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Abstract—Performance Isolation in Multi-Tenant Cloud Data
Centers (MTCDCs) consists of a set of mechanisms to make
sure tenants’ use of resources does not impact other tenants.
In this context, traffic shapers and rate limiters are funda-
mental to addressing the challenges of performance isolation
in MTCDCs, which include predictable performance as mini-
mum bandwidth guarantees, tenants-level fairness, and optimal
resource utilization. However, the classical linear programming
process to find the optimal rates to apply does not scale in
terms of computing time, especially with the huge number of
nodes, dominated mainly by virtual machines in an MTCDC
environment. Motivated by this observation, this paper introduces
gPerflIsol, a novel Graph Neural Network (GNN)-based approach
designed to find near-optimal rates allocation in near-real-time
to ensure performance isolation in MTCDC. gPerfIsol’s key
innovation leverages Heterogeneous GNNs to capture MTCDC-
specific topological information and demand traffic matrix.
Evaluations based on datasets generated through simulation
demonstrate the effectiveness of gPerfIsol’s binary classification
model with a precision score of 0.964 and a recall score of
0.973. Ultimately, gPerfIsol offers a promising solution for near-
optimal rate limit allocation for traffic shapers in multi-tenant
environments, enhancing performance isolation.

Index Terms—Multi-tenancy, Cloud, Performance Isolation,
Rate Limiters, GNN, Network Optimization

I. INTRODUCTION

Performance isolation is an important challenge in cloud
environments serving multiple customers, more specifically,
Multi-Tenant Cloud Data Centers (MTCDCs), where network
resources are shared among different users [1]. This isolation
consists of a set of mechanisms to ensure that resource usage
by one tenant does not negatively impact others, a problem
called the noisy neighbor problem [2]-[4]. For this reason,
efficient performance isolation is critical in MTCDC networks
to ensure the following three goals: predictable performance
through minimum bandwidth guarantees, fair QoS impact dur-
ing overload, and optimal resource utilization while meeting
Service Level Objective (SLO) guarantees [5], [6].

Existing solutions for performance isolation commonly rely
on rate limits consumed by traffic shapers [7]-[10]. The
traditional way of finding these adequate rates at the tenant and
virtual machine (VM) levels requires formulating the problem
as an optimization problem and finding, through Linear Pro-
gramming (LP) solvers, optimal rate allocations to satisfy the
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objective. However, in multi-tenant cloud data centers, unlike
Wide Area Networks (WANs) or single-tenant data centers,
the higher number of nodes, coupled with complex isolation
constraints, can make the optimization challenging. Moreover,
the control time granularity requirements of MTCDCs per-
formance isolation (in seconds or milliseconds if possible)
differ significantly from those of WANs traffic engineering
(generally at 5 min time intervals) [11], [12].

In response to these challenges, this paper introduces gPer-
flsol, a novel resource allocator based on Graph Neural Net-
works (GNNs) [13] and heterogenous graph transformation,
designed to generate near-optimal rate limits allocation upon
a demand traffic matrix of an MTCDC network. These rate
limits provide adequate inputs to traffic shapers in addressing
the performance isolation challenges in multi-tenant cloud
environments. gPerfIsol constitutes an efficient near-real-time
rate limit allocation mechanism by leveraging offline learning
coupled with fast inference to enforce minimum bandwidth
requirements for tenants while ensuring fair bandwidth allo-
cation and high resource utilization, as would output an LP
solver but in a much longer time.

This work presents several distinct contributions compared
to existing research from the literature. First, to the best of
our knowledge, this is the first work applying GNN to solve
rate limit allocations for MTCDC traffic shapers. Previous
works focus on shapers taking for granted the optimal rates
they might consume. Indeed, these rates depend on Service
Level Agreements (SLAs), expressed here as minimum and
maximum bandwidths, and the traffic patterns. They must
also satisfy high utilization and fairness objectives posed for
MTCDC performance isolation. Second, while GNN-based
techniques have been successfully applied to resource alloca-
tion for WANSs traffic engineering (TE), their direct application
to MTCDC:s is challenging due to their specific characteristics,
including heterogeneous nodes, especially VMs, tenant-level
fairness, and guarantees. This work introduces the innovative
use of heterogeneous GNNs to capture the specificities of
MTCDC:s in the input graph of GNN layers, a key differen-
tiator from prior research. Overall, this paper marks the first
application of heterogeneous GNN-based rate limit allocators
to traffic shapers for performance isolation in MTCDCs.

