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We report a theoretical and experimental investigation of 
fiber Fabry-Perot cavities aimed at enhancing Kerr 
frequency comb generation. The modulation instability 
(MI) power threshold is derived from the linear stability 
analysis of a generalized Lugiato-Lefever equation. By 
combining this analysis with the concepts of power 
enhancement factor (PEF) and optimal coupling, we 
predict the ideal manufacturing parameters of fiber 
Fabry-Perot (FFP) cavities for MI Kerr frequency comb 
generation. Our findings reveal a distinction between the 
optimal coupling for modulation instability and that of the 
cold cavity. Consequently, mirror reflectivity must be 
adjusted to suit the specific application. We verified the 
predictions of our theory by measuring the MI power 
threshold as a function of detuning for three different 
cavities. 

 

1. INTRODUCTION 

In the realm of optical frequency combs (OFC) based on compact 
comb sources [1–5], fiber Fabry-Perot (FFP) resonators with a Q 
factor ranging between 107 and 108 emerge as a compelling 
alternative to ring cavity (RC) resonators. Over the last decade, the 
latter have garnered significant interest, primarily due to their 
diverse applications, ranging from spectroscopy [6] and LIDAR 
[7,8] to telecommunication [9,10] and astronomy[11,12]. They 
have undergone extensive theoretical and experimental 
exploration in various forms, including microresonators [3,13–15] 
and fiber ring cavities [16–18]. Pioneering work by Braje et al. [19], 
followed by Obrzud et al. [20], marked the initiation of research into 
the application of FFP for OFC generation. FFP resonators consist of 
centimeter long fiber sections enclosed by multilayer dielectric 
mirrors, each a few microns thick (Fig. 1). In addition to their 
straightforward design and handling, these resonators ensure 

robust and reproducible coupling, facilitated by FC/PC connectors. 
They feature ceramic ferrules to simplify coupling, along with facets 
polishing and coating, employing highly non-linear fiber (HNL) and 
single-mode fiber (SMF28). OFC generation by Nie et al. [21] 
utilizing multimode 50 µm core fiber is noteworthy. Nie’s findings 
highlighted losses associated with the diffraction of the 
fundamental mode in the mirror, underscoring the advantages of 
multimode fibers in mitigating these effects thus increasing the Q 
factor to 109. The reported results were obtained in the under-
coupling linear regime, where the power reflectivity coefficient (𝑅) 
exceeds the attenuation coefficient (𝑎). Notably, the cold cavity was 
not optimized, particularly regarding intracavity power (𝑃𝐼𝐶 ). A 
cavity is deemed "hot" when nonlinear effects emerge, leading to a 
drift of the resonance towards lower frequencies. Modulation 
instability (MI), is one of the key mechanisms underlying the 
generation of optical Kerr frequency combs, MI induced combs 
were recently theoretically [22] and experimentally studied in a 
single-mode FFP using pulsed pumping at 1550 nm [23]. This paper 
aims to elucidate FFP cavity coupling, the MI power threshold, and 
their dependencies on the actual cavity manufacturing parameters. 

 

Fig. 1. (a) Fiber Fabry-Perot resonator measuring 7 cm in length. Mirrors are 
applied to the surface of fiber optic ferrules, which serve as terminations for 
the cord, functioning as standard fiber connectors, (b) Schematic 
representation of a Fabry-Perot cavity. 
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We present an analytical expression for the MI input power 
threshold, factoring in mirrors’ reflectivity and cavity losses. 
Through this study, we aspire to offer a deeper comprehension of 
the resonator and manufacturing conditions, fostering the 
development of more tailored and less energy consuming cavities 
for applications in both linear regimes and nonlinear OFC 
generation. The paper is organized as follows: In Sec. 2, we delve 
into the optical gain in Fabry-Perot resonators and the concept of 
optimal coupling. Subsequently, in Sec. 3, we derive the MI gain in 
the good cavity limit and express the MI input power threshold as a 
function of mirror reflectivity, losses and detuning. Finally, in Sec. 4, 
we present experimental results on MI threshold. 

2. COLD CAVITY RESONANCE 

A. Fabry-Perot resonator model 

Fiber Fabry-Perot (FFP) configuration comprises a fiber segment of 
length 𝐿 , terminated by two identical dielectric mirrors 
characterized by a reflectivity coefficient 𝜌  and a transmissivity 
coefficient κ. We introduce the transfer function that characterizes 
resonances spaced at fixed intervals in frequency, determined by 
the free spectral range, 𝐹𝑆𝑅 = c/(2𝑛𝑔𝐿) with 𝑐  representing the 

speed of light, and 𝑛𝑔  being the group refractive index. 

