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GAUSSIAN MIXTURES CLOSEST TO A GIVEN MEASURE VIA

OPTIMAL TRANSPORT

JEAN B LASSERRE

Abstract. Given a determinate (multivariate) probability measure µ, we
characterize Gaussian mixtures νφ which minimize the Wasserstein distance

W2(µ, νφ) to µ when the mixing probability measure φ on the parameters
(m,Σ) of the Gaussians is supported on a compact set S. (i) We first show
that such mixtures are optimal solutions of a particular optimal transport (OT)
problem where the marginal νφ of the OT problem is also unknown via the
mixing measure variable φ. Next (ii) by using a well-known specific property
of Gaussian measures, this optimal transport is then viewed as a Generalized
Moment Problem (GMP) and if the set S of mixture parameters (m,Σ) is a
basic compact semi-algebraic set, we provide a “mesh-free” numerical scheme
to approximate as closely as desired the optimal distance by solving a hierarchy
of semidefinite relaxations of increasing size. In particular, we neither assume
that the mixing measure is finitely supported nor that the variance is the same
for all components. If the original measure µ is not a Gaussian mixture with
parameters (m,Σ) ∈ S, then a strictly positive distance is detected at a finite
step of the hierarchy. If the original measure µ is a Gaussian mixture with
parameters (m,Σ) ∈ S, then all semidefinite relaxations of the hierarchy have
same zero optimal value. Moreover if the mixing measure is atomic with finite
support, its components can sometimes be extracted from an optimal solution
at some semidefinite relaxation of the hierarchy when Curto & Fialkow’s flat-
ness condition holds for some moment matrix.
MSC: 42C05 47B32 33C47 90C23 90C46

1. Introduction

Comparing mixture distributions (e.g. their “distance” to each other) is be-
coming an important topic with many real world applications, and particularly in
data science. In addition, in the latter context, for model interpretability the mix-
ing measure of components can be as important as the mixture distribution itself.
Quoting [5], “standard distances (Hellinger, Total Variation, Wasserstein) between
mixture distributions do not capture the possibility that similar distributions may
arise from mixing completely different mixture components, and have therefore dif-
ferent mixing measures”. The relations between mixture distributions and their
mixing measures was investigated in [21]. So for instance, in the context of topic
models, in [5] the authors define what they call the Sketched Wasserstein Distance
(SWD) between two mixture distributions, both of which consist of a finite mix-
ing of distributions in some set of probability measures on a (Polish) space. They

The author is supported by the AI Interdisciplinary Institute ANITI funding through the french

program “Investing for the Future PI3A” under the grant agreement number ANR-19-PI3A-0004.
This research is also part of the programme DesCartes and is supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

1



2 JEAN B LASSERRE

show that the SWD distance equals the Wasserstein distance between the mixing
measures.

Among mixture distributions, Gaussian mixtures form an important subfamily
because they can approximate continuous probability densities quite well. In par-
ticular they are used in statistics for clustering of data and to approximate a large
family of distributions of interest in applications; see e.g. [6], [18], [27], [1], [2],
[25], [23], [17],[19]. Mixtures of Gaussians N (m,Σ) on R

d have the well-known and
nice property that every moment µα =

∫
xαdµ, α ∈ N

d, is an explicit polynomial
of degree |α| in the parameters (m,Σ) of the mixture, and therefore determin-
ing whether a real sequence (yα)α∈Nd has a representing measure µ which is some
Gaussian mixture, has been recently investigated in e.g. [1, 2] as a specific moment-
problem in real analysis. In particular in [2] the authors prove positive and negative
results on rational identifiability1 of k-atomic mixing measures of mixture distri-
butions; for instance if d = 1 then for all k, a k-atomic mixing measure can be
identified from sufficiently many moments of the mixing distribution [2, Theorem
1]. The same result for mixtures of bivariate Gaussians is a conjecture [2, Conjec-
ture 2]; see also [16] on the key role of moment matrices and determinants in the
method of moments.

On the other hand, an important problem in robust statistics is to estimate pa-
rameters of Gaussian mixtures from their samples (possibly with noisy data). In
contributions [11, 12, 4] from the theoretical computer science community, (the-
oretical) polynomial time algorithms (e.g. sum-of-squares algorithms) have been
proposed for efficient learning of mixtures with asymptotic guarantees. In the re-
cent contribution [26], a practical algorithm for optimal estimation of mixtures of
finitely many univariate Gaussians with same (known or unknown) variance is pro-
posed via a (denoised) method of moments. It combines semidefinite programming
and Gauss quadratures to estimate a mixture of k univariate Gaussians with same
variance. In [8] the authors consider the estimator made of mixtures with k atoms
(and same variance) which minimizes the Kolmogorov distance of its distribution
function to that of the input distribution, and they provide optimal rates of es-
timation (the k-atomic mixing distributions are compared with the Wasserstein
distance) but no algorithm is provided. Again, the notion of k-idenfiability is of
central importance in [8].

In this paper we consider the following problem: Given a probability measure µ
on R

d, and a compact set S of parameters (m,Σ), find a mixture ν of Gaussian
measures N (m,Σ) with with parameters (m,Σ) ∈ S, which is the closest to µ.
How close is ν to µ is measured e.g. by the 2-Wasserstein (or Kantorovich) distance
W2(µ, ν). That is, for all B ∈ B(Rd),

ν(B) =

∫

S

(

1

(2π)d/2
√

det(Σ)

∫

B

exp(−(x−m)TΣ−1(x−m)/2) dx

)

dφ(m,Σ)

for some probability φ on S (the mixing measure of parameters (m,Σ) ∈ S), and

W2(µ, ν)
2 = inf

λ
{
∫

R2d

‖x− y‖2 dλ(x,y) : λx = µ ; λy = ν } ,

1Algebraic identifiability means that there are finitely many (complex) solutions to the moment
equations for generic values of the sample moments. On the other hand, rational identifiability
is about generic uniqueness of real solutions, up to the label-swapping action of the symmetric
group Sk
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where λ is a probability measure on R
2d, and λx (resp. λy) denotes the marginal

of λ w.r.t. x (resp. w.r.t. y). In fact, the results and proposed methodology are
also valid if one uses the 1-Wasserstein distance W1 instead of W2.

Statement of the problem and contribution. For sake of clarity and simplic-
ity of exposition, we first restrict to the univariate case. Then we briefly describe
extension to the multivariate case. While this extension does not pose any theoreti-
cal problem, on the other hand the associated numerical scheme is more demanding
(simply for question of scalability of the approach).
Statement of the problem. Let P(X ) denote the space of probability measures on
a Borel set X ⊂ R

2. With R+ := {x : x ≥ 0}, let S ⊂ R × R+ be a set of
parameters (m,σ) for univariate Gaussian measures N (m,σ), and let µ = (µj)j∈N

be the moment sequence of a given probability measure µ on the real line. The goal
is to find a Gaussian mixture ν with mixing parameters in S that is the closest to
µ with respect to the Wasserstein distance

(1.1) W2(µ, ν)
2 = min

λ∈P(R2)
{
∫

R2

(x− y)2 dλ(x, y) : λx = µ ; λy = ν } ,

where λx (resp. λy) is the marginal of λ w.r.t. x (resp. w.r.t. y) on R. Alternatively
one may also use the Wasserstein distance W1(µ, ν) =

∫
|x− y| dλ (see Appendix).

As ν is required to be a Gaussian mixture, it is associated with some (not nec-
essarily unique) mixing probability measure φ on the set S of Gaussian parameters
(m,σ), and therefore ν is in fact denoted by νφ, and reads

(1.2) νφ(B) :=

∫

S

(
1√
2πσ

∫

B

exp(
−(x−m)2

2σ2
) dx

)

dφ(m,σ) , ∀B ∈ B(R) .