Through preliminary evaluations, we demonstrate that gPer-
fIsol, by effectively capturing topological information, node-



edge features, and demands information, can output timely
near-optimal rate allocations to satisfy the optimization prob-
lem objective while satisfying the constraints. gPerflsol’s
binary classification model has a precision score of 0.964 and
a recall score of 0.973. These results highlight the potential
of gPerflsol as a promising solution for near-real-time and
near-optimal resource allocation for traffic control and rate
limiting, offering enhanced performance isolation in multi-
tenant environments.

The remainder of this paper is structured as follows. Sec-
tion II presents background on MTCDC and the scenario
considered for the study. Section III presents the mathematical
formulation of the problem, the motivation of this work, and
the introduction to GNNs. In Section IV, we present the
design and architecture of gPerfIsol. The evaluation results
are presented in Section V after providing detailed information
on the simulation setup. Section VI discusses related works.
Finally, Section VII summarizes our contributions and outlines
potential future research works.

II. BACKGROUND AND SCENARIO

This section provides background on MTCDC with infor-
mation on how virtualization and overlays are involved. It also
describes the scenario considered throughout the paper.

A. MTCDC and Overlays

Practically speaking, the implementation of a multi-tenant
cloud environment is done using networking overlays [14],
[15], implemented over tunneling protocols such as Virtual Ex-
tensible LAN (VXLAN), Generic Network Virtualization En-
capsulation (GENEVE), among others, on top of IP networks
(underlay) [16] [17]. However, this only handles one aspect of
isolation, namely, the logical isolation of traffic when it comes
to security concerns [18]. It does not guarantee nor prevent
performance interference between tenants [19] [20] [21]. Solv-
ing performance isolation requires creating new network-level
isolation techniques with a tenant-centric perspective. These
new solutions should consider that traditional 5-tuple-flow-
centric methods are not suitable due to unfairness aspects [1],
as well as overlay networking cannot guarantee performance
isolation alone. Candidate solutions to tackle this challenge
include traffic shapers and rate limiting [2], [7]-[10].

While traffic shapers are already central to achieving per-
formance isolation, this work focuses on defining optimal rate
limits implemented by these traffic shapers with the goal of
improving performance isolation between tenants.

B. MTCDC Scenario

Scenario Topology. Figure 1 illustrates the topology consid-
ered for the MTCDC scenario. It is a leaf-spine topology,
a 2-tier classical Clos topology used for medium-sized data
center networks [22], [23]. For hyper-scale data centers, a 3-
tier Clos topology involving super-spine switches is used. The
physical hosts hold VMs for different tenants with their spe-
cific requirements (especially minimum bandwidth and upper
bandwidth limit). This topology has the advantage of providing
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Fig. 1. Experimental Setup

several multiple paths and high bisection bandwidth [24]. The
underlay is an L3 network from host to host through the
switches leaf-spine-leaf, and the overlays (e.g., VXLAN) are
deployed for tenant to isolate their VMs on a virtualized data
center identified by a VNI offering L2 segments per tenant.
Service Model. In our work, we considered the hose
model [25], in line with other related studies [5], [6], [8].
In this model, each tenant’s virtual data center is represented
through a single non-blocking switch, with each of the tenant’s
VMs connected through a dedicated link with a minimum
bandwidth and maximum bandwidth envelope.

VMs Distribution. The total number of VMs in the MTCDC
network (N = number of hosts - maximum VM count) is
divided into two equal-number groups: sending VMs and re-
ceiving VMs similar to the setup in the paper [26]. To achieve
a representative VM distribution per tenant, we employed a
Pareto-like distribution approach, where each tenant has at
least a sending VM and a receiving VM.

Traffic Generation. Upon the network topology, we generate
traffic matrices of the VM nodes essential for the MTCDC sce-
nario. The traffic generation process, inspired by the approach
used in TMgen [27], includes various parameters such as the
mean_traffic (the average total volume of traffic) chosen
randomly between zero and the maximum_bandwidth and
traffic_pattern (e.g., many-to-many, incast, or ran-
dom). These parameters are randomly selected for each tenant,
resulting in diverse traffic patterns.

