T
then

5: Stop← True
6: else
7: Gbound ←M

S∗
·,β

LAPLACE(∅,GXrem(·), εnode, δnode)
8: G⋆ ← Gbound {no rule added gini}
9: R⋆ ← ∅, q⋆ ← pred_DP(∅, Xrem)

10: for r ∈ Rrem do
11: G ←MS∗

·,β
LAPLACE(r,GXrem

(·), εnode, δnode)
12: if G < G⋆ then
13: G⋆ ← G, R⋆ ← r
14: q⋆ ← pred_DP(r,Xrem)
15: end if
16: end for
17: if R⋆ = ∅ then
18: Stop← True
19: else
20: RL · append(R⋆, q⋆)
21: updateDB(Xrem ← Xrem \ C(R⋆))
22: end if
23: end if
24: end while

DP computation of the rules’ predictions (Line 14). In
Algorithm 1, it is necessary to determine the prediction for
each rule in a differentially private manner. Indeed, in the
non-DP setup, the prediction is computed as the majority
class among the samples caught by the rule. However, such a
deterministic selection of the best prediction is not compatible
with DP. For instance, consider two neighbouring datasets D
and D′. Let r be a rule picked from the rule list built on D. If
D′ is D deprived from one element that would flip the outcome
of r, the probability of observing this outcome in the built rule
list is also flipped from 1 to 0 breaking any DP guarantee.
Thus, the rules’ predictions have to be determined using DP-
protected counts. In our implementation (Algorithm 2), we
use the Laplace mechanism based on the global sensitivity
to compute the counts for each rule that are later used to
determine the rule’s prediction. Thus, Algorithm 2 provides
pure DP guarantees. Note that since counting queries have
sensitivity 1 while their output takes values in [0, n], this is
a reasonably low value and the mechanisms based on global
sensitivity usually yield good utility in this setting.

Confidence threshold for minimum support (Line 2).

Algorithm 2 Function pred_DP :
Input: Rule r, Remaining samples Xrem

Parameters: DP budget (ε, δ)
Output: Prediction q, Counts (c0 and c1)

c0 ←M∆1

LAPLACE(r,count_0(Xrem, ·), εnode)
c1 ←M∆1

LAPLACE(r,count_1(Xrem, ·), εnode)
q ← 0 if c0 > c1 else 1

One remaining issue with the proposed smooth sensitivity
framework is that the minimum support requirement may
jeopardize the DP guarantees. For instance, consider D a
dataset and a fixed minimum support Λ, and let r a rule.
Suppose that after applying rule r, the number of points
remaining for classification nl(r) is exactly equal to Λ. Let
also D′ be a dataset neighbouring D that misses one of the
samples not caught by r in D. Then, the support of D′ after
applying rule r is strictly smaller than Λ so any rule will
necessarily be discarded because it is a stopping condition.
Again, this breaks any DP guarantees, as the resulting model
may change significantly due to the absence of a single sample
in the dataset. To solve this issue in the proposed algorithm, we
consider a threshold for minimum support that in most cases
preserves the DP guarantees. Knowing that counting queries
have a global sensitivity of 1, after each split of the dataset,
we add Laplace noise ∼ Lap

(
∆1f=1

ε

)
to the noisy support.

If the noisy support is under a given predefined threshold
then we stop here and use the default classification, while
otherwise we keep adding rules. To determine the threshold,
assume that Λ and ε are fixed and we want a confidence
C = 0.98. When the added noise is negative (i.e., the noisy
support is lower than the exact support), the algorithm does
not add any rule even if the smooth sensitivity computation
remains exact. However, when the noisy support is above the
exact support, we need to assess how large the added noise
can be. This can be done by studying the distribution of the
Laplace noise to determine at what value t it will be above
the confidence C. More precisely, we search for t > 0 such
that :

∫ t

−∞ Lap(x|b) dx ≥ C ⇐⇒ t ≥ − log(2)+log(1−C)
ε . The

confidence threshold is T = 1 + ⌊t⌋ (Algorithm 3).

Algorithm 3 Function confidence_threshold :
Input: Confidence C
Parameters: DP budget (ε, δ)
Output: Threshold T

T =
⌊
− log(2) + log(1− C)

εnode

⌋
+ 1

For instance, with ε = 0.1, and C = 0.98, we obtain
t = ⌊6.733⌋ + 1 = 7. This means that we can claim with a
confidence of 0.98 that if the algorithm decides to add rules,
then it respects the minimal support constraint. In practice, the
confidence C will only apply to the later rules of the rule list
when the number of samples left becomes scarce.



Privacy budget. Let (ε, δ) be the total privacy budget
allocated to the algorithm. Using the sequential and parallel
composition for DP mechanisms, we must determine the
fraction of the privacy budget to allocate per node (i.e., how
much privacy budget should be allocated for the choice of
each rule). We will denote these quantities by εnode and
δnode. Let K the maximum length of a rule list. While it
is common for tree-based models to display the counts for
each leaf (i.e., in our case for each rule), this information
should also be made differentially private. First in Line 4,
the minimum support condition is verified by applying the
Laplace mechanism with global sensitivity (satisfying (ε, 0)-
DP). Then, the computation of the Gini impurity (Line 11)
is made inside the dataset for each candidate rule and only
the rule corresponding to the maximum of these noisy Gini
impurity values is returned to the algorithm, which is the
Noisy Max Report mechanism that only accounts for one DP
query (as introduced in Section II-B). Computing the two noisy
counts of the chosen rule (Algorithm 2) also counts only for
one query since the sets of samples caught and not caught
are disjoint, which leads to the application of the parallel
composition. Finally, with sequential composition, it gives us
3 operations per node, with 2 achieving pure DP. For the
default rule, only noisy counts are used and no Gini impurity
is computed. Therefore, εnode = ε

3K−1 and δnode =
δ

K−1 .
A variant satisfying pure DP. While our proposed

sm-Laplace algorithm satisfies approximate (ε, δ)-DP, it
is worth observing that the only operation not satisfying
pure DP is the noisy max report using the Laplace mecha-
nism along with the smooth sensitivity of the Gini impurity
(line 11). This operation satisfies pure DP if the Laplace
mechanism is replaced by the Cauchy mechanism within this
smooth sensitivity framework, i.e., by replacing line 11 with
G ← MS∗

·,β
CAUCHY (r,GXrem(·), εnode). In such a case, the

privacy budget analysis remains unchanged, apart from the
δ parameter which is now 0, allowing the whole algorithm to
yield pure (ε, 0)-DP guarantees. We coin the resulting variant
sm-Cauchy. In a nutshell, it is also based on our smooth
sensitivity framework, but adds noise from the Cauchy distri-
bution to the computed Gini impurity values to provide pure
DP guarantees while still leveraging our smooth sensitivity
framework.

