
HAL Id: hal-04549760
https://laas.hal.science/hal-04549760

Submitted on 17 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Routing optimization based on DRL and Generative
Adversarial Networks for SDN environments

Juan Francisco Chafla Altamirano, Mariem Guitouni, Hassan Hassan, Khalil
Drira

To cite this version:
Juan Francisco Chafla Altamirano, Mariem Guitouni, Hassan Hassan, Khalil Drira. Routing optimiza-
tion based on DRL and Generative Adversarial Networks for SDN environments. IEEE/IFIP Network
Operations and Management Symposium, IEEE, May 2024, Seoul, South Korea. �hal-04549760�

https://laas.hal.science/hal-04549760
https://hal.archives-ouvertes.fr


Routing optimization based on DRL and Generative
Adversarial Networks for SDN environments

Juan Chafla Altamirano1,2, Mariem Guitouni1,3, Hassan Hassan1, and Khalil Drira1

1LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
{jfchaflaal, mguitouni, hhassan, khalil}@laas.fr

2Pontificia Universidad Católica del Ecuador
3Ecole Polytechnique de Tunisie

Abstract—Traditional routing protocols and analytical routing
optimization models face limitations in adapting to dynamic
and complex environments such as SDN. Deep Reinforcement
Learning (DRL) offers promise for addressing these challenges,
but its intensive training phase hinders practical implementation.
This paper presents a distributed DRL-based routing optimiza-
tion solution in SDN, enhanced with Generative Adversarial
Networks (GAN) to expedite agent training. Our approach,
evaluated on a Containernet and OpenAI Gym-based testbed,
effectively optimizes network traffic routes for diverse traffic
classes, maximizing throughput. Activation of the GAN module
significantly reduces training times, enhancing the feasibility of
our solution for real-world deployment.

Index Terms—SDN, Routing Optimization, Deep Reinforce-
ment Learning, Generative Adversarial Networks

I. INTRODUCTION

In modern networks, traditional traffic routing optimization
methods, reliant on analytical models, face challenges due to
the networks’ complexity and dynamism [1]. Deep reinforce-
ment learning (DRL), a Machine Learning (ML) approach, has
gained traction for effectively addressing these uncertainties
without requiring analytical models [2], as it utilizes an
exploration-exploitation strategy that can be leveraged for path
optimization. The integration of software-defined networking
(SDN) further enhances adaptability and control in network
management eliminating the need for manual intervention [3].
Our prior research [4] demonstrated the efficacy of merging
DRL with SDN, resulting in an autonomously managed net-
work architecture. However, DRL’s lengthy training times and
the need for ongoing environment interaction pose complex
challenges in production networks. To overcome these issues,
this paper introduces a novel approach combining distributed
DRL agents with a generative adversarial network (GAN)
module in an SDN context. This combination leverages GAN’s
ability to generate synthetic observations, significantly re-
ducing training durations and enhancing efficiency in traffic
routing optimization.

The main contributions of this paper are:

1) The proposal of a network self-management architecture
based on SDN, DRL, and GAN.

2) The proposal of a one-agent-per-traffic-class model,
where each DRL agent associated with a traffic class
determines its optimal packet forwarding logic.

3) The proposal of a single action approach for multiple
nodes, where a DRL agent can define the optimal next
hop of a flow on all network elements (NE) on the route
in a single operation.

4) The proposal of using GAN during DRL agents’ training
to speed up convergence times and not interfere with
network operation.

5) The evaluation of our proposal using a testbed deployed
with Containernet and OpenAI Gym. We implemented
a framework to integrate these two environments.

II. RELATED WORK

In this section, we highlight key works on applying DRL
techniques for SDN traffic routing optimization. In [5], a
Multi-Plane Routing method with a centralized DDQN agent
optimizes end-to-end delay and link utilization by focusing
on per-link traffic load observations and finding the optimal
routes between all sources and destinations. [6] introduces
RL-Routing which requires one agent per switch to predict
network behavior and optimize throughput and delay per flow;
precomputed routes using shortest path algorithms reduce
the action space. [7] proposes a DDPG-based solution that
optimizes end-to-end delay and packet loss, and employs an
M/M/1/K queue-based network model for offline training of
the centralized DRL agent. [8] features a GAN-based transfer
RL approach for adaptive routing with no need to retrain the
DRL agent; GAN is incorporated into the transfer learning
scheme for faster agent convergence. Conversely, our approach
presents distributed DRL agents for each traffic class, imple-
menting a single action strategy for multiple nodes. Our goal
is throughput maximization and can be tailored to a variety
of objectives. In addition, we leverage GAN to improve agent
convergence from the beginning of agent training, eliminating
the need for costly direct network metric measurements, as
opposed to GAN’s use of [8] to adapt pre-trained DRL agents.