1II. MATHEMATICAL FORMULATION AND MOTIVATION
A. Mathematical formulation

This section defines the mathematical formulation of the
MTCDC performance isolation problem. We aim to optimize
rate limit allocation in a multi-tenant cloud data center to
ensure operational efficiency (high resource utilization) and
good tenant experience (satisfied demand, minimum band-
width guarantees, proportional and fair performance).
MTCDC Network: Let’s consider a snapshot graph G =
(V, E, ¢) representing the network topology for the next time
interval window, where:

o V is the set of nodes in the network, including VMs,

hosts, leaf switches, and spine switches.

o E is the set of edges connecting these nodes.

e c: E — RT assigns capacities to the edges. ¢;; represents

the capacity of the edge 7.



Traffic Demands: Let D be a traffic matrix representing
the demands between pairs of VMs (always within the same
tenant). Each demand or commodity dj, corresponds to traffic
from a source VM s;, to a destination VM ¢;. Let K be the
total number of demands in D. These demands are considered
fixed for the next time interval and are provided as input to
the rate limit allocation module.

Variables:

25 : Flow on edge between node ¢ and node j Vi,j € B

Y, : Fraction served from demand d, Vk € {1,...,K}

where x;; and y;, are positive variables.
Objective Function:

Maximize: Z Y - di
k
Constraints:
Capacity Constraints :
Lij S Cij v%] ek

Flow Conservation constraints:

Y di, 1= Sg
injle’ji: 0, i F# Skt
j J —Yi - dg, =1y

Minimum bandwidth constraints:

i < inj —ijz' =y - di, for i = sy
J J

where +; attached to each VM, represents a tenant metadata
related to SLO/SLA, here the minimum bandwidth guarantee.
The maximum bandwidth guarantee is encoded in the edge
capacity from the VM to its upstream host C;;. Equation
(1) summarizes the MTCDC performance isolation rate limits
allocations problem:

Maximize: Z Y - di
k

Subject to:
Tij < Cij VZ,] ek
Yr - d, 1= s
inj_zxji: 0, i F# Syt
j J —Y - dg, 1=1g

Y Szxij *Zl’ji:yk'dk, for i = s,
J J
(D

The objective is to maximize the total fractions of demand
served and the constraints, including capacity constraints, flow
conservation constraints, and minimum bandwidth constraints.
Each constraint ensures that the network operates within its
limits while satisfying the demands of each tenant with G =
(V,E,c). As such, this formulation falls under the general
class of multi-commodity flow problems [28].
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Fig. 2. Boxplot of optimization times in log scale. The figure displays the
distribution of the optimization times (in milliseconds or seconds) for three
different configurations: 32_4_6 (32 hosts, 4 VMs per host, 6 tenants),
288_16_50 (288 hosts, 16 VMs per host, 50 tenants), and 512_16_50
(512 hosts, 16 VMs per host, 50 tenants). The y-axis is in logarithmic scale,
showing a wide range of optimization times from 1 ms to 12.5 s.

B. Scaling Challenges

Fig. 2 shows the optimization time observed from solv-
ing Equation (1) for three different configurations with the
Pulp Linear Programming tool and the CBC solver [29]. It
shows scalability challenges, particularly when faced with
an increasing number of network nodes. In these scenarios,
such as the one involving 512 hosts and 16 maximum VMs,
meaning 8192 total VMs, the optimization process comes with
increased complexity: As the total number of VMs, hosts, and
tenants increases, the computational time also increases. More
specifically, with an increase in the number of hosts from
288 to 512, almost double, the observed optimization time,
as indicated by the median, rose from 1.64s to 3.48s. These
observations highlight the need for efficient and scalable op-
timization algorithms, particularly in large-scale multi-tenant
cloud data centers (e.g., in [30]-[32] targeting 100.000 hosts,
going up to around 1.6 million VMs).

Thus, in order to mitigate these high optimization times,
we explore in the rest of the paper the integration of GNNs.
The neural network is trained offline by learning from optimal
allocations derived from the LP solver and aims to generalize
effectively to unobserved data with a fast online inference.

C. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) represent a category of
deep learning techniques specifically designed for performing
inference on graph-structured data. During training, GNNs
leverage both the graph structure and node/edge features
to perform tasks such as regression and classification at
various levels: node-level, edge-level, and graph-level [13],
[33] [34]. At present, GNNs have found success in various
domains, including social networks, recommendation systems,
and chemistry [35].