Equivalently, νφ has the density

x 7→
∫

S

1√
2πσ

exp(
−(x−m)2

2σ2
) dφ(m,σ) ,

w.r.t. Lebesgue measure on R. Therefore one wishes to solve the optimization
problem
(1.3)

τ = inf
φ∈P(S)

W2(µ, νφ)
2 = inf

φ∈P(S),λ∈P(R2)
{
∫

(x−y)2 dλ(x, y) : λx = µ ;λy = νφ} .

Observe that (1.3) is an optimal transport problem of a particular type. Indeed the
second marginal λy = νφ of the unknown λ is also to be optimized via the (mixing
measure) variable φ on S.
Contribution. We assume that the set of parameters S ⊂ R × R+ is compact. In
contrast to previous works we do not assume that the mixing measure is k-atomic
(and not even with same variance for all components). Also our algorithm is po-
tentially and directly applicable to mixtures of multivariate Gaussians, although of
course its efficiency strongly depends on the dimension. At last, the input prob-
ability measure µ is not necessarily a Gaussian mixture and our primary goal is
to evaluate how far is µ from a mixture of Gaussians with parameters (m,σ) in a
given set S. If µ is indeed such a Gaussian mixture then the algorithm helps to
detect an associated mixing measure.
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I. We first show that if µ satisfies

(1.4)

∫

exp(c |x|) dµ(x) < ∞ ,

for some scalar c > 0, then (1.3) has an optimal solution (λ∗, φ∗) ∈ P(R2) ×
P(S) (i.e., τ = W2(µ, νφ∗)2). Moreover, introducing the moment sequences λ∗ =
(λ∗

(i,j))(i,j) and φ∗ = (φ∗
(i,j))(i,j), with

λ∗
(i,j) =

∫

xiyj dλ , φ∗
(i,j) =

∫

miσj dφ∗ , ∀(i, j) ∈ N
2 ,

the couple (λ∗, φ∗) is also an optimal solution of:
(1.5)

inf
λ∈P(R2),φ∈P(S)

{
∫

(x− y)2 dλ : λ(j,0) = µj ; λ(0,j) =

∫

pj(m,σ) dφ , ∀j ∈ N } ,

which is an exact moment-relaxation of (1.3). To show that (1.5) is equivalent to
(1.3), one exploits that (i) S is compact, (ii) the well-known fact that every moment
µj of a Gaussian measure µ = N (m,σ) is an explicit polynomial pj ∈ R[m,σ] of
degree j, and (iii) that µ is moment determinate (because of (1.4)). To the best of
our knowledge, this is the first characterization of best Wasserstein-approximations
by Gaussian mixtures (with parameters in a given set S) as optimal solutions of an
optimal transport problem.

We also obtain that strong duality holds between (1.5) and its dual which reads

(1.6)

sup
q∈R[x],g∈R[y]

{
∫

q dµ : q(x) + g(y) ≤ (x− y)2 , ∀x, y ;

1√
2πσ

∫

g(x) exp(
−(x−m)2

2σ2
) dx ≥ 0 , ∀(m,σ) ∈ S } ,

and is very close in spirit to the classical dual of the Monge-Kantorovich optimal
transport (with cost ‖x− y‖2).

II. Next, the exact moment formulation (1.5) of (1.3) is a particular instance
of the “Generalized Moment Problem” (GMP) (see e.g. [13]) whose description is
trough algebraic data only (because every moment of a Gaussian is a polynomial
in the parameters (m,σ)). Therefore one can apply the Moment-SOS hierarchy
[13, 9] to solve (1.5). That is, the optimal value τ of (1.5) (hence of (1.3) as well)
can be approximated as closely as desired by solving a sequence (a hierarchy) of
semidefinite relaxations of increasing size (as more and more moments are taken
into account).

The degree-n semidefinite relaxation of (1.3) (and of (1.5)) is just (1.5) where
φ ∈ P(S) and λ ∈ P(R2) are respectively replaced with degree-2n pseudo-moment
sequences φ = φ(i,j))(i,j)∈N2

2n
and λ = (λ(i,j))(i,j)∈N2

2n
, that satisfy necessary semi-

definite constraints to be moments of a measure on S and R
2 respectively, coming

from Putinar’s Positivstellensatz [24, 13].
If the input measure is not a mixture of Gaussians with parameters (m,σ) ∈ S,

then the optimal value becomes strictly positive at some step of the hierarchy, which
provides a certificate that µ cannot be a mixture of Gaussians with parameters
(m,σ) ∈ S (i.e., of the form (1.2)).

III. On the other hand, if the input measure µ is a mixture of finitely many
Gaussian measures with parameters (m,σ) ∈ S, then τ = 0, λ∗ = µ⊗ µ, and φ∗ is
an atomic mixing measure (not necessarily unique) with finite support. If a certain
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rank condition (Curto & Fialkow’s flat extension in [13, Theorem 3.11]) is satisfied

at an optimal solution (λ̂, φ̂) of some degree-n relaxation in the hierarchy (with

optimal value zero), then the support and weights of some atomic measure φ̂ on S

can be recovered from φ̂. To check whether φ̂ is optimal for (1.5) (and φ̂ = φ∗ and
φ∗ is unique) can be done by checking whether all moments of νφ̂ of degree higher

than n+ 1 match those of µ, i.e., whether

(1.7) µj =

∫

pj(m,σ) dφ̂(m,σ) , ∀j > n+ 1 .

Checking (1.7) for each fixed j > n+ 1 is easy and can be done exactly.
We recall that identifiability of the mixing measure from moments of the mixture

distribution is a delicate issue [2] as in general, several mixing measures can be
solutions. However in our setting we have the additional condition that the mixing
mesure is supported on S.

Again we emphasize our minimal assumptions: the input measure µ satisfies
(1.4) and the parameter set S of admissible mixtures of Gaussians is a compact
basic semi-algebraic set. In particular and in contrast to [26], the variance σ is not
fixed and the mixing measures are not assumed to be atomic with finite support.

The paper closest in spirit to ours is the practical algorithm [26] for mixtures µ of
k univariate Gaussian measures with same variance σ (both cases where σ is known
and unknown are considered in [26]). The author first estimates a vector of 2k − 1
moments of µ via Hermite polynomials, then denoises this vector by projection onto
the moment space (via semidefinite programming), and then obtains a resulting k-
atomic distribution via Gauss quadrature. Nice results in [26, Theorem 1; (8)]
provide optimal rates (with respect to Wasserstein distance W1) provided that
k and σ are known, and [26, Theorem 1; (9)-(10)] if k is known whereas σ is
unknown. In [26] the semidefinite program is used to ”denoise” the input vector of
moments by projection onto the moment space. The Wasserstein distance is only
used to quantify à posteriori the error and justify convergence. In our approach,
the semidefinite relaxation (i) models directly the Wasserstein distance W2 (using
W1 is also possible) between the input measure and any Gaussian mixture νφ, and
(ii) is parametrized by the number of moments considered. Finally, notice that the
approach in [26] is possible thanks to very specific features that are proper to the
univariate case only. Namely:

- (convex) semidefinite programming constraints (exploited in [26]) provide nec-
essary and sufficient conditions for a finite real sequence to have a representing
measure and so the output of the semidefinite program in [26] is a true moment
sequence; but similar conditions are only necessary in the multivariate setting.

- similarly, Gauss quadratures also exploited in [26] do not always exist in the
multivariate setting (then called Gauss cubatures); see e.g. [7, 14, 20].