III. PROBLEM DEFINITION

A network, represented by G(V,E), comprises nodes (S)
and links (L), forming a connected graph. In this feed-
forward network, nodes are not revisited to avoid loops.
Each full-duplex link (l) has finite bandwidth (B), i.e., B =
b1, b2, . . . , bm. Two neighboring switches (si and sj) share a
bidirectional link (li,j) with bandwidth b(li,j). The problem is
to find the optimal path (subset of L) to transfer data packets
for a given pair of edge switches, sin and sout. The goal is to
maximize the throughput (thi) for data flow between sin and
sout, trying to achieve a target bandwidth (bw) by identifying
the optimal packet forwarding sequence from G(V,E).

IV. ARCHITECTURE

The proposed self-management architecture (Figure 1) com-
prises four key components: Data plane, Control plane (SDN
controller), Management plane (DRL agents), and GAN mod-
ule. Details are as follows:

• Data plane forwards traffic flows, encompassing network
elements, links, flows, and end users.

• Control plane, led by the SDN controller (SDN-C),
centralizes important functions, collecting network data
and commanding the data plane via OpenFlow.

• Management plane generates policy for packet forward-
ing based on the optimization objective, utilizing dis-
tributed DRL agents interacting with SDN-C.

• GAN Module accelerates DRL agents’ learning by gen-
erating synthetic observations from real ones, reducing
training times.

Data and control planes were implemented in Containernet
[9], while the management plane used OpenAI Gym [10].
The architecture operates as follows: SDN-C collects network
information and conveys observations to the control plane
and GAN module. GAN generates synthetic observations for
DRL agent training. The management plane organizes real
and synthetic observations for DRL agent processing. DRL
agents determine network actions based on current observa-
tions, conveyed to SDN-C, which translates and implements
actions via OpenFlow. Network elements adapt their flow
tables accordingly. Subsequent observations and associated
rewards refine DRL agent actions against the objective.

A. DRL-based routing module

Our DRL agents employ the Double Deep Q-Learning
(DDQN) algorithm, mitigating Q-value overestimation issues
found in DQN [11]. The DRL agent’s structure contains
two neural networks (Main and Target NNs) interacting
with environment E at discrete intervals (∆t). At each ∆t,
the Main NN selects an action (At) using the ϵ-greedy
strategy and its Q-values, while the Target NN estimates
the Q-value for the next state (St+1). The loss calculation
relies on the difference between these Q-values, followed by
parameter updates for the Main NN through backpropagation
and stochastic gradient descent (SGD). Actions (At) applied
to the current state (St) in environment E yield rewards

Fig. 1: High-level diagram of our architecture. Adapted from
[4]

(Rt+1) and the next state (St+1). These parameters compose
an experience tuple St, At, Rt+1, St+1, stored in Reply
Memory. Training involves extracting random mini-batches
from Reply Memory, reducing DRL-agent interactions with
the environment [12], thereby expediting learning.

1) Observation, Action, and Reward Spaces: Observation,
action, and reward spaces for our DRL agents are defined as:

• Observation Space (St): Represents the state of environ-
ment E as input data to each DRL agent. It is defined
as a vector of vectors: St = {O1, O2, . . . , On}, where
On = {Fi, si, bwi}. Here, Fi is the data flow identifier, si
is the node identifier, and bwi is the bandwidth, providing
the status of all nodes associated with a specific flow or
traffic class.

• Action Space (At): Defines the set of actions available to
an agent at time ∆t and state St. Our DRL agents’ action
space is defined as At = {a1, a2, . . . , am}, where, each
action ai = [pthi|pthi = {l1, l2, ...lm}] (for 1 ≤ i ≤ m)
is a set of links that form a path connecting the ingress
node sin and egress node sout for a given flow or traffic
class.

• Reward (R): Evaluates the effectiveness of an action ai
in state St. It estimates how well pthi aligns with the
goal bw for flow fi. We define R as:

R =

 +r1 if thi ≥ bw
0 if 0 ≤ thi ≤ bw

−r1 if thi = 0
(1)

Here, r1 represents the reward’s numerical value (e.g.,
10). When thi exceeds the defined target bw, the reward
is positive (+10). If thi is less than bw but non-zero,
indicating a valid but non-optimal path, the reward is
zero. When thi equals zero, signifying no throughput,
the reward is negative (-10).

2) One-agent per traffic class, single-action approach: Our
approach distinguishes itself by using a one-agent per traffic



class strategy to determine optimal routes based on throughput
targets (i.e., a multi-flow joint optimization scheme). With
this method, a single agent simultaneously dictates packet
forwarding logic across multiple nodes. This agent selects
nodes, determines the optimal next hop, and assigns the
associated output port, establishing a forwarding route for a
given flow/class in a single action. This approach significantly
reduces the observation space, simplifying training and en-
hancing scalability since a small number of agents can handle
all traffic classes and flows.