V. EXPERIMENTAL EVALUATION

In this section, we assess experimentally the effect of
smooth sensitivity on the resulting models’ accuracy when
compared to other approaches based on global sensitivity, for
comparable privacy guarantees (pure or approximate DP). We
evaluate the performances of the built rule lists in terms of
predictive accuracy, robustness to privacy attacks as well as
preservation of features’ importance.

A. Experimental Settings

For our experiments, we consider three popular datasets:
German Credit, Compas and Adult in their binarized
versions. Sensitive attributes were removed as their use is

prohibited to avoid disparate treatment. The set of rules R
used in these experiments is publicly available. It is made
up of conjunctions of up to two Boolean attributes or their
negation.

In German Credit [30], the classification task is to
predict whether individuals have a good or bad credit score.
Features are binarized using one-hot encoding for categorical
ones and quantiles (2 bins) for numerical ones. The resulting
dataset contains 1, 000 samples and we consider 49 premined
rules. For Compas [2], the objective is to predict whether
an individual will re-offend within two years or not. Fea-
tures are binarized using one-hot encoding for categorical
ones and quantiles (with 5 bins) for numerical ones. The
resulting dataset contains 6, 150 samples and we have 18
rules. The classification task in Adult [30] is to predict
whether an individual earns more than 50, 000$ per year.
Categorical attributes are one-hot encoded and numerical ones
are discretized using quantiles (3 bins). The resulting dataset
contains 48, 842 samples and we use 47 rules (attributes or
their negation).

In our experiments, we build upon the baseline GreedyRL
implementation available in the literature [6]2 and further
modify their code to implement our proposed DP mechanisms
within the sm-Laplace and sm-Cauchy algorithms3. For
each value of ε, we average our results over 100 runs with
different random seeds to account for train/test distribution
(i.e., train/test split of 70/30) and the randomization due
to the application of DP. The value of δ was set 1

∥D∥2
1

and the maximum length for rule lists was set to K = 5
as we empirically observed that lower values could impede
the model accuracy and higher values do not substantially
increase accuracy. Importantly, these trends were confirmed
by extensive preliminary experiments and were consistent over
all methods and datasets, as further discussed in Section V-D.
The other hyperparameters of the proposed algorithm were
fixed with preliminary grid search leading to C = 0.99,
λ = 0.12 for German Credit and λ = 0.05 for Compas
and Adult. All our experiments are run on an Intel CORE
I7-8700 @3.20GHz CPU.

B. Considered Baselines: DP Greedy Rule Lists Algorithms
based on global sensitivity

To assess the effectiveness of our proposed framework
leveraging smooth sensitivity, we will compare it with baseline
algorithms based on global sensitivity. These baselines are
global sensitivity-based variants of our DP greedy rule lists
algorithm, and to ensure a fair comparison, the aim of this
subsection is to determine their best performing version. More
precisely, in these experiments, we compare two different
versions of the greedy rule lists learning algorithm using global
sensitivity.

Noisy Gini. The first version simply replaces the smooth
sensivity of the Gini impurity with its global sensitivity. More

2https://github.com/ferryjul/ProbabilisticDatasetsReconstruction
3The source code will be released publicly upon acceptance.



precisely, in Line 11, Laplace noise scaled to global sensitivity
is added to the Gini Impurity and there is no need to compute
the confidence threshold (Line 2) to comply with DP. Thus,
some privacy budget can be saved during that step.

Noisy counts. The second version leverages the global
sensitivity of counting queries (equal to 1) rather than using
the global sensitivity of the Gini impurity which is very high
(related to the range of possible values for these queries, i.e.,
[0, 1] for Gini impurity values and [0, n] for counting queries).
We first access the counts nc(r) and nl(r) for each rule
(number of elements caught / not caught by rule r) in a differ-
entially private way (through the Laplace mechanism). Using
Equations (1) and (2), along with the obtained noisy counts,
we compute the Gini impurity for each rule, and only keep the
rule minimizing it. According to the post-processing property,
this quantity remains differentially private. Nonetheless, this
access is not a Noisy Max Report mechanism anymore but a
regular access to all counts for each rule. This means that the
privacy budget per node needs to be further split for each rule
of the ruleset R, which leads to a factor of 1/2|R| in the
denominator.

Note that both considered variants (noisy Gini and noisy
counts) satisfy pure DP since they both rely on the Laplace
mechanism along with global sensitivity. Alternatively, one
could imagine deriving the best Gini impurity using a noisy
max report over the counts (i.e., for saving on the privacy
budget) but there is no guarantee that the counts returned will
belong to the same rule. As such, it becomes impossible to
determine the rule with the best Gini using only the noisy
max report mechanisms over the counts.

In the following experiments, we consider the non-private
greedy rule lists algorithm (GreedyRL) as baseline and the
two versions of the pure DP greedy rule lists algorithm based
on global sensitivity and Laplace noise (namely, noisy Gini
and noisy counts). Figure 2 displays the training accuracy of
these three algorithms when the privacy parameter ε varies
from 10−1 to 10+4. Note that while such high values do
not provide meaningful privacy guarantees (and are not used
later in our experiments), they allow verifying the asymptotic
behaviour of the two compared variants of global sensitivity-
based approaches. In particular, they confirm that both ap-
proaches eventually converge towards the non-private variant
when ϵ becomes sufficiently large. The privacy regime of
interest to determine which of the two versions performs the
best lies within ε ∈ [0.1, 20]. Indeed, when ε goes over 20, it
becomes hard to quantify how the theoretical guarantees apply
on realistic settings while a value under 0.1 leads to poorly
performing models.