For ease and clarity of exposition, we concentrate in the univariate case but
all results of Section 3 are also extended to the multivariate case which is briefly
addressed in Section 4.

2. Notation, definitions and preliminary results

2.1. Notation and definitions. Let R[x, y] denote the ring of real polynomials in
the two variables (x, y) and R[x, y]n ⊂ R[x, y] be its subset of polynomials of total
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degree at most n. Let N2
n := {(i, j) ∈ N

2 : i + j| ≤ n} with cardinal s(n) =
(
n+2
2

)
.

Let vn(x, y) = (xiyj)(i,j)∈N2
n
be the vector of monomials up to degree n, and let

Σ[x, y]n ⊂ R[x, y]2n be the convex cone of polynomials of total degree at most
2n which are sum-of-squares (in short SOS). A polynomial p ∈ R[x, y]n can be
identified with its vector of coefficients p = (p(i,j)) ∈ R

s(n) in the monomial basis,
and reads

(x, y) 7→ p(x, y) := 〈p,vn(x, y)〉 , ∀p ∈ R[x, y] .

With X ⊂ R
2, denote by M (X )+ (resp. C (X )), the space of positive measures

(resp. continuous functions) on X , and by P(X ), the space of probability measures
on X .

For a real symmetric matrix A = AT , the notation A � 0 (resp. A ≻ 0) stands
for A is positive semidefinite (p.s.d.) (resp. positive definite (p.d.)). The support
of a Borel measure µ on R

2 is the smallest closed set A such that µ(R2 \ A) = 0,
and such a set A is unique. A Borel measure with all moments finite is said to be
(moment) determinate if there is no other measure with same moments.
Riesz functional, moment and localizing matrix. With a real sequence φ = (φ(i,j))(i,j)∈N2

(in bold) is associated the Riesz linear functional φ ∈ R[x, y]∗ (not in bold) defined
by

p (=
∑

(i,j)

pi,jx
iyj) 7→ φ(p) = 〈φ,p〉 =

∑

α

pi,j φ(i,j) , ∀p ∈ R[x, y] ,

and the moment matrix Mn(φ) with rows and columns indexed by N
2
n (hence of

size s(n)), and with entries

Mn(φ)((i, j), (i
′, j′)) := φ(xi+i′yj+j′ ) = φ(i+i′,j+j′) , (i, j), (i′, j′) ∈ N

2
n .

Similarly, given g ∈ R[x, y] ( (x, y) 7→∑

(i,j) gi,jx
iyj), define the new sequence

g · φ := (
∑

(k,ℓ)

gk,ℓ φ(i,j)+(k,ℓ))(i,j)∈N2 ,

and the localizing matrix associated with φ and g,

Mn(g · φ)((i, j), (i′, j′)) :=
∑

(k,ℓ)

gk,ℓ φ(i+i′+k,j+j′+ℓ) , (i, j), (i′, j′) ∈ N
2
n .

Equivalently, Mn(g · φ) is the moment matrix associated with the new sequence
g · φ. The Riesz linear functional g · φ associated with the sequence g · φ satisfies

g · φ(p) = φ(g p) , ∀p ∈ R[x, y] .

A real sequence φ = (φ(i,j))(i,j)∈N2 has a representing mesure if its associated

linear functional φ is a Borel measure on R
2. In this case Mn(φ) � 0 for all

n; the converse is not true in general. In addition, if φ is supported on the set
{ (x, y) ∈ R

2 : g(x, y) ≥ 0 } then Mn(g · φ) � 0 for all n.
Multivariate Carleman condition. The following condition due to Carleman in the
univariate case and later extended by Nussbaum to the multivariate case, is a very
useful sufficient condition to ensure that a moment sequence has a representing
measure; see e.g. [13, Theorem 3.13]. We here specialize to the 2-dimensional case.
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Theorem 2.1 (Bivariate Carleman condition). Let φ = (φ(i,j))(i,j)∈N2 be a real
sequence such that Mn(φ) � 0 for all n, and such that

(2.1)

∞∑

j=1

(φ(2j,0))
−1/2j = +∞ ;

∞∑

j=1

(φ(0,2j))
−1/2j = +∞ .

Then φ has a representing measure φ on R
2 and φ is moment determinate.

For instance, if φ is a finite Borel measure onR
2 and sup[

∫
exp(c |x|) dφ ,

∫
exp(c′ |y|) dφ] <

∞ for some scalars c, c′ > 0, then the moment sequence φ satisfies (2.1), and φ is
moment determinate.

2.2. An intermediate result. The following result is well-known and is repro-
duced for sake of clarity.

Proposition 2.2. If σ > 0 then for every j ∈ N, the moment

(2.2) (m,σ) 7→ 1√
2πσ

∫

xj exp
−(x−m)2

2σ2
dx ,

is a polynomial pj ∈ R[m,σ] of total degree at most j, and:

(2.3) p2j(m,σ) =

j
∑

k=0

(2k − 1)!!σ2k m2(j−k)

(
2j

2k

)

, ∀j ∈ N .

Moreover, if σ = 0 then

(2.4) p2j(m, 0) = m2j =

∫

x2j δm(dx) , ∀j ∈ N .

Proof. Recall that
(2.5)

1√
2πσ

∫

(x−m)j exp
−(x−m)2

2σ2
dx =

{
0 if j is odd
σj(j − 1)!! if j is even.

, ∀j ∈ N ,

with for j ≥ 2, j!! = j (j − 2) (j − 4) · · · , 1!! = 1, and the convention −1!! = 1. For
instance, p0 = 1, p1(m,σ) = m, p2(m,σ) = m2 + σ2, etc. Next, doing the change
of variable u = (x−m) in the integrand of (2.3), expanding (u +m)j in the basis
of monomials, and summing up, yields (2.3). �

Remark 2.3. (i) A Gaussian mixture is associated with a (non necessarily unique)
mixing probability φ ∈ P(S) and in view of (2.4), φ may tolerate that φ({R×{0}) >
0, i.e., φ can mix Gaussian densities with discrete measures. In other words and
with a slight abuse of notation, the Dirac measure δm at point m can be viewed a
the degenerate “Gaussian measure” N (m, 0), with vector of moments (mj)j∈N =
(pj(m, 0))j∈N. For instance if µ =

∑s
k=1 γk δxk

for some set {x1, . . . , xk} ⊂ R and
scalars γk ≥ 0, i.e., a mixture of s Dirac measures with weights (γk), then

µj =

∫

xj dµ =

s∑

k=1

γk x
j
k =

s∑

k=1

γk pj(xk, 0) =:

∫

xj

(
s∑

k=1

γk dN (xk, 0)

)

, ∀j ∈ N .

(ii) So as a consequence, if S = [−M,M ]× [0, σ] then every measure µ on [−M,M ]
can be considered a Gaussian mixture where µ itself is the mixing measure. Indeed
its moments (µj)j∈N satisfy

µj =

∫

mj dµ(m) =

∫

pj(m, 0) dµ(m) =

∫ (∫

xjdN (m, 0)

)

dµ(m) , j ∈ N .
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In particular, every discrete measure on [−M,M ] is also a Gaussian mixture with
parameters (m, 0) ∈ S. This is not what one usually has in mind when thinking of
Gaussian mixtures, as one would expect a measure µ with a density w.r.t. Lebesgue
measure on R. So this is why one should assume that the compact set S satisfies
σ ≥ δ > 0 for all (m,σ) ∈ S, for some positive scalar δ; for instance, S :=
[−M,M ]× [σ, σ] with σ > 0.