Dimensionless linear propagation losses denoted by 𝑎0 correspond 
to losses in a complete roundtrip, and they are related to the 
imaginary part of the propagation constant 𝛼0/2  (m−1) as  
𝑎0 = 𝑒−𝛼0𝐿 . Additional intracavity losses, encompassing mirror 
absorption and diffraction, are accounted for by a parameter 𝜂 . 
Intrinsic losses are then defined by 𝑎 = 𝜂2𝑎0. We first describe the 
resonator in the linear regime and with a single-mode fiber. The 
transfer function of the FFP resonator can then be expressed in 
terms of the roundtrip phase 𝜑 as follows: 

|T(𝜑)|2 =
𝜅4𝑎

1 + (𝑎𝜌2)2 − 2𝑎𝜌2𝑐𝑜𝑠(𝜑)
 (1) 

where 𝜅2 + 𝜌2 = 1 . The transmission at resonance is 
T𝑚𝑎𝑥 = |T(𝜑 = 0)|2 (see Fig. 2). 

B. Power enhancement factor and optimal coupling 

While achieving maximal transmission is crucial, the primary 
objective in OFC generation is to reach a significant intracavity 
power 𝑃𝐼𝐶 . To obtain intra-cavity power build-up at resonance, a 
high-quality (Q) resonator is employed. The intracavity power 
enhancement factor (PEF) is a function of 𝑎 and 𝜌, defined as the 
ratio of intracavity power to cavity input power as: 

PEF =
1 − 𝜌2

(1 − 𝑎𝜌2)2
 (2) 

PEF reaches its maximum for an optimal reflectivity 𝑅𝑜𝑝𝑡 = 𝜌𝑜𝑝𝑡
2 

when 𝜌𝑜𝑝𝑡
2 = (2𝑎 − 1) 𝑎⁄ , which can be approximated at the first 

order to 𝜌𝑜𝑝𝑡
2 = 𝑎  in the vicinity of 𝑎 = 1 . The coupling 

characteristics of FFP cavity are different from a ring cavity, 
especially in the case of equal mirrors. Indeed, only under-coupling 
is possible in this case [24]. All the conditions associated to critical 
coupling (maximum PEF, total absorption and 0 dB transmission) 
cannot be met for the same reflectivity value. Therefore, we define 
the optimal coupling of a FFP resonator as the condition of 
maximum PEF. At optimal coupling, the resonator's transmission is 

equal to 
1

4𝑎
≈ −6dB . By varying 𝑎  and 𝜌 , the coupling regime 

changes from over-coupling to under-coupling with respect to 
optimal coupling. Over-coupling arises when reflectivity is too low, 
resulting in excessive light exiting the cavity. Conversely, under-
coupling occurs when reflectivity is too high, leading to insufficient 
light entering the cavity, signifying low transmissivity of the 
entering mirror. In Figure 2, the transmission at resonance T𝑚𝑎𝑥 
and PEF  are plotted as a function of power reflectivity 𝑅  with  
𝑎 = 0.9985  (retrieved from our spectro-RF measurement setup 
[25] with 7.35 cm long single mode fiber FFP).  We observe 𝑅𝑜𝑝𝑡  

corresponding to the maximal power enhancement factor PEF𝑚𝑎𝑥 
when T𝑚𝑎𝑥  is approximately -6 dB. This singular property was 
confirmed experimentally (Fig. 2. (a)). For 𝑅 < 𝑅𝑜𝑝𝑡 , transmission 

exceeds -6 dB, indicating over-coupling. Conversely, under-
coupling is indicated when T𝑚𝑎𝑥 is less than -6 dB with 𝑅 > 𝑅𝑜𝑝𝑡 . 

 

Fig. 2. (a) Transmission at resonance of a FFP resonator (b) PEF, plotted as a 

function of mirror power reflectivity 𝑅 with 𝑎 = 99.85 %.  An optimal 
coupling (blue circle) is obtained and confirm experimentally with 
𝑅 = 0.9985. 

3. HOT CAVITY RESONANCE 

The designation "hot" is assigned to the cavity once the average 
power within it reaches levels sufficient to induce alterations in the 
fiber’s refractive index, primarily due to thermal or third-order 
nonlinear effects. Our discussion will specifically emphasize 
nonlinear effects, particularly the optical Kerr effect. The 
parameters 𝑎 and 𝜌 in a hot cavity are defined in the same way as in 
a cold cavity. The refractive index varies with optical intensity. Apart 
from the index change, the optical Kerr effect is characterized by 
four-wave mixing (FWM). FWM manifests itself in a degenerate 
manner at specific frequencies, driven by dispersive instabilities, 
also known as temporal modulation instability. 