The main construct of GNNs is GNN layers. Classical GNN
layers like Graph Convolutional Networks (GCN) [36], Graph-
SAGE [37], Graph Attention Networks (GAT) [38], and com-
puter networking domain-specific variants like RouteNet [39]
and FlowGNN [40]. GNNs operate by enabling message



passing and aggregation, facilitating the integration of con-
textual information and relationships into node embedding.
The stacking of multiple GNN layers enables the capture
of increasingly complex patterns and dependencies that al-
low addressing various predictive challenges within graph-
structured data. This way, GNNs extract relevant features from
the underlying graph structure, thereby improving predictions
for entities involved in graph interactions, as compared to
models that consider entities in isolation.

The training pipeline for GNNs involves processing the
input graph through GNN layers to generate node embeddings.
These embeddings are then used as input for prediction heads,
which address node, edge, or graph-level tasks. Evaluation
metrics, labels, and loss functions guide the training process.

D. Leveraging GNNs for Optimization and Rate Limit Allo-
cation: Challenges

Applying GNNs to optimization and resource allocation
introduces some challenges that demand careful consideration:

Firstly, achieving optimal rate limit allocation through
GNNs requires the design of an effective input graph rep-
resentation. This includes well-defined node features, topo-
logical information, and domain-specific attributes. Secondly,
the judicious selection of suitable GNN layers is important.
Each layer must align with the specific requirements of the
task, as different rate-limiting settings may necessitate distinct
GNN architectures. Thirdly, evaluating and exploiting the
expressiveness of GNNs may be challenging. This involves
determining how effectively GNNs can transform input data
into informative node embeddings, and how to leverage these
embeddings to complete the rate-limits allocation tasks.

Finally, addressing these challenges necessitates a certain
comprehension of GNNs architecture and designs, which we
will demonstrate applied to the problem of rate-limit allocation
in multi-tenant clouds in the following.

IV. GPERFISOL DESIGN AND IMPLEMENTATION
A. Architecture

The general architecture of gPerflsol, as depicted in Fig. 3
is composed of two main planes: the management-control
plane where the gPerfIsol module operates and the data plane
within the MTCDC network. The bandwidth demand predictor
supplies the next interval (in a time-window-based control,
e.g., each T' = 1s) demands as traffic matrices to the gPerfIsol
module, which leverages learning-based rate limit allocations
to provide near-optimal allocations of the demands while
complying with the constraints from Equation (1). The rate-
limits allocation is performed independently for each time
interval and its associated demand matrix.

The design of gPerflsol accommodates a fixed physical
underlay topology with variable and dynamic overlay networks
composed of the VMs and their corresponding demands. This
adaptability allows the system to adjust to varying demand
sizes and tenant VM distributions.

The architecture of gPerflsol is designed to address the
critical challenge of performance isolation in multi-tenant
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Fig. 3. gPerflsol Architecture within MTCDC Management-Control Loop
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Fig. 4. Graph Representation: MTCDC as a Hetero-Graph

cloud environments. It is built upon a foundation of GNNs
and is intended to allocate rate limits efficiently. At its core,
gPerfIsol takes as input data a graph known as MTCDC with
capacity information, VM-tenant metadata and a workload
matrix representing demands between VMs. We represent this
data with an heterogeneous graph (different types of nodes
and edges) using the hetero-graph abstraction in Fig. 4. This
graph modelization represents well the MTCDC with isolation
requirements better than going directly with a simple graph.
gPerflsol leverages a sequence of GNN layers, with the first
layer having 64 hidden channels and the output layer with a
single layer. The primary objective of these GNN layers is to
capture the essential features of the input graph and obtain
node embeddings that represent the unique characteristics of
each node, especially VM nodes.

The subsequent phase in the gPerflsol architecture involves
using a neural network to predict optimal allocations for the
demand dj, by taking as inputs the embeddings of the source
VM S} and destination VM T}, of the demands. This final
stage, which could have a binary classification function or a
regression depending on the admission control goal or finding
optimal allocation as a proportion to a demand that could
be satisfied, is responsible for deriving edge-level predictions
(allocation decisions) from these embeddings.