Corollary 2.4. Let φ be a probability measure on S. Then with p2j ∈ R[m,σ],
j ∈ N, as in (2.3)

(2.6)

∞∑

j=1

φ(p2j)
−1/2j = +∞ .

Proof. Observe that as S is compact, there exists M > 0 such that |m|, σ < M for
all (m,σ) ∈ S, and so in particular,

p2j(m,σ) < M2j

j
∑

k=1

(2j)!

(2(j − k))!

(2k)!!

(2k)!
< M2j

j
∑

k=1

(2j)(2j − 1) · · · (2j − (2k − 1))

(2k − 1)!!

< M2j

j
∑

k=1

(2j)2k−1 < M2j

j
∑

k=1

(2j)2j−1)

< (2Mj)2j ,(2.7)

and therefore if φ is a probability measure on S, then φ(p2j) < (2Mj)2j for all
j ∈ N, which in turn implies the desired result

(2.8)

∞∑

j=1

φ(p2j)
−1/2j >

1

2M

∞∑

j=1

j−1 = +∞ .

�

3. Main result

3.1. The optimal transport problem (1.3) and its exact moment relaxation

(1.5). Consider the optimal transport problem (1.3).

Theorem 3.1. Let S ⊂ R× R+ be compact, and assume that µ ∈ P(R) satisfies
(1.4).

(i) The optimal transport problem (1.3) has an optimal solution (φ∗, λ∗) ∈ P(S)×
P(R2) which is also an optimal solution of (1.5). Moreover, both measures λ∗ ∈
P(R2) and νφ∗ ∈ P(R) are moment determinate.

(ii) Moreover, τ = 0 if and only if λ∗ = µ⊗µ and µ = νφ∗ , i.e., µ is a Gaussian
mixture with φ∗ a mixing measure of parameters (m,σ) ∈ S.

For clarity of exposition a proof is postponed to Section 6.

Remark 3.2. (a) Notice that the mixing probability measure φ∗ ∈ P(S) is not
necessary unique. That is, two different mixing measures φ1 and φ2 may produce
the same mixture distribution νφ1 = νφ2 . This uniqueness issue is related to rational
identifiability issue already mentioned and explored in e.g. [1, 2]. However in our
restricted setting, uniqueness is perhaps easier to get as the support of the mixing
measure is not the whole space R

2 but a compact set S ⊂ R
2.
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(b) In Theorem 3.1, νφ∗ is a mixture of Gaussian measures with parameters
(m,σ) ∈ S. If σ = 0 is tolerated in (m,σ) ∈ S, the mixture φ∗ can be made
of “pure” Gaussian measures N (m,σ) with σ > 0 and atomic measures δm“ =
”N (m, 0). If one wishes to obtain the closest mixture νφ∗ of “pure” Gaussian
measures N (m,σ) with σ > 0, (i.e., with no atomic part), then in Theorem 3.1 one
should replace S ⊂ R× R+ with S ⊂ R× R++ (with R++ := {x : x > 0}). As S is
assumed to be compact this implies that for some δ > 0, σ ≥ δ for all (m,σ) ∈ S.

The interesting case is precisely when σ = 0 is not tolerated. Indeed if σ = 0 is
tolerated then any probability measure µ supported on the set {m : (m, 0) ∈ S } (in
particular atomic measures) is the “Gaussian mixture” N (m, 0) dµ(m) with mixing
measure µ itself, which is not really what one wants to detect. see Remark 2.3(ii).

A dual of (1.3). For any g ∈ R[y] write y 7→ g(y) :=
∑

k gky
k where (gk) is the

vector of coefficients of g in the monomial basis (yk)k∈N. Consider the optimization
problem:

(3.1)

τ∗ = sup
q∈R[x],g∈R[y]

{
∫

q dµ : q(x) + g(y) ≤ (x− y)2 ∀x, y ∈ R ;

∑

k

gk pk(m,σ) ≥ 0 , ∀(m,σ) ∈ S } .

Observe that:

∑

k

gk pk(m,σ) ≥ 0 , ∀(m,σ) ∈ S ⇔ 1√
2πσ

∫

g(x) exp(
−(x−m)2

2σ2
) dx ≥ 0 ,

for all (m,σ) ∈ S.

Proposition 3.3. The optimization problem (3.1) is a dual of (1.3), i.e., weak
duality τ ≥ τ∗ holds.

Proof. Let (λ, φ) (resp. (q, g)) be a feasible solution of (1.3) (resp. (3.1)). Then as
λx = µ and λy = νφ,
∫

(x− y)2 dλ(x, y) ≥
∫

(q + g) dλ =

∫

q dµ+

∫

g dνφ

=

∫

q dµ+

∫

S

(
∑

k

gk pk)

︸ ︷︷ ︸

≥0 on S

dφ ≥
∫

q dµ ,

and as (λ, φ) and (q, g) are arbitrary feasible solutions, it follows that τ ≥ τ∗. �

3.2. A hierarchy of semidefinite relaxations. We here consider the case where
the set S ⊂ R

2 of parameters (m,σ) is the compact basic semi-algebraic set

(3.2) S = { (m,σ) : uj(m,σ) ≥ 0 , j = 1, . . . , s } ,

for some polynomials uj ⊂ R[m,σ], j = 1, . . . , s, and we let u0 := 1 (the constant
polynomial equal to 1 for all (m,σ). Moreover as S is compact, we also assume that
we know a scalar R such that S ⊂ {(m,σ) : m2 + σ2 < R2} and without changing
S we include the redundant quadratic constraint R2−m2 − σ2 ≥ 0 in its definition
(3.2), with for instance u1(m,σ) = R2 −m2 − σ2.
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Next, let dj := ⌈deg(uj)/2⌉, n0 := maxj dj and fix n ≥ n0. With pj ∈ R[m,σ]
as in (2.2), define:
(3.3)
τn = min

φ,λ
{λ((x − y)2) : λ(j,0) = µj ; λ(0,j) − φ(pj(m,σ)) = 0 , ∀j ≤ 2n ;

Mn(λ) � 0 , Mn(φ) � 0 , Mn−dj
(uj · φ) � 0 , j = 0, . . . , s } ,

where λ = (λ(i,j))(i,j)∈N2
2n

and φ = (φ(i,j))(i,j)∈N2
2n
. Problem (3.3) is a semidefinite

program2. Its dual reads:
(3.4)

τ∗n = sup
q,g,σ,θj

{
∫

q dµ : q(x) + g(y) + σ(x, y) = (x− y)2 , ∀x , y ∈ R ;

2n∑

k=0

gk pk(m,σ) =
s∑

j=0

θj(m,σ)uj(m,σ) ;

q ∈ R[x]2n , g ∈ R[y]2n ; σ ∈ Σ[x, y]n ; θj ∈ Σ[m,σ]n−dj
, j = 0, . . . , s } ,

with τ∗n ≤ τn for all n ≥ n0.

Lemma 3.4. For each fixed n ≥ n0, (3.3) is a semidefinite program and a convex
relaxation of the infinite-dimensional problem (1.3) and so τn ≤ τ for all n ≥ n0.
Moreover, if S has nonempty interior and supp(µ) contains an open set, then τn =
τ∗n and (3.4) has an optimal solution (q∗, g∗, θ∗0 , . . . , θ

∗
s).