Figure 2 shows that in the considered privacy regime, a rule
list model built using the noisy Gini version (that is, using
the global sensitivity of the Gini impurity) performs better
than a model learnt based on noisy counts. However, it is
interesting to note that for very large values of the privacy
budget ε, the noisy Gini version is slower to reach the accuracy
of the baseline model obtained with GreedyRL. When ε is
high enough, the noise added is so low that the Gini impurity

Fig. 2: Comparison of Noisy counts and Noisy Gini versions
using global sensitivity (log-scaled), applied on the Compas
dataset.

scores are ranked according to their original value hence a
consistent result with GreedyRL. The model using only the
noisy counts remains nonetheless interesting in a setting in
which the mined ruleset is pre-processed beforehand to a
small cardinality (e.g. less than a hundred). Indeed, the privacy
budget is inversely proportional to the cardinal of the ruleset,
so better performances can be expected on smaller instances
of rulesets.

The same trends are observed in Figure 3 for the German
credit and Adult datasets when comparing the two ver-
sions leveraging global sensitivity to output the best rule.
The method using the global sensitivity of the Gini impu-
rity (noisy gini) remains the best choice for the considered
privacy regimes. Finally, we now focus on this version for
the remaining of the experiments. This method will be coined
as gl-Laplace, while its variant replacing the Laplace
mechanism by the Gaussian mechanism for computing the
noisy Gini impurity based on global sensitivity will be coined
as gl-Gaussian. Hence, recall that gl-Laplace satisfies
pure DP while gl-Gaussian satisfies approximate DP.

C. Prediction Performance

We now compare the test accuracy of rule list models
obtained by Algorithm 1 along with different DP mecha-
nisms. More precisely, we consider two mechanisms based
on smooth sensitivity and either Cauchy (sm-Cauchy) or
Laplace (sm-Laplace) noise as well as two mechanisms
based on global sensitivity and Gaussian (gl-Gaussian)
or Laplace (gl-Laplace) noise. Finally, we also imple-
mented the Exponential mechanism using the Gini impu-
rity as the utility function for sampling the best rule at
each node (gl-Exponential). For these experiments,
we thus consider three pure DP algorithms: gl-Laplace,
gl-Exponential, and sm-Cauchy and two approximate
DP algorithms: gl-Gaussian and sm-Laplace. The base-
line test accuracy is given by the non-private GreedyRL
algorithm.



(a) German credit

(b) Adult

Fig. 3: Comparison of Noisy counts and Noisy Gini versions
using global sensitivity (log-scaled) on the German credit
and Adult datasets.

In our experiments, we consider privacy budgets ε ∈
[0.01, 100] for a total of 200 values with ε uniformly dis-
tributed across the logarithmic scale. The results, averaged
over 100 runs as described in Section V-A, are displayed in
Figure 4 and the test accuracy for ε = 10 is reported in the
right part of Table II. Note that we use a logarithmic scale
for the values of ε on the x-axis of Figure 4 as is often the
case in the literature [13], in order to avoid hiding the tightest
privacy budgets (e.g., ε ≤ 1).

As shown in Figure 4, the two variants based on the smooth
sensitivity framework perform particularly well for relatively
large datasets (Compas and Adult). In addition, for Compas
and Adult, the convergence of the approaches based on
smooth sensitivity to the baseline model is very steep. In
contrast, DP mechanisms based on global sensitivity usually
converge around ε ≈ 103. For ε ≥ 0.1, the mechanisms based
on smooth sensitivity either match or outperform the standard
global DP approaches. Importantly, the sm-Laplace mecha-
nism consistently and largely outperforms all other approaches
on a wide range of privacy budgets of interest. Focusing on
pure DP methods, the sm-Cauchy mechanism consistently

(a) German credit dataset

(b) COMPAS dataset

(c) UCI Adult Income dataset

Fig. 4: Comparison based on the test accuracy of different DP
rule list algorithms.



performs better than the global sensitivity based frameworks.
These experiments confirm the theoretical analysis: for both
approximate and pure DP, and for a wide range of privacy
budgets, the use of smooth sensitivity in place of global
sensitivity allows for better accuracy-privacy trade-offs.

We now compare the two variants based on smooth
sensitivity, namely sm-Cauchy, satisfying pure DP, and
sm-Laplace, providing approximate DP guarantees. The
sm-Cauchy accuracy is much slower to converge than the
latter, as can be observed on the Compas and Adult datasets.
The Cauchy distribution has a polynomial decaying tail, which
is much heavier than the exponential decaying tail of the
Laplace distribution. Thus, out of the many random noise
values generated at each step of the algorithm, a few might end
up far from the average amplitude, which might deteriorate
significantly the accuracy. As a consequence, although the
sm-Cauchy mechanism provides a good alternative to pure
DP mechanisms based on the global sensitivity, we advise
to replace it by its Laplace counterpart even if the provided
privacy guarantees are slightly weaker.

Compared to the differentially private random forest pro-
posed in [25], we incur at ε = 1 a significantly lower accuracy
loss with respect to the non-private model. For this level of
privacy, our smooth sensitivity-based sm-Laplace algorithm
has less than 0.5 absolute accuracy decrease (the accuracy of
the proposed DP algorithm is 78.7% vs 79.1% for the non
private version) against at least 1.0 for theirs (the accuracy
of the DP algorithm is 82% and the non DP version is about
83%).

We now focus on the three best performing methods, namely
our proposed smooth sensitivity based sm-Laplace and
sm-Cauchy mechanisms as well as the global sensitivity
baseline gl-Laplace. We compute and display the standard
error of the empirical mean estimator θ whose formula is as
follows:

err(θ) =

√
Var(θ)

Γ

where Γ is the number of observations for a given set of
hyperparameters.