3) Implementation Framework: To implement our routing
optimization solution, we’ve developed a framework that
serves as an abstraction layer bridging the network environ-
ment emulator (Containernet) and the DRL agent (OpenAI
Gym). This framework comprises three main components:

• GymEnv: This component creates a custom Gym environ-
ment by sub-classing the gym.Env class. It is responsible
for initializing the Gym environment and defining key
aspects such as the observation space, action space,
reward, and more. GymEnv acts as the interface between
the network environment (Backend) and the DRL agent.

• Agent: Here, DRL agents are initialized, and parameters
and hyperparameters for the neural network (NN) are
defined. This includes characteristics like the type of NN
(e.g., DDQN), the number of layers and neurons, the
gamma factor, the Replay Memory size, etc. Importantly,
GAN libraries are imported here for generating synthetic
observations.

• Backend: This component creates the Containernet net-
work environment and defines essential functions. No-
table functions include network topology creation, SDN-
C activation, flow activation in Containernet, network
measurement collection, and action enforcement.

B. GAN module

An essential feature of our work is the integration of a
Generative Adversarial Networks (GAN) module to expedite
agent training. During experiments, we observed prolonged
training times, primarily attributed to executing actions on
network elements (NEs) and measuring throughput. To address
this, we incorporated GAN, a deep learning-based generative
model comprising two neural networks: the generator and
discriminator. These networks engage in adversarial training,
competing in a zero-sum game [13]. The generator produces
synthetic samples from random noise input, while the discrimi-
nator discerns real from synthetic data. Ultimately, GAN learns
the genuine data distribution, enabling the generator to pro-
duce indistinguishable synthetic data. GAN has demonstrated
efficiency in various domains, such as image generation and
natural language processing. Tabular GAN (TGAN), a model
capable of synthesizing tabular data, was successfully tested in
[14]. It follows the adversarial training principle but is special-
ized in generating structured data with diverse distributions. A
pre-trained TGAN model is available on GitHub [15], simpli-
fying its utilization. In our architecture, we deploy the TGAN
module between the control and management planes (Figure

1). This module learns to generate synthetic training data in
the format {St, Rt+1, St+1}. Consequently, TGAN produces
synthetic observations St, corresponding rewards Rt+1, and
subsequent observations St+1. Through experimentation, we
found that the optimal results, in terms of time savings and
valid sample generation, occur when we apply the rule that
for every 10 real training data points, we generate 10 synthetic
ones for DRL agent training.

V. EVALUATION

A. Emulation environment

We employed Containernet [9], an open-source docker-
based SDN network emulator, to test our solution. Contain-
ernet deploys NEs as Open vSwitch (OVS) and independent
Docker hosts, customizable for emulating various applications
and network services. Other components include Ryu SDN-
C [16], OpenFlow 1.3, iPerf [17] for traffic generation and
throughput measurement, OpenAI Gym [18] for DRL agent
implementation, and TGAN [15] for GAN module.

We used a generic network topology (Figure 1) with 7
nodes and 22 links, inspired by our previous work [4]. Each
node represents users generating different flows of traffic. Link
bandwidths b(li) differ but never exceed 5Mbps to emulate
congestion.

For each traffic class, we deployed a DDQN-based agent,
composed of two 3-layer NNs, with 50 connections in the
hidden layer. Adam optimizer with epsilon 1e − 2 enhanced
training stability. ReLU activation was applied. The ϵ−greedy
strategy decayed from 1.0 to 0.0 over 42.000 steps. Replay
Memory had a fixed capacity of 109 transitions. We executed
multiple episodes during DRL agent training, up to 1000
for various traffic classes, with at least 300 interactions per
episode. The GAN module is used to generate 10 synthetic
training data for every 10 real ones, reducing direct action
and measurement time.

B. Results

Two sets of experiments were conducted to evaluate our ar-
chitecture: i) Without the GAN module, and ii) With the GAN
module. The aim was to determine how synthetic training
data impacts our solution performance, including convergence
time and the number of episodes required for convergence.
Scalability was also tested by increasing the number of traffic
flows in the network.

We considered three key metrics: i) Cumulative reward,
ii) Convergence time, and iii) Throughput. Cumulative re-
ward represents the total reward received by an agent in an
episode, intending to maximize it. Convergence time is the
time taken by the agent to reach an optimal routing policy for
a given traffic class. Throughput is the effective data transfer
rate experienced by a flow, influencing reward calculation
(Equation 1). In initial experiments, using the topology in
Figure 1, a single traffic class was generated. Two tests
were performed: one without the GAN module (red curve in
Figure 2a) and one with the GAN module (blue curve). Both
agents reach maximum reward, but the agent without GAN



(a) One class of traffic scenario (b) Two classes of traffic scenario (c) Five classes of traffic scenario