Proof. Let (λ, φ) ∈ P(R2) × P(S) be a feasible solution of (1.3), and let λ =
(λ(i,j))(i,j)∈N2

2n
and φ = (φ(i,j))(i,j)∈N2

2n
be the vectors of degree-2n moments of λ

and φ respectively. Then the couple (λ,φ) is a feasible solution of (3.3), and so
τn ≤ τ for all n ≥ n0. Next, let φ be the probability measure uniformly distributed
on S, and let λ := µ ⊗ νφ. Then as S has nonempty interior, Mn(uj · φ) ≻ 0 for
all j = 0, . . . , s, and Mn(λ) ≻ 0. Indeed, suppose that for some h ∈ R[x, y]n with
coefficient vector h,

0 = 〈h,Mn(λ)h〉

=

∫

h(x, y)2 dλ(x, y)

=

∫

R

(∫

R

h(x, y)2 dνφ(y)

)

dµ(x)

=

∫

R

(∫

S

1√
2πσ

∫

R

h(x, y)2 exp(−(y −m)2/2σ2) dy dφ(m,σ)

)

dµ(x) .

We next prove that then h = 0 and so Mn(λ) ≻ 0. Observe that with h ∈ R[x, y]n,
one may write

h(x, y)2 =
2n∑

k=0

θhn−k(x) y
k , with θhn−k ∈ R[x]2n−k for all k = 0, . . . , 2n,

and therefore

1√
2πσ

∫

R

h(x, y)2 exp(−(y−m)2/2σ2) dy =:
2n∑

k=0

θhn−k(x) pk(m,σ) =: qh(x,m, σ) ,

2A semidefinite program is a convex conic program on the cone of positive semidefinite matrices.
Up to arbitrary (but fixed) precision, it can be solved efficiently; see e.g. [3, 22]
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is a polynomial in R[x,m, σ]2n. Moreover, for all x ∈ R,

qh(x,m, σ) ≥
(

1√
2πσ

∫

R

|h(x, y)| exp(−(y −m)2/2σ2) dy

)2

≥ 0 , ∀(m,σ) ∈ S .

Hence,

0 =

∫

R

∫

S

1√
2πσ

∫

R

h(x, y)2 exp(−(y −m)2/2σ2) dy dφ(m,σ) dµ(x)

=

∫

R

∫

S

qh(x,m, σ) dφ(m,σ) dµ(x) ,

implies that qh(x,m, σ) = 0, for µ⊗ φ-a.e. (x,m, σ) ∈ R× S. As S has nonempty
interior, supp(µ) contains an open set, and qh is a polynomial, this implies qh ≡ 0.
But then this in turn implies h(x, y) = 0 for all x, y, and therefore h ≡ 0. Hence
the couple (λ,φ) is a strictly feasible solution of (3.3), that is, Slater’s condition3

holds for (3.3). This in turn implies that there is not duality gap between (3.3) and
its dual (3.4), i.e., τn = τ∗n , and as τn ≥ 0, their value is finite. �

Theorem 3.5. Let S ⊂ R × R+ as in (3.2) be compact, and let µ ∈ P(R) be a
probability measure such that (1.4) holds for some scalar c > 0.

(i) For every fixed n, (3.3) is a semidefinite relaxation of (1.5) (hence of (1.3))

and has an optimal solution (λ(n),φ(n)) with associated optimal value τn ≤ τ for
all n ≥ n0.

(ii) For any accumulation point (λ∗,φ∗) of the sequence (λ(n),φ(n))n∈N of op-

timal moment-sequences (λ(n),φ(n)) of (3.3), λ
∗ (resp. φ

∗) has a determinate
representing measure λ∗ on R

2 (resp. φ∗ on S) and (φ∗, λ∗) is an optimal solution
of (1.3) and (1.5). That is:

τn ↑ τ = W2(µ− νφ∗)2 as n → ∞ .

For clarity of exposition a proof is postponed to Section 6.

Corollary 3.6. Let τn and τ∗n be as in (3.3) and (3.4), respectively. Under the
assumption in Theorem 3.5 and if S has nonempty interior and supp(µ) contains
an open set, then τ = limn→∞ τn = limn→∞ τ∗n, and therefore there is no duality
gap between (1.5) and (3.1), that is,
(3.5)

inf
λ∈P(R2),φ∈P(S)

{
∫

(x− y)2 dλ :

s.t. λj0 = µj , ∀j ∈ N

λ0,j −
∫

pj(m,σ) dφ = 0 , ∀j ∈ N }
=

sup
q∈R[x],g∈R[y]

{
∫

q dµ :

s.t. q(x) + g(y) ≤ (x − y)2 ∀x, y ∈ R ;
∑

k

gk pk(m,σ) ≥ 0 , ∀(m,σ) ∈ S } .

Proof. By Lemma (3.4), τn = τ∗n for all n ≥ n0, and by Theorem 3.5, τ =
limn→∞ τn. Therefore τ∗ in (3.1) is equal to τ , which yields (3.5). �

Observe that (3.5) resembles the usual duality in optimal transport when both
marginals λx and λy are fixed; here the marginal λy is also part of the optimization
via the mixing measure φ.

3Slater condition holds for the finite-dimensional conic program min
x

{ cTx : Ax = b ; x ∈ K }

for a linear mapping A : Rp → R
q , vectors c ∈ R

p, b ∈ R
q, and a convex cone K ⊂ R

p, if there
exists an admissible solution x0 ∈ int(K).
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Corollary 3.7. Let S ⊂ R × R+ be compact with nonempty interior and let µ ∈
P(R) be such that (1.4) holds for some scalar c > 0 and its support contains an
open set. Then µ is a mixture of Gaussians with parameters (m,σ) ∈ S if and only
if for every n ≥ n0, (q

∗, g∗) = (0, 0) and θ∗j = 0 for all j = 0 . . . , s, is an optimal
solution of (3.4).

Proof. It µ is a Gaussian mixture with mixing measure φ∗ ∈ P(S), then τ =
W2(µ, νφ∗) = 0. As 0 ≤ τn ≤ τ = 0 one obtains τn = τ∗n = 0 for all n ≥ n0 and
(q, g) = (0, 0) with θ∗j = 0 for all j = 0, . . . , s, is an obvious optimal solution of
(3.4). �

3.3. Recognizing a Gaussian mixture. As a consequence of Corollary 3.7, if the
input probability measure µ is not a mixture of Gaussian measures with parameters
(m,σ) ∈ S, then the optimal value of (3.3) becomes positive at some step n∗ ≥ n0

and then remains positive for all n ≥ n∗ (as the sequence is monotone non de-
creasing). So the sequence of optimal values (τn)n∈N of the hierarchy (3.3) permits
to detect in finitely many steps if µ is not a Gaussian mixture (with parameters
(m,σ) ∈ S).

Recall that dj := ⌈deg(uj)/2⌉ and let v := maxj dj .

Theorem 3.8. With S ⊂ R
2 as in (3.2), let µ ∈ P(R) be a given probability

measure with finite moments µ = (µ(i,j))(i;j)∈N2 , and let τ and τn be as in (1.3)
and (3.3) respectively.

(i) µ is a mixture of Gaussian measures, all with parameters (m,σ) ∈ S, if and
only if (µ⊗ µ, φ∗) is an optimal solution of (1.3) for some φ∗ ∈ P(S). Moreover,
τn = τ = 0 for all n ≥ n0, i.e., the optimal value 0 is obtained at every step of the
hierarchy of semidefinite relaxations (3.3).

In addition, if µ is a mixture of finitely many (say r) Gaussian measures, all
with parameters (m,σ) ∈ S, then for every n sufficiently large, the corresponding
degree-2n vector of moments (λ∗,φ∗) respectively associated with µ⊗ µ and φ∗, is
an optimal solution of (3.3) and

(3.6) rank(Mn(φ
∗)) = rank(Mn−v(φ

∗)) = r .