Table I presents the standard error of the empirical mean
estimator with respect to the random seeds at given values
of ε. We observe a high standard error on accuracy at low ε
for the smooth sensitivity based models (under 1e-2, standard
error can be considered low because it means the accuracy
hovers by less than ±0.01). Global sensitivity models yield
a similar standard error at very low ε. As ε values goes up,
the standard errors decreases which means that the models’
behaviour becomes more deterministic. We also observe that
the error decreases when the size of the dataset is higher,
although by a small margin between Compas and Adult
but the standard error is five times higher at ε = 0.01 on
the german-credit dataset. Overall, the smooth sensitivity
model using Laplace noise consistently has an equivalent or
lower standard error than the global sensitivity model for
ε ≥ 1. The discrepancy observed for the error of the Cauchy
noise model is most likely based on the previous observation

TABLE I: Standard error of the empirical mean estimator
across datasets for global and smooth sensitivity based DP
mechanisms with respect to test set accuracy.

(a) Standard error for the sm-Laplace algorithm.

ε German Compas Adult

0.01 2.0e-02 5.0e-03 4.2e-03
0.1 1.2e-02 5.0e-03 1.0e-03
1 3.6e-03 2.9e-03 4.7e-04
10 3.3e-03 1.2e-03 4.3e-04

100 3.4e-03 1.1e-03 4.1e-04

(b) Standard error for the sm-Cauchy algorithm.

ε German Compas Adult

0.01 2.0e-02 5.0e-03 4.2e-03
0.1 1.2e-02 5.0e-03 8.4e-04
1 3.6e-03 4.1e-03 8.5e-04
10 3.1e-03 4.0e-03 9.9e-04

100 3.1e-03 3.6e-03 8.0e-04

(c) Standard error for the gl-Laplace algorithm.

ε German Compas Adult

0.01 1.3e-02 6.2e-03 1.7e-03
0.1 8.8e-03 4.5e-03 8.0e-04
1 3.3e-03 4.2e-03 8.0e-04
10 3.1e-03 4.2e-03 8.0e-04

100 3.0e-03 4.0e-03 8.9e-04

about Cauchy distribution’s wide tail.
We can provide an explanation for this deviation compared to
global sensitivity models, and it will partly answer why the
smooth sensitivity models have poorer performances at low
ε. Indeed, the confidence threshold becomes exceedingly high
for these privacy values and the minimum support condition
is therefore more likely to fail, which causes the model to
output only one rule. Naturally, in that case of underfitting,
the smooth sensitivity models cannot perform as well as the
classic DP models. This issue could eventually be tackled by
assigning more privacy budget to the minimum support con-
dition and less to the noisy Gini impurity computation. This
asymptotic behavior however disappears quickly, especially
for larger datasets because the confidence threshold variable
is independent of the actual value of the minimum support
and its value gets relatively smaller as the size of the dataset
increases.

D. Hyperparameters and Fine-Tuning

We now provide some insights regarding the influence of
the hyperparameters of Algorithm 1 on the accuracy of the
resulting rule list models. Consequently, we explain how these
hyperparameters’ values were chosen.

Naturally, with rules of higher cardinality (i.e., a higher
number of conditions on the attributes), we can expect higher
accuracy since the splits would be more refined. Observe that
it would not affect the privacy budget of the model since the
Noisy Max Report is independent of the number of elements
from which the argmax is searched. However, it yields an
exponential increase in time complexity.



Optimizing the maximum number K of rules in the rule
list proves to be interesting. Indeed, the maximum number of
rules K heavily influences the privacy budget per node, but it is
also dependent on the minimum support condition λ. Namely,
there can be no more than min(K, ⌊ 1λ⌋) rules in the output
rule list. Decreasing λ enables the inclusion of more rules,
but there is a trade-off with the precision of the Laplace noise
using smooth sensitivity (the higher λ the less noise added).
Overall, our smooth sensitivity method consistently beats the
global sensitivity methods for any value of K. A value of
K = 5 was on average the best performing for all models.
For K = 7 this value was most of the time not reached as
the minimum support condition was not achieved anymore.
Models using global sensitivity were also terminated before
reaching this depth since the algorithm stops when the Gini is
not improved anymore.

E. Robustness to Privacy Attacks

The protection provided by DP aims at hiding the contribu-
tion of any individual example to the output of a computation.
Then, it is natural to evaluate it in practice using Membership
Inference Attacks (MIAs) [4], whose objective is to determine
whether an individual was part of a given model’s training set
or not. Indeed, performing such attacks on both the original
greedy rule lists and their DP counterparts, and comparing
the MIA success rate, empirically quantifies the effectiveness
of the DP protection. However, this approach has two main
drawbacks. First, one has to select which MIA(s) to run, and
different attacks can come with different success rates. Second,
we implemented and used several popular attacks from the
literature, and they struggled attacking even the original (non-
DP) model, as reported in the Appendix C. An intuitive
explanation lies in the simplicity of our considered models:
while the output of a deep neural network is a numerical
value which can virtually take any value, a rule list classifies
an example using one of K rules in which K is reasonably
small. While this constitutes an important argument in favor
of the use of rule list models, it also makes the empirical
assessment of DP more difficult. Thus, for our empirical
analysis of the rule lists’ robustness to privacy attacks, we
rather leverage the (model-agnostic) notion of distributional
overfitting of a model, introduced by [31]. In a nutshell,
distributional overfitting aims at quantifying how the model
output distribution varies between samples inside and outside
the training set. It is thus highly correlated to the vulnerability
of a model to MIAs, and can be seen as an upper-bound over
their success. Since rule lists are interpretable models, it is
entirely possible to know what rule caught a given sample
solely by iterating through the successive rules until one
evaluates to true for the designated sample. For this reason,
we have slightly modified the formula for distributional overfit
computation to account for the knowledge that the adversary
could get from the structure of the model. More precisely,
we define the distributional-overfitting distance with respect
to label y as:

TABLE II: Test accuracy and overall vulnerability of the
greedy rule lists algorithm and its DP counterpart over 100
runs. Notation 0.507+ indicates that the non truncated value
was greater than the displayed one, and 0.507− indicates it
was smaller.