The architecture leverages a heterogeneous graph represen-
tation to model the MTCDC as topology-capacities informa-
tion and demand matrix effectively. This representation intro-
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duces specific edge types, such as VM-VM workload edges,
providing a more expressive way to capture the relationships
within the MTCDC. However, this expressiveness comes at
the cost of increased computational and storage and a more
complex implementation than traditional homogeneous GNNss.

B. gPerflsol Resource Allocation Model Implementation

The implementation of the gPerflsol rate limits allocation
model utilizes the PyG (PyTorch Geometric) [41] and PyTorch
libraries [42], a widely adopted tool for deep learning tasks.
The model architecture comprises GNNs and a classifier.
Specifically, we employ the SAGEConv layer for the GNN,
which consists of two convolutional layers. The GNN pro-
cesses input data from a heterogeneous graph, transforming it
into node embeddings. These embeddings are then passed to
the classifier, a neural network of multiple linear layers.

V. EVALUATION

A. Evaluation Setup

Dataset. To generate a working dataset, we consider
the scenario described in Section II-B with the topol-
ogy Fig. 1 using Python simulations. For this configura-
tion number_of_host 288, max_vm_count 16,
number_of_tenant 50, we create the corresponding
MTCDC Leaf-Spine Clos topology. The numbers of spines and
leaves are calculated based on the number of hosts, following
practical considerations for Clos network topologies [22].
Upon the network topology, we generate VM pair traffic
matrices as their estimated bandwidth demands for the next
time interval, with the individual tenants having their own
traffic patterns (many-to-many, incast, random, etc.).

Finally, taking the network topology information with the
generated traffic matrix, we compute optimal resource allo-
cations using the Pulp Linear Programming tool with the
CBC solver [29]. These optimal allocations are collected with
the input topology graph with capacity information and the
demands to construct our dataset.

The considered dataset for the 288_16_50 configuration
comprises 151 distinct graphs with their demands. It is split
into 105 training graphs, 22 validation graphs, and 24 test
graphs. After hetero data transformation, we count 4982 nodes
for each graph and a mean of 107452 edges (with a standard
deviation of 45864.4). The total number of demands across all
151 graphs is 14050862. Each demand’s allocation (a value
in [0,1]) represents a fraction of the demand that can be
satisfied. These demand allocations, when rounded, include
4125700 zeros (when the demand is rejected) and 9925162
ones (when all the demand is satisfied). These are the labels
used during training. We consider here a binary classification
setting corresponding to admission control-like bandwidth
resource allocation for performance isolation [6].

Metrics. We consider binary-classification-related metrics,
such as precision, recall, Fl-score, and accuracy [43]. In this
binary classification, we define the class with the labels equal
to “one” as the positive class, and the “zeros” correspond
to the negative class. The related metrics are defined based
on four fundamental values: true positives, true negatives,
false positives, and false negatives. True positives represent
the instances correctly classified as positive, true negatives are
instances correctly classified as negative, false positives are
instances incorrectly classified as positive, and false negatives
are instances incorrectly classified as negative.

is

The precision metric defined as precision
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actual positive instances. These metrics comprehensively
evaluate the model’s performance, balancing correctness in
positive predictions (precision) and capturing all positive
instances (recall).

The Fl-score combine precision, recall in their harmonic
mean F1-score = 2[% considering precision, recall
are evenly weighted. These weights could be adjusted de-
pending on the overall objective. Indeed, for the performance
isolation case, the weights’ adjustment may depend on the
weight put on overutilization that may lead to congestion or
underutilization, which corresponds to resource inefficiency,
but where admitted demands will not suffer congestion. In
other words, missing a “one” may lead to underutilization,
while missing ”zero” may lead to network congestion.

B. gPerflsol Model Training

We train the gPerflsol model using the Adam optimizer
and binary cross entropy loss on 100 epochs. The validation
loss and accuracy are shown in Fig. 6. It shows how the
model learns through the epochs before stabilizing around a
classification accuracy of 0.95 and loss error of 0.13 on the
validation set.