(ii) Conversely, let (λ∗,φ∗) be an optimal solution of some degree-2n relaxation
(3.3) with τn = 0, and suppose that (3.6) holds. Then φ∗ is the degree-2n moment
vector of some r-atomic probability measure φ∗ on S. Moreover, µ = νφ∗ (i.e. µ is
a Gaussian mixture with mixing measure φ∗) if and only if

(3.7) µj =

∫

pj(m,σ) dφ∗ , ∀j > n+ 1 .

Proof. (i) Only if part: By definition there exists φ∗ ∈ P(S) such that

µ(B) =

∫

S

(
1√
2πσ

∫

B

exp(
−(x−m)2

2σ2
) dx

)

dφ∗(m,σ) , ∀B ∈ B(S) .

Then τ = W2(µ, νφ∗) = 0, and with λ∗ := µ⊗ µ, the couple (λ∗, φ∗) is an obvious
optimal solution of (1.3). Moreover, τn = 0 for all n, follows from 0 ≤ τn ≤ τ and
τ = 0.

If part: If (µ ⊗ µ, φ∗) is an optimal solution of (1.3) then µ = λy = νφ∗ , i.e., µ
is a Gaussian mixture with mixing measure φ∗ ∈ P(S), and τ = 0 = W2(µ, νφ∗)2.
Next, fix n ≥ n0 arbitrary. The finite vector of degree-2n moments (λ∗,φ∗) of
λ∗ = µ ⊗ µ and φ∗ respectively, is an obvious feasible solution of (3.3). Moreover
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λ∗((x − y)2) =
∫
(x − y)2dµ(x) dµ(y) = 0, and as τn ≥ 0, (λ∗,φ∗) is an optimal

solution of (3.3) with τn = 0.
Next, as φ∗ is r-atomic, rank(Mn(φ

∗)) = r for all sufficiently large n. As
Mn−v(φ

∗) is a submatrix of Mn(φ
∗), (3.6) follows.

(ii) Conversely, if (3.7) holds at an optimal solution of a degree-2n relaxation
(3.3), then by Curto & Fialkow’s flat extension theorem [15, Theorem 2.47], φ∗ is
the degree-2n moment sequence of some r-atomic φ∗ ∈ P(S). Next, τn = 0 implies

λ∗((x − y)2) = 0 and so the vector p ∈ R
(2+n

2 ) of coefficients of the polynomial
(x, y) 7→ p(x, y) := (x − y) ∈ R[x, y]n is in the kernel of Mn(λ

∗) as

〈p,Mn(λ
∗)p〉 = λ∗(p2) = λ∗(x− y)2) = 0 .

That is, the second and third columns of Mn(λ
∗) (respectively indexed by the

monomials x and y) are identical. In particular, this implies λ∗
(j,0) = λ∗

(0,j) for all

j = 0, . . . n + 1. Equivalently µj = (νφ∗)j for all j ≤ n + 1, and therefore as µ is
determinate, µ = νφ∗ (and so W2(µ, νφ∗) = 0) if only if µj = λ∗

(0,j) for all j, and so

if and only if (3.7) holds. �

The sufficient Curto & Fialkow’s flatness condition (3.6) in Theorem 3.8 is very
useful to detect whether µ is a Gaussian mixture νφ∗ with an r-atomic mixing
measure φ∗ on S, in solving finitely many semidefinite relaxations. Indeed if (3.6)
holds then it remains to check whether (3.7) holds (with no optimization involved).

Example 1. Let S = [.07, 1]× [.02, 1] and µ = r ∗N (.1, .2)+(1− r)∗N (.5, .5) with
r ∈ (0, 1). Then with r = .2 or r = .3, the atomic measure φ∗ = r ∗ δ(.1,.2) + (1 −
r)∗ δ(.5, .5) is detected at step n = 6 of the semidefinite relaxation (3.3). Indeed, in
its degree-12 optimal solution (λ∗,φ∗) obtained by running the GloptiPoly software
[10] that implements the Moment-SOS hierarchy, φ∗ satisfies the flatness condition
(3.6), and the atoms can be extracted by a linear algebra subroutine. However we
could notice that if we enlarge the set S, then one needs to go to higher degrees in
the hierarchy with potential numerical instabilities.

4. The multivariate case

The result in the univariate case extends to the multivariate case with µ on R
d,

provided that the set of parameters (m,Σ) ∈ S ⊂ R
d × R

d(d+1)/2 is a compact
basic semi-algebraic set. For instance one may consider the case where (m,Σ) ∈ S
with

S := { (m,Σ) : a I � Σ � b I ; gj(m) ≥ 0 , j = 1, . . . , s } ,
for some polynomials gj ∈ R[m1, . . . ,md], j = 1, . . . , s, and some given scalars 0 <
a < b. Then using determinants of Σ = (σij)i,j≤d, the constraints a I � Σ � b I
reduces to 2d polynomials inequality constraints qk(σ) ≥ 0, k = 1, . . . , 2d, with two
of them of degree d. Then the set
(4.1)

S = { (m,σ) : gj(m) ≥ 0 , j = 1, . . . , s ; qk(σ) ≥ 0 , k = 1, . . . , 2d } ⊂ R
d×R

d(d+1)/2 .

As S is compact and assuming one knows a scalar R > 0 such that

R2 − ‖m‖2 − ‖σ‖2 ≥ 0 , ∀(m,σ) ∈ S ,

we may add the redundant quadratic constraint R2 − ‖m‖2 −‖σ‖2 ≥ 0 (relabelled
as g1(m,σ) ≥ 0) in the definition (4.1) of S without changing S. In doing so, the
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quadratic module

(4.2) Q(g, q) = {
s∑

j=0

θj gj +
2d∑

k=1

θ′k qk : θj , θ
′
k ∈ Σ[m,σ] }

is Archimedean. Next, as in the univariate case one introduces the polynomials
(pα ∈ R[m,σ]|α|)α∈Nd defined by:

(4.3) pα(m,σ) :=
1

(2π)d/2
√

det(Σ)

∫

xα exp(−(x−m)TΣ−1(x−m)/2) dx ,

for every α ∈ N
d. Indeed every moment

∫
xα dν of a Gaussian probability measure

ν = N (m,Σ), is an explicit polynomial of its parameters (m,σ), of total degree at
most j. Moreover, the marginal of a Gaussian measure µ = N (m,Σ) with respect
to xi is the Gaussian measure N (mi,Σii). Therefore

(4.4)

∫

x2j
i dµ = p2j(mi,Σii) , ∀j ∈ N ; i = 1, . . . , d ,

where p2j has been defined in (2.3). Next, if µ ∈ P(Rd), the multivariate analogue
of (1.3) reads:

τ = inf
φ∈P(S)

W2(µ, νφ)
2

= inf
φ∈P(S),λ∈P(R2d)

{
∫

‖x− y‖2 dλ : λx = µ ; λy = νφ} .(4.5)

and the analogue of the moment formulation (1.5) reads:

(4.6)
inf

φ∈P(S),λ∈P(R2d)
{
∫

‖x− y‖2 dλ : λα0 = µα , ∀α ∈ N
d ;

λ0α − φ(pα(m,σ)) = 0 , ∀α ∈ N
d } .

Assumption 4.1. (i) The measure µ satisfies: supi
∫
exp(c |xi|) dµ < ∞ for some

c > 0.
(ii) The set S in (4.1) is compact with nonempty interior, and the quadratic

module (4.2) is Archimedean.

Theorem 4.2. Let Assumption 4.1 hold. Then:
(i) The optimal transport problem (4.5) has an optimal solution (φ∗, λ∗) ∈ P(S)×

P(R2d) which is also an optimal solution of (4.6). Moreover both measures λ∗ ∈
P(R2d) and νφ∗ ∈ P(Rd) are moment determinate.