Dataset Method Vulnerability Accuracy

Compas GreedyRL 0.507+ ± 4 × 10−6 0.660 ± 8 × 10−5

Compas sm-Laplace 0.507− ± 4 × 10−6 0.658 ±1 × 10−4

German GreedyRL 0.524 ± 3 × 10−5 0.711 ±5 × 10−4

German sm-Laplace 0.516 ± 5 × 10−5 0.683 ±1 × 10−3

Adult GreedyRL 0.502+ ± 7 × 10−7 0.798 ±1 × 10−5

Adult sm-Laplace 0.502− ± 6 × 10−7 0.795 ±1 × 10−5

τ(y) =
1

2

∑
r∈RL

∣∣∣P[r|y,M = 1]− P[r|y,M = 0]
∣∣∣

in which P[r|y,M ] is the probability that a sample with label
y (from the training set (M = 1) or outside (M = 0)) is
captured by rule r ∈ RL.

The overall vulnerability of a model introduced in [31]
is then computed as the average of distributional-overfitting
distances:

V =
1

2
+

1

2

∑
y∈{0,1}

P[y]× τ(y)

Intuitively, when measured on finite training and test sets, it
measures how much the proportions of samples from each
possible label differ among the different rules. If the model’s
outputs have the exact same distributions inside and outside
the training set, the vulnerability is 0.5 indicating that the
expected success of a MIA is that of a random guess. We
report in Table II the overall vulnerabilities measured on rule
lists built with or without the use of DP. Consistent with our
preliminary observations that the greedily-built rule lists are
resilient to MIAs, the vulnerabilities of both the DP and non-
DP models are very low. Nevertheless, we observe that non-DP
models consistently exhibit slightly higher vulnerability values
than their DP counterparts. This is particularly the case for the
smallest dataset, namely German Credit, which highlights
the relevance of a DP protection for such low-data regime.

F. Preservation of Feature Importance

In order to assess the effect of DP on feature importance,
we use the methodology proposed by Dai et al. [32]:

1) Consider a reference model RLref trained with the
GreedyRL baseline and a DP model RLDP obtained
using one of our proposed algorithms. For each of them,
compute their top-k-features using Feature Permutation
Importance [33], which calculates how much a feature
is correlated to the output of the model. We denote the
resulting sets top(k,RLref ) and top(k,RLDP )

2) Compute their intersection ratio:

Ik =

∣∣top(k,RLref ) ∩ top(k,RLDP )
∣∣

k



Higher values for Ik indicate a smaller distortion of the feature
importance values, hence a better preservation of this property
despite the application of DP. We focus on the Adult dataset,
considering the top-k features for k = 7 and maximum length
of K = 5 for the learnt rule lists. We evaluate how the features
selected by GreedyRL are conserved when the rule lists
are built by sm-Laplace and gl-Laplace. Intuitively,
our objective is to assess if the noise added to comply with
DP significantly distorts the most influential features, and
whether this trend is different for smooth sensitivity and global
sensitivity based frameworks.

We report our results in Table III for two different privacy
budgets, namely ε = 1 and ε = 10. For both considered values
of ε, the gl-Laplace model has poor feature intersection
ratio, not exceeding 0.3. In comparison, the smooth sensitivity
based sm-Laplace has a feature intersection ratio of at least
0.5 and we observe that as ε goes up (i.e. when the privacy
guarantees are lower), the feature intersection ratio also in-
creases to reach nearly 0.7 for ε = 10. The results consistently
show that the smooth sensitivity based sm-Laplace yields
higher feature intersection than the global sensitivity based
gl-Laplace in both cases and we infer that this model
better conserves feature importance values, less distorting
explainability.

TABLE III: Feature Importance Analysis (GreedyRL being
the baseline method) over 100 runs.

ε Method Feature Intersection Ratio

1 sm-Laplace 0.542± 0.03
1 gl-Laplace 0.316± 0.04
10 sm-Laplace 0.684± 0.03
10 gl-Laplace 0.308± 0.04

Since the noise added by the smooth sensitivity model
is much lower than using global sensitivity, the results are
expected as the same rules tend to be selected for GreedyRL
and the smooth sm-Laplace. Overall, the feature intersec-
tion ratio follows a tendency of increasing when ε goes up.

VI. DISCUSSION

In this paper, we have proposed a new mechanism for
learning interpretable models with DP guarantees, leveraging
the smooth sensitivity of the Gini impurity. This work directly
addresses a key challenge pointed out in the literature [14]. Our
experiments illustrated that this new method, with equivalent
privacy guarantees, offers a considerable reduction of the
accuracy loss compared to the differentially-private methods
using global sensitivity.

Several promising research directions emerge from this
study. First, adaptive composition [9] could be leveraged to
tighten the computation of the privacy budget of our proposed
algorithms. Second, it would be insightful to integrate our
closed formula for the smooth sensitivity of the Gini impurity
within different mechanisms. For instance, the inverse sensi-
tivity mechanism [34] consists in an Exponential Mechanism

scaled with the inverse sensitivity (or path length): rather than
measuring the variations of a function between two adjacent
databases, the authors compute the minimum distance from a
database to reach another one achieving a chosen target value.
While the exact path length introduced in their paper is often
intractable, they derived a method using smooth sensitivity
to approximate the path length. This method provides a
better alternative to classic noisy mechanisms using smooth
sensitivity for pure-DP mechanisms since they do not have
to use heavy-tailed distributions such as Cauchy. Third, the
smooth sensitivity of the Gini impurity could be used to
train DP decision trees, random forests, or other types of
interpretable models. As was the case for rule lists, one can
expect an improvement of the resulting accuracy-privacy trade-
offs. Furthermore, the supports of the leaves of a decision tree
are disjoint, which is not necessarily the case for the rules
within a rule list. Then, parallel composition can be better
leveraged, resulting in tighter privacy guarantees than for rule
list models. This could lead to even greater improvements of
the accuracy-privacy trade-offs. Finally, integrating DP within
certifiably optimal learning algorithms such as CORELS is
another promising research avenue. Indeed, this tree-based
algorithm could naturally be leveraged to implement the
exponential mechanism. However, several technical aspects
should be carefully considered. In particular, CORELS relies
on optimality-based bounds to efficiently prune out solutions,
but these bounds impede DP. For instance, for all permutations
of a given set of rules, CORELS only considers the permutation
yielding to the best accuracy for further exploration of the
space, which breaks the DP guarantees as the probability
of outputting a sub-optimal rule list becomes exactly 0. A
possible approach to address this is to deactivate all bounds
but then CORELS essentially breaks down to a complete
exploration of the search space, which highly impacts its
performance.
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APPENDIX A
KEY RESULTS FOR DIFFERENTIAL PRIVACY FROM THE LITERATURE