C. Evaluation Results

The gPerflsol model’s binary classification approach ad-
dresses the resource allocation challenge outlined in Equation
(1). This transforms the resource allocation problem into
an admission control version with interesting results: With
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Label Precision Recall F1-score Support
1: satisfied 0.94 0.92 0.93 769,699
0: rejected 0.96 0.97 0.97 1,743,274
Accuracy 0.96 2,512,973
Macro avg | 0.95 0.94 0.95 2,512,973
Weighted 0.96 0.96 0.96 2,512,973
avg
TABLE T

CLASSIFICATION REPORT

a precision score of 0.964, a recall score of 0.973, and
an F1 score of 0.968, it effectively balances the trade-offs
between precision and recall. Overall, this binary classification
capability of the model demonstrates its effectiveness in opti-
mizing resource allocation with good classification accuracy.
The detailed information on the classification performance is
presented in Table I. We also analyze atomic prediction times,
where the minimum time is 0.0093 seconds, the mean time
is 0.0239 seconds, the median time is 0.0210 seconds, the
standard deviation is 0.0149 seconds, and the maximum time
is 0.0626 seconds. The time granularity is interesting for the
MTCDC performance isolation time requirement. They could
be improved using parallelization and specialized hardware
like GPUs that are useful for accelerating neural network
computing.

VI. RELATED WORKS

In this section, we provide an overview of related work on
network optimization and traffic engineering, mainly focusing
on those leveraging machine learning (ML) techniques.

ML for Network Optimization. In the domain of net-
work optimization, ML has become increasingly relevant.
Notable contributions in this area include TEAL [12] and
RouteNet [44] [45] that use GNNs, which concern learning-
based accelerated traffic engineering (TE) and routing opti-
mizing in the WAN respectively. RouteNet [44] also tackles
performance modeling. CFR-RL [46] focuses on critical flow
identification in traffic matrices on ISP topologies using ML,
specifically deep neural networks (DNN) as part of the TE
pipeline. Additionally, the work [47] proposes ML perfor-
mance modeling of data center traffic (including incast and
elephant) and leverages the ML-based performance model in



bayesian optimization for smart switch buffer management and
traffic optimization.

ML in Wide Area Network Traffic Engineering.. TEAL [12]
proposes FlowGNN that alternates between GNN layers to
capture capacity constraints and DNN layers for capturing
demand constraints for addressing traffic engineering on a
cloud WAN composed of data center nodes. It assumes the
next interval demand matrix is available through a bandwidth
broker. DOTE [11] proposes rethinking WAN TE leveraging a
neural network to tackle TE in a single process, bypassing de-
mand traffic matrix prediction used as input for TE optimizer.
It directly optimizes TE objectives using only historical de-
mand matrices. Some other works use ML coupled with Deep
Reinforcement Learning for intradomain traffic engineering in
WANSs [48] [49].

Network Optimization in Intra-Cloud Data Centers. Sev-
eral works have provided valuable insights in the context of
intra-cloud data centers, particularly those employing Clos
leaf-spine topologies. MicroTE [50] addresses the segregation
of predictable and non-predictable flows within single-tenant
university data centers. This fine-grained approach aims to
optimize resource allocation. Joint VM Placement and Rout-
ing [51] presents strategies for efficient resource management
within data centers.

These studies contribute to the evolving landscape of net-
work optimization, incorporating ML techniques and novel
approaches to address the challenges in modern networking
environments. However, while GNN-based techniques have
been successfully applied to resource allocation for WANs TE,
especially TEAL [12], their direct application to multi-tenant
intra-cloud data centers is challenging due to their specific
characteristics, including heterogeneous nodes (VMs, hosts,
and switches), tenant-level fairness, and guarantees. Our ap-
proach introduces the innovative use of heterogeneous GNNs
to capture the specificities of MTCDCs in the input graph
of GNN layers, a key difference. This work marks the first
application of heterogeneous GNN-based rate limit allocators
to traffic shapers for performance isolation in MTCDCs.

VII. CONCLUSION

This paper introduces gPerflsol, a GNN-based approach that
addresses the scalability challenge of the rate limit allocation
optimization problem for performance isolation in MTCDC.
By applying heterogeneous GNNs to capture MTCDC-specific
topological information and training them offline with optimal
allocations from an LP solver, gPerflsol provides near-optimal
rate limits in near-real-time. The promising results obtained in
our preliminary evaluations provide evidence of gPerfIsol’s
efficacy, emphasizing its potential to enhance performance
isolation by providing good inputs to traffic shapers and rate
limiters.

Future research works can build upon this foundation,
exploring more sophisticated GNN architectures, experiments
on larger-scale MTCDC, and investigating alternative problem
formulation of the performance isolation problem. Addition-
ally, an interesting exploration may bypass the optimal solver

process that provides labels in the supervised learning used
here.
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