(ii) Moreover, τ = 0 if and only if λ∗ = µ⊗µ and µ = νφ∗ , i.e., µ is a Gaussian
mixture with φ∗ a mixing measure of parameters (m,Σ) ∈ S.

Sketch of the proof. As in the proof of Theorem 3.1 in the univariate case let
(λ(n), φ(n))n∈N be a minimizing sequence of (4.5). As S is compact there exists a
subsequence (nk)k∈N and a probability measure φ∗ ∈ P(S) such that φ(nk) ⇒ φ∗

as k → ∞.
Let d′ = d + d(d + 1)/2 and recall that S ⊂ R

d′

. Following exactly the same
steps as in the proof of Theorem 3.1, there exists a subsequence denoted (n′

ℓ)ℓ∈N

and an infinite sequence λ∗ = (λ∗
α)α∈N2d , such that

lim
ℓ→∞

λ
(n′

ℓ)
α = λ∗

α , ∀α ∈ N
2d ; lim

ℓ→∞
φ
(n′

ℓ)
β = φ∗

β , ∀β ∈ N
d′

.
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Moreover as S is compact and in view of (4.4), and (2.7)-(2.8), and by Corollary
2.4,

∞∑

j=1

φ∗(p2j(mi,Σii))
−1/2j = +∞ , ∀i = 1, . . . , d .

and therefore
∞∑

j=1

λ∗(y2ji )−1/2j = +∞ , ∀i = 1, . . . , d .

Next, by Assumption 4.1(i) on µ, one also has

∞∑

j=1

λ∗(x2j
i )−1/2j =

∞∑

j=1

µ(x2j
i )−1/2j = +∞ , ∀i = 1, . . . , d ,

and therefore the moment sequence λ∗ satisfies multivariate Carleman’s condition
(see e.g. [15, Proposition 2.37]), which in turn implies that it is the moment se-
quence of some measure λ∗ ∈ M (R2d)+ which is moment determinate. Then again
as in the proof of Theorem 3.1 we may conclude that (λ∗, φ∗) is an optimal solution
of (4.2). �

Next, let dj = ⌈deg(gj)/2⌉ and tk = ⌈deg(qk)/2⌉, for all j and k. Then for every
n ≥ n0 = maxj,k[ dj , tk ], the multivariate analogue of the semidefinite relaxation
(3.3) reads:
(4.7)

τn = inf
φ ,λ

{
∫

‖x− y‖2 dλ : λα,0 = µα ; λ0,α − φ(pα(m,σ)) = 0 , ∀α ∈ N
d
2n ;

Mn(λ) , Mn(φ) � 0 ;
Mn−dj

(gj · φ) , Mn−tk(qk · φ) � 0 ;
j = 1, . . . , s ; k = 1, . . . , 2d } .

Then an analogue of Theorem 3.5 holds and its proof is along the same lines.
Also Curto & Fialkow’s flatness condition [15, Theorem 2.47] is also valid in the
multivariate setting. Similarly there is an exact analogue of Theorem 3.8.

5. Conclusion

We have considered Gaussian mixtures (with parameters (m,σ) in a given com-
pact set S) closest in Wasserstein distance, to a given measure µ. Such Gaussian
mixtures are optimal solutions of an infinite-dimensional optimal-transport linear
program (LP) in which one marginal constraint contains the unknown mixing mea-
sure. Non-uniqueness is related to a classical identifiably issue. This LP can be
solved by the Moment-SOS hierarchy, i.e., a sequence of semidefinite programs
(convex relaxations) whose size increases with the number of moment constraints
considered. That µ cannot be a Gaussian mi omic mixing measure on S with finite
support, a latter can sometimes be extracted from an optimal solution at some
step of the hierarchy. In addition to the identifiability issue, an interesting research
direction is concerned with whether a similar approach can be implemented when
the distance is now measured in total variation instead of Wasserstein.
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6. Appendix

In this paper we mainly use the W2(µ, ν)-optimal transport problem (1.1) for two
probability measures µ and ν, but we could also use the W1(µ, ν)-optimal transport
problem. Its primal formulation reads

W1(µ, ν) = inf
λ∈P(R2)

{
∫

R2

|x− y| dλ(x, y) : λx = µ ; λy = ν },

while its dual formulation reads

W1(µ, ν) = sup
f,g

{
∫

R2

f(x) dµ(x)+

∫

g(y) dν(y) : f(x)+g(y) ≤ |x−y| , ∀x, y ∈ R } .

In order to proceed in a manner similar as for the W2-distance, we need to write
R

2 = X1 ∪X2 with X1 := {(x, y) : x < y} and X2 := {(x, y) : x > y}, and impose
λ = λ1 + λ2 with supp(λ1) = X1 and supp(λ2) = X2.

6.1. Proof of Theorem 3.1.

Proof. (i) Let (λ(n), φ(n))n∈N ⊂ P(R2)× P(S) be a minimizing sequence of (1.3)
with ρn := W2(µ − νφ(n)) ↓ τ as n increases. As S is compact, the sequence

(φ(n))n∈N is tight and by Prohorov’s theorem, there exists a subsequence (nk)k∈N

and a probability measure φ∗ ∈ P(S) such that

lim
k→∞

∫

h dφ(nk) =

∫

h dφ∗ , ∀h ∈ C (S) [denoted φnk
⇒ φ∗] .

In particular, φ
(nk)
(i,j) → φ∗

(i,j) for all (i, j) ∈ N
2. In addition, as pj ∈ R[m,σ],

(6.1) lim
k→∞

λ
(nk)
(0,j) = lim

k→∞

∫

pj dφ
(nk) =

∫

pj dφ
∗ , ∀j ∈ N ,

and by feasibility, we also have

lim
k→∞

λ
(nk)
(j,0) = µj , ∀j ∈ N .

We want to prove that

∀i, j ∈ N : lim
k→∞

λ
(nk)
(i,j) =

∫

xiyi dλ∗(x, y) ,

for some determinate measure λ∗ on R
2. That is, the vector of moments λ(nk)

converges to the vector of moments of λ∗, and in particular

λ∗
(j,0) = µj ∀j ∈ N ; λ∗

(0,j) =

∫

S

pj dφ
∗ =

∫

R

xj dνφ∗ , ∀j ∈ N .

Notice that then (λ∗, φ∗) is an optimal solution of (1.3).
As S is compact, |m| < M and σ < M for some M > 0 and therefore by (2.7),

λ
(n)
(0,2j) = φ(n)(p2j) ⇒ λ

(n)
(0,2j) =

∫

S

p2j dφ
(n) < (2Mj)2j =: ρj , ∀j ∈ N .

This combined with λ
(n)
(2j,0) = µ2j yields that the moment matrix Mk(λ

(n)) of the

moment sequence λ(n) of the measure λ(n) satisfies Mk(λ
(n)) � 0 for every k, and

∀(k, ℓ) ∈ N
2 with k + ℓ ≤ 2j: |λ(n)

k,ℓ | ≤ max[1, µ2j, ρj ] =: ρ′j , ∀j ∈ N .