A. Distance between Databases

We consider tabular datasets, with features being 0−1 encoded and binary labels. In particular, we assume that a sample from
the dataset is made of m features and one label. The universe X of all possible samples is therefore finite, with cardinality
2m+1. An element a of X can be expanded to its tuple form as (a1, . . . , am, am+1) in which am+1 is the label. We define
the order relation ⪯ on X such that for (a, b) ∈X ,

a ⪯ b ⇐⇒


∃i ∈ J1,m+ 1K,∀k ∈ J1, i− 1K, ak ≤ bk and ai < bi

or

∀i ∈ J1,m+ 1K, ai = bi

⪯ yields the symmetric, reflexive and transitive properties and all elements can be compared within X so this is a total order
relation. As such, (X ,⪯) is a totally ordered set. We can now introduce the expanded notation for datasets. A dataset x is a
collection of elements of X that we write as a tuple x = (x0, . . . , x|X |) ∈ N|X | such that xi denotes the number of elements
of X of type i stored in the database x. The number of elements in a dataset x is given by the formula: ∥x∥1 :=

∑|X |
i=0 xi.

With this notation, it is easy to interpret the notion of distances between dataset as the L1-norm of their difference. We say
that two datasets x, y are adjacent if they vary only by one element (i.e. ||x− y||1 = 1).

B. Composition and Post-Processing Properties

The Post-processing theorem guarantees that one cannot make a differentially private algorithm less private due to post-
processing (unless this post-processing itself accesses the data).

Theorem A.1 (Post-processing theorem). Let M : N|X | → Y be an (ε, δ)- differentially private algorithm. For any function
f : Y → Z , the composition f ◦M : N|X | → Z is (ε, δ)-DP.

The differentially private mechanisms considered in this paper all apply on a Rk valued function. The composition of
differentially private mechanisms enables us to scale up from functions to algorithms. More precisely, composition tends to
deteriorate the privacy guarantees but to a measurable extent. Sequential composition occurs when when several differentially
private mechanisms, denoted m1, . . . ,mp with respective DP-coefficients (ε1, . . . , εp) are applied onto the same dataset x.
Then the generated output : (m1(x), . . . ,mp(x)) satisfies (

∑p
i=1 ε1)-DP. For parallel composition, the differentially private

mechanisms denoted m1, . . . ,mp are applied into disjoints subsets of a given dataset x = ⨿p
i=1xi then the generated output :

(m1(x), . . . ,mp(x)) satisfies (maxpi=1 εi)-DP.

C. Proof of the iterative Computation Lemma of Smooth Sensitivity (Lemma III.1, from [16])

Let D and D′ denote two datasets. Note that since : {D′ ∈ N|X | : ∥D′ −D∥1 ≤ k} ⊂ {D′ ∈ N|X | : ∥D′ −D∥1 ≤ k+1}
we have that ∀k ∈ N, Tk+1(D) ≥ Tk(D).

S∗
f,β(D) = max

D′∈N|X |
LSf (D′)e−β||D−D′||1

= max
k∈{0,...,n}

max
D′∈N|X |

||D−D′||1=k

LSf (D′)e−β||D−D′||1

= max
k∈{0,...,n}

e−βk max
D′∈N|X |

||D−D′||1=k

LSf (D′)

= max
k∈{0,...,n}

e−βkTk(D)

The transition from the penultimate to the final line is tricky. Tk(D) is a max over the closed ball of elements at distance at
most k of D, not the sphere of elements at distance k exactly from D. Note that since we consider datasets, the distance can
only be an integer.



Tk+1(D) = max( max
D′∈N|X |

||D′−D||1<k+1

LSf (D′), max
D′∈N|X |

||D′−D||1=k+1

LSf (D′))

= max( max
D′∈N|X |

||D′−D||1≤k

LSf (D′), max
D′∈N|X |

||D′−D||1=k+1

LSf (D′))

= max(Tk(D), max
D′∈N|X |

||D′−D||1=k+1

LSf (D′))

Since β > 0, e−βk > e−β(k+1) therefore e−βkTk(D) > Tk(D)e−β(k+1). However, the quantity e−βkTk(D) appears in the
computation of S∗

f,β(D) and since it is strictly greater than the left term of Tk+1(D) we can ignore this term and it is equivalent
to compute LSf (D′) either on the ball or on the sphere of radius k in that case.

APPENDIX B
PROOF OF THE SMOOTH SENSITIVITY OF THE GINI IMPURITY (THEOREM IV.1)

A. Case 1: For a minimum support of 1

Assume first that the minimum support Λ is 1. We will then generalize the result. To match with the notations used so far,
we will consider a dataset x ∈ N|X | and suppose we take interest at the first node splitting this dataset (it is only a matter of
notation), we can therefore rewrite the local sensitivity of the Gini impurity at x as:

LSG(x) = 1−
( ∥x∥1
∥x∥1 + 1

)2

−
( 1

∥x∥1 + 1

)2

Consider the function

g :

∣∣∣∣∣ R+ −→ [0, 1]

x 7−→ 1−
( x

x+ 1

)2

−
( 1

x+ 1

)2

Note that : LSG ≡ g ◦ ∥·∥1. g is differentiable on R+ and ∀x ∈ R+, g′(x) =
2(1− x)

(x+ 1)3

x

g′(x)

g

0 1 +∞

+ 0 −

00

1
2
1
2

00

As a reminder, we are trying to determine the smooth sensitivity of the Gini impurity:

S∗
G,β(x) = max

k∈N
e−kβTk(x)

where
Tk(x) = max

y∈N|X |

||y−x||1≤k

LSG(y) = max
y∈N|X |

||y−x||1≤k

g ◦ ∥y∥1 = max
y∈N

y∈[∥x∥1−k,∥x∥1+k]

g(y)

We consider that ∥x∥1 ≥ 1 as we do not build nodes when there are no samples to classify. [∥x∥1− k, ∥x∥1+ k] is an interval
with integer bounds. With the previous study of g monotonicity, this maximum is reached in y = max(1, ∥x∥1 − k).