Fig. 2: Cumulative Reward for one, two and five classes of traffic with and without GAN

(a) Time needed for DRL agents to converge (b) Episodes needed for DRL agents to converge

Fig. 3: Time and episodes to converge curves with and without GAN

achieves it from episode 35. Despite initial appearances, GAN
reduces convergence time, as seen in Figure 3a. Without GAN,
convergence takes 7.6 hours, while with GAN, it only takes
1.75 hours. Subsequently, scalability was tested by introducing
two traffic classes. Agents without GAN converge before
episode 50 (Figure 2b), while agents with GAN take more
episodes to reach significant rewards, stabilizing after episode
200. Despite the longer episode count, agents with GAN
still achieve shorter convergence times (Figure 3a), with a
difference of two hours. Similar patterns were observed when
scaling up to 3, 4, and 5 traffic classes. Agents converged
independently for all flows. The number of episodes needed
for agents without GAN to converge (Figure 3b) is lower,
but convergence time favors GAN. As the number of flows
increases, this difference becomes more pronounced, with a
nearly 30-hour gap for 5 traffic classes.

VI. CONCLUSIONS

We introduced a self-managing network architecture using
distributed DRL agents and SDN technology. Each agent

independently determines optimal routes for specific traffic
classes across multiple network nodes in a single action, en-
suring scalability with minimal agent deployment. To enhance
training efficiency, we incorporate a GAN module to reduce
direct network interactions for metric acquisition during agent
training. We evaluated our architecture on a Containernet and
OpenAI Gym-based testbed, creating a custom framework
for seamless network integration with OpenAI Gym. Results
demonstrate the feasibility of our self-management architec-
ture as agents successfully optimize routes for various traffic
classes, maximizing throughput. However, we observed ex-
tended training times, especially under high-traffic conditions.
By activating the GAN module, training times significantly
decreased, addressing this challenge as the network’s traffic
classes scaled up. In the future, we aim to test our framework
in complex topologies with increased flows and precise traffic
generators, incorporating additional optimization metrics like
end-to-end delay and packet loss. Comparison with traditional
routing protocols will also be carried out.



REFERENCES

[1] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato,
Ping Wang, Ying-Chang Liang, and Dong In Kim. Applications of deep
reinforcement learning in communications and networking: A survey.
IEEE Communications Surveys Tutorials, 21(4):3133–3174, 2019.

[2] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang.
Machine learning for networking: Workflow, advances and opportunities.
IEEE Network, 32(2):92–99, 2018.

[3] Yichen Qian, Jun Wu, Rui Wang, Fusheng Zhu, and Wei Zhang. Survey
on reinforcement learning applications in communication networks.
Journal of Communications and Information Networks, 4(2):30–39,
2019.

[4] Juan Chafla Altamirano, Mohamd Amine Slimane, Hassan Hassan, and
Khalil Drira. Qos-aware network self-management architecture based
on drl and sdn for remote areas. In 2022 IEEE 11th IFIP International
Conference on Performance Evaluation and Modeling in Wireless and
Wired Networks (PEMWN), pages 1–6, 2022.

[5] Jiaqi Tang, Andrej Mihailovic, and Hamid Aghvami. Constructing a drl
decision making scheme for multi-path routing in all-ip access network.
In GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
pages 3623–3628, 2022.

[6] Yi-Ren Chen, Amir Rezapour, Wen-Guey Tzeng, and Shi-Chun Tsai. Rl-
routing: An sdn routing algorithm based on deep reinforcement learning.
IEEE Transactions on Network Science and Engineering, 7(4):3185–
3199, 2020.

[7] Gyungmin Kim, Yohan Kim, and Hyuk Lim. Deep reinforcement
learning-based routing on software-defined networks. IEEE Access,
10:18121–18133, 2022.

[8] Tianjian Dong, Qi Qi, Jingyu Wang, Alex X. Liu, Haifeng Sun,
Zirui Zhuang, and Jianxin Liao. Generative adversarial network-based
transfer reinforcement learning for routing with prior knowledge. IEEE
Transactions on Network and Service Management, 18(2):1673–1689,
2021.

[9] M. Peuster, H. Karl, and S. van Rossem. Medicine: Rapid prototyping
of production-ready network services in multi-pop environments. In
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 148–153, Nov 2016.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[11] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. CoRR, abs/1509.06461, 2015.

[12] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A
Theoretical Analysis of Deep Q-Learning. jan 2019.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks, 2014.

[14] Insaf Ashrapov. Tabular gans for uneven distribution, 2020.
[15] Insaf Ashrapov. Github repo tabular gans for uneven distribution, 2020.
[16] Ryu-SDN Org. Ryu sdn.
[17] Vivien GUEANT. iPerf - The TCP, UDP and SCTP network bandwidth

measurement tool, 2013.
[18] OpenAI. Gymnasium documentation.