DISTANCE TO GAUSSIAN MIXTURES 17

See [13, Proposition 3.6, p. 60]. Then define the new infinite sequence λ̂
(n)

by

(6.2) λ̂
(n)
(i,j) := λ(i,j)/ρ

′
k , ∀(i, j) with 2k < i+ j ≤ 2k , k = 1, . . . ,

so that λ̂
(n)

is an element of the unit ball of ℓ∞, the Banach space of (uniformly)
bounded sequences. As the unit ball Bℓ∞(0, 1) of ℓ∞ is sequentially compact in
the weak-star topology σ(ℓ∞, ℓ1), there is a subsequence (n′

ℓ)ℓ∈N ⊂ (nk)k∈N and an

infinite vector λ̂
∗ ∈ Bℓ∞(0, 1) such that (in particular)

lim
ℓ→∞

λ̂
(n′

ℓ)

(i,j) = λ̂∗
(i,j) , ∀(i, j) ∈ N

2 .

Then by the reverse scaling of (6.2) for λ̂
∗

(6.3) lim
ℓ→∞

λ
(n′

ℓ)

(i,j) = λ∗
(i,j) ; ∀(i, j) ∈ N

2 ,

for some infinite vector λ∗ = (λ∗
(i,j))(i,j)∈N2 . In addition, by (6.3), Mn(λ

∗) � 0 for

all n ∈ N, and

λ∗
(j,0) = µj ; λ∗

(0,j) = φ∗(pj) , ∀j ∈ N ,

and by Corollary 2.4,
∞∑

j=1

(λ∗
(0,2j))

−1/2j = +∞ .

As λ∗
(2j,0) = µ2j for all j ∈ N, and µ satisfies Carleman’s condition, then by Theorem

2.1, λ∗ has a representing measure λ∗ on R
2, which is moment determinate. This

implies that (λ∗, φ∗) is a feasible solution of (1.3). Finally, as (λ(n′

ℓ), φ(n′

ℓ)) is a
minimizing sequence of (1.3), then by (6.3),

τ = lim
ℓ→∞

ρnℓ
= lim

ℓ→∞

∫

(x− y)2 dλ(n′

ℓ) =

∫

(x− y)2 dλ∗ [by (6.3)] ,

which shows that (λ∗, φ∗) an optimal solution of (1.3).

Finally, in what precedes we have only used the respective moments λ(n) and φ(n)

of the measures λ(n) and φ(n), and the constraints of (1.5). Hence by considering
a minimizing sequence (λ(n), φ(n)) of (1.5) instead of (1.3), one reaches the same
conclusion.

(ii) If part: Straightforward. Indeed if µ is a Gaussian mixture with φ∗ a mixing
measure of parameters (m,σ) ∈ S then µ = νφ∗ and with λ∗ := µ ⊗ µ, the couple
(λ∗, φ∗) is a feasible solution of (1.3) with value τ = 0, hence an optimal solution
of (1.3).

Only if part: By (i) let (λ∗, φ∗) be an optimal solution of (1.3). As 0 = τ =
∫
(x − y)2dλ∗, it follows that supp(λ∗) ⊂ {(x, x) : x ∈ R}, and therefore λ∗

x = λ∗
y,

i.e., λ∗ = µ ⊗ µ, and therefore as λ∗
y = νφ∗ , one obtains µ = νφ∗ , the desired

result. �

6.2. Proof of Theorem 3.5.

Proof. (i) Let (λ,φ) be a feasible solution of (3.3). As g1(m,σ) = R2 −m2 − σ2,
the constraint Mn−1(g1 · φ) � 0, implies that

φ(σ2n) < R2n ; φ(m2n) < R2n .
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By [13, Proposition 3.6, p. 60], this combined with Mn(φ) � 0, and φ(0,0) = 1,

yields |φ(i,j)| < max[1, R2n] for all i, j with i+ j ≤ 2n. Moreover, λ2n,0 = µ2n, and
by (2.7),

λ(0,2n) = φ(p2n) < (2nR)2n =: ρn .

Again by [13, Proposition 3.6, p. 60], for all (i, j) with i+ j ≤ 2n,

|λ(i,j) | < max[1, λ(2n,0), λ(0,2n)] < max[1, µ2n, ρn] =: ρ′n ,

which implies that the feasible set of (3.3) in compact, and therefore (3.3) has

an optimal solution (λ(n),φ(n)) with value λ(n)((x − y)2) = τn, and as (3.3) is a
relaxation of (1.5), 0 ≤ τn ≤ τ for all n.

(ii) Complete the finite vector λ(n) (resp. φ(n)) with zeros to make it an infinite

sequence λ(n) = (λ
(n)
(i,j))(i,j)∈N2 (resp. φ(n) = (φ

(n)
(i,j))(i,j)∈N2). Then define the new

infinite sequences λ̂
(n)

and φ̂
(n)

by

(6.4)
λ̂
(n)
(i,j) := λ(i,j)/ρk , ∀(i, j) with 2k < i + j ≤ 2k , k = 1, . . .

φ̂
(n)
(i,j) := φ(i,j)/R

2k , ∀(i, j) with 2k < i+ j ≤ 2k , k = 1, . . . ,

so that λ̂
(n)

is an element of the unit ball of ℓ∞, the Banach space of (uniformly)

bounded sequences, and smililarly for φ̂
(n)

. Again, as the unit ball of ℓ∞ is sequen-
tially compact in the weak-star topology σ(ℓ∞, ℓ1), there is a subsequence (nk)k∈N

and infinite vectors λ̂
∗ ∈ ℓ∞ and φ̂

∗ ∈ ℓ∞ such that

lim
k→∞

λ̂
(nk)
(i,j) = λ̂∗

(i,j) ; lim
k→∞

φ̂
(nk)
(i,j) = φ̂∗

(i,j) , ∀(i, j) ∈ N
2 .

Then by the reverse scaling of (6.4) for λ̂
∗
and φ̂

∗
,

(6.5) lim
k→∞

λ
(nk)
(i,j) = λ∗

(i,j) ; lim
k→∞

φ
(nk)
(i,j) = φ∗

(i,j) , ∀(i, j) ∈ N
2 ,

for some infinite vectors λ∗ and φ∗. Next, by (6.5), Mn(λ
∗) � 0, Mn(φ

∗) � 0,
and Mn(gj · φ∗) � 0 for all n, with

λ∗
(j,0) = µj and λ∗

(0,j) = φ∗(pj) , ∀j ∈ N .

As g1(m,σ) = R2 −m2 − σ2, the quadratic module

Q(g) = {
s∑

j=0

θj(m,σ) gj(m,σ) : θj ∈ Σ[m,σ] }

is Archimedean and therefore, by Putinar’s Positivstellensatz [24], φ∗ has a rep-
resenting measure on S. Moreover, as in the proof of Theorem 3.1, by Corollary
2.4,

∞∑

j=1

(λ∗
(0,2j))

−1/2j = +∞ ,

and as λ∗
(2j,0) = µ2j for all j ∈ N, and µ satisfies Carleman’s condition, then by The-

orem 2.1, λ∗ has a representing measure λ∗ on R
2, which is moment determinate.

In particular its marginal λ∗
y with moments (λ∗

(0,j))j∈N is also moment determinate.

Next, let νφ∗ be the measure on R with Gaussian mixture φ∗. As

λ∗
(0,j) = φ∗(pj) =

∫

xj dνφ∗(x) , ∀j ∈ N ,
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and as λ∗
y is moment determinate, this show that λ∗

y = νφ∗ . Hence (φ∗, λ∗) is

feasible for (1.3) with value λ∗((x− y)2). In addition, as τn ≤ τ for all n,

τ ≤ λ∗(x − y)2 = lim
ℓ→∞

λ(n′

ℓ)((x− y)2) ([by (6.5)]) = lim
ℓ→∞

τn′

ℓ
≤ τ ,

so that τ = λ∗((x− y)2), and therefore (λ∗, φ∗) is an optimal solution of (1.3) (and
of (1.5) as well). �
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