Explanation:
• if k ≥ ∥x∥1 ≥ 1 then 1 ∈ [∥x∥1 − k, ∥x∥1 + k] so the maximum is the global maximum of g : 1 = max(1, ∥x∥1 − k).
• if k < ∥x∥1 then [∥x∥1 − k, ∥x∥1 + k] ⊂ [1,+∞] and g is monotonously decreasing on [1,+∞[ so the maximum is the

leftmost bound of the interval : ∥x∥1 − k = max(1, ∥x∥1 − k).

Tk(x) = g
[
max(1, ∥x∥1 − k)

]



Now that we obtained a close formula for Tk(x), we can determine :

S∗
G,β(x) = max

k∈N
e−kβTk(x) = max

k∈N
e−kβ · g

[
max(1, ∥x∥1 − k)

]
Let

ξx,β(t) :

∣∣∣∣ R+ −→ R+

t 7−→ e−tβ · g
[
max(1, ∥x∥1 − t)

]
ξx,β(t) =

{
e−tβ · g(1) if t ≥ ∥x∥1 − 1

e−tβ · g(∥x∥1 − t) if t ≤ ∥x∥1 − 1

ξx,β is continuous on R+ and differentiable on [0, ∥x∥1 − 1[ and ] ∥x∥1 − 1,+∞[. The monotonicity of ξx,β is trivial for
high values of t:

∀t ∈] ∥x∥1 − 1,+∞[, ξ′x,β(t) = −β × e−tβg(1) < 0

∀t ∈ [0, ∥x∥1 − 1[,

y := ∥x∥1 − t
ξ′x,β(t) = −β × e−tβg(∥x∥1 − t) + e−tβ × (−1)× g′(∥x∥1 − t)

= −e−tβ
[
βg(y) + g′(y)

]
= −e−tβ

[
β
(
1− y2

(y + 1)2
− 1

(y + 1)2

)
+

2(1− y)

(y + 1)3

]
= −e−tβ × β · (y + 1)3 − β · y2(y + 1)− β · (y + 1) + 2(1− y)

(y + 1)3

=
e−tβ

(1 + y)3
×
[
− β · (y + 1)3 + β · y2(y + 1) + β · (y + 1)− 2(1− y)

]
Since

e−tβ

(1 + y)3
> 0 the sign of ξ′x,β(t) on [0, ∥x∥1 − 1[ is given by the polynomial P (Y ) = −β · (Y + 1)3 + β · Y 2(Y +

1) + β · (Y + 1)− 2(1− Y ) = −2βY 2 + (2− 2β)Y − 2.

Let Q := −βY 2 + (1 − β)Y − 1 = P/2. P and Q share the same roots, we will therefore study Q. Let ∆
the discriminant of polynomial Q. We associate it to the function ∆(β) since its value depends on β. The value of the
discriminant gives whether or not the underlying function is monotonous. ∆(β) = (1−β)2−4β = (β−3−2

√
2)(β−3+2

√
2)

β

∆(β)

0 β1 := 3− 2
√
2 β2 := 3 + 2

√
2 +∞

+ 0 − 0 +

• For β ∈]3 − 2
√
2, 3 + 2

√
2[, ∆(β) < 0 so Q has no roots in R so it is negative on R.

t

ξ′x,β(t)

ξx,β

0 ∥x∥1 − 1 +∞

− − −

g(∥x∥1)g(∥x∥1)

00

exp(−(∥x∥1−1)β)

2

In that scenario, SG,β(x) = ξx,β(0) = g(∥x∥1) = LSG(x)

• For β = 3− 2
√
2 or β = 3 + 2

√
2, ∆(β) = 0 so Q admits a unique root y0 = 1−β

2β (we will ignore these two values of
β as there are enough β that we can choose).



• For β ∈]0, 3− 2
√
2[∪]3 + 2

√
2,+∞[, ∆(β) > 0 so Q admits two distinct roots :

y1 =
1− β +

√
(1− β)2 − 4β

2β
and y2 =

1− β −
√
(1− β)2 − 4β

2β

y

Q(y)

-∞ y2 y1 +∞

− 0 + 0 −

The problem is that the roots t1 := ∥x∥1 − y1 and t2 := ∥x∥1 − y2 might overflow the interval [0, ∥x∥1 − 1[. Since
y 7→ ∥x∥1 − y =: t is a strictly decreasing function (it is a bijection from R to R) we have that y2 < y1 =⇒ t2 > t1.
What we want to study is the mapping from [y2, y1] to [t1, t2] with respect to the domain of validity for the studied form
of ξx,β . A case per case analysis (detailed below) shows that the smooth sensitivity of the Gini for these values of β is
given by the formula:

S∗
G,β(x) = max

[
ξx,β(0), ξx,β(⌊t2⌋), ξx,β(⌈t2⌉)

]
= max

[
g(∥x∥1), e

−⌊t2⌋βg(∥x∥1 − ⌊t2⌋), e
−⌈t2⌉βg(∥x∥1 − ⌈t2⌉)

]

We first compute the values of the roots y1 and y2 according to β (in particular the asymptotic values).

y1 ∼
β→0

1

β
−−−→
β→0

+∞ and y1 ∼
β→+∞

1

1− β
−−−−−→
β→+∞

0−

y2 ∼
β→0

1

(1− β)2
−−−→
β→0

1 and y2 ∼
β→+∞

−1

β

y1(β)

y2(β)

0 3− 2
√
2 3 + 2

√
2 +∞

+∞+∞

3 > · > 2 −1 < · < 0

1−1−

11

3 > · > 2 −1 < · < 0

−1−1
That gives us two cases to treat:

If β ∈]0, β1[. In the case that ∥x∥1 ≥ 5 (which is a reasonable assumption) ∃β∗ ∈]0, β1[,∀β ≥ β∗, 0 < t1(β) < ∥x∥1− 1
and 0 < t2 < ∥x∥1 − 1 (for all β in the considered interval) which gives : 0 < t1 < t2 < ∥x∥1 − 1

– So if β is too small, then the t’s associated to the interval [y2, y1] are ( < 0) partly outside the domain of validity
which yields

t

Q(t)

ξx,β

t1 0 t2 ∥x∥1 − 1 +∞

0 + 0 −

g(∥x∥1)g(∥x∥1)

ξx,β(t2)ξx,β(t2)

00



Hence :

S∗
G,β(x) = max

[
ξx,β(⌊t2⌋), ξx,β(⌈t2⌉)

]
S∗
G,β(x) = max

[
e−⌊t2⌋βg(∥x∥1 − ⌊t2⌋), e

−⌈t2⌉βg(∥x∥1 − ⌈t2⌉)
]

– if β ∈]β∗, β1[, then all the t’s associated to [y2, y1] are in the domain of validity.

t

Q(t)

ξx,β

0 t1 t2 ∥x∥1 − 1 +∞

− 0 + 0 −

g(∥x∥1)g(∥x∥1)

ξx,β(t1)ξx,β(t1)

ξx,β(t2)ξx,β(t2)

00

S∗
G,β(x) = max

[
ξx,β(0), ξx,β(⌊t2⌋), ξx,β(⌈t2⌉)

]
S∗
G,β(x) = max

[
g(∥x∥1), e

−⌊t2⌋βg(∥x∥1 − ⌊t2⌋), e
−⌈t2⌉βg(∥x∥1 − ⌈t2⌉)

]
If β ∈]β2,+∞[. t2 > ∥x∥1 − 1 and t1 > ∥x∥1 − 1 which means that the t’s associated to the [y2, y1] are ( > ∥x∥1 − 1)
all outside the domain of validity.

t

Q(t)

ξx,β

0 ∥x∥1 − 1 t1 t2 +∞

−

g(∥x∥1)g(∥x∥1)

00

S∗
G,β(x) = ξx,β(0) = g(∥x∥1) = LSG(x)

B. Case 2: Generalization. Assume now that Λ ∈ N∗

It is easy to prove that: Tk(x) = g
[
max(Λ, ∥x∥1 − k)

]
. Therefore, we define the function:

ξx,β(t) :

∣∣∣∣ R+ −→ R+

t 7−→ e−tβ · g
[
max(Λ, ∥x∥1 − t)

]

ξx,β(t) =

{
e−tβ · g(Λ) if t ≥ ∥x∥1 − Λ

e−tβ · g(∥x∥1 − t) if t ≤ ∥x∥1 − Λ

ξx,β is continuous on R+ and differentiable on [0, ∥x∥1 − Λ[ and ] ∥x∥1 − Λ,+∞[. ξx,β derivatives remain unchanged but
the bounds are shifted (from 1 to Λ). The roots y1 and y2 are unchanged (they solely depend on β). Instead of re-doing the
case per case analysis, we will propose the following exact method.

1) Compute t1 and t2 if the roots y1 and y2 exist
2) Compute the relative positions of t1 and t2 with respect to 0 and ∥x∥1 − Λ
3) We know that ξx,β is increasing between t1 and t2 granted that they are in the [0, ∥x∥1 − Λ[ interval so there is an

eventual max in this interval, to compare to ξx,β(0) and ξx,β(∥x∥1 − Λ)

This achieves the proof of Theorem IV.1.



APPENDIX C
MEMBERSHIP INFERENCE ATTACKS - DETAILED RESULTS

Figure 5 illustrates how a dataset is split into different subsets to train a Membership Inference Attack (MIA) model. Note
that the \ symbol represents the minus operation on sets (set difference).

We consider two MIAs from the ART toolkit4 [35]. The results we obtained for a black-box MIA5 using Random Forests
are presented in Figure 6. The ROC curves are displayed in log scale to highlight the results at low FPR since it is the relevant
regime for MIAs [5]. They show that, as mentioned in Section V-E, (even non-DP) rule lists are already resilient to MIAs.
On the smallest German credit dataset, we observed a slightly higher distributional overfitting, which results in slightly
higher TPRs at low FPR.

Fig. 5: Pipeline of Membership Inference Attack

We also considered the Label Only Membership Inference Attack6 [36] but results were sub-par due to the datasets used.
Indeed, the rule lists use as input binarized features whereas the attack explores the latent variables space by studying how the
model output varies when the features values are tweaked. The issue here is that the model can only read features that are 0
or 1 and therefore we had to truncate the latent space exploration to the much sparser space of {0, 1}m, making it inefficient.
In addition, since the datasets are binarized, some features are actually a one-hot-encoding of a categorical feature, which
means it does not make sense that several of them can be set to 1. An interesting avenue of research would be to use the
latent space exploration on the non-binarized features and re-apply the binarization process at each step. This is unfortunately
computationally expensive and would likely lead to similar results due to the loss of information incurred by the binarization
step preceding inference by the model.

4https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks\#4-inference-attacks
5https://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/attacks/inference/membership inference.html\#membership-inference-black-box
6https://adversarial-robustness-toolbox.readthedocs.io/en/latest/modules/attacks/inference/membership inference.html\#membership-inference-label-only-decision-boundary



(a) German credit - GreedyRL (b) German credit - sm-Laplace

(c) Compas - GreedyRL (d) Compas - sm-Laplace

Fig. 6: ROC Curves of Membership Inference Attacks on the DP sm-Laplace and on the baseline GreedyRL models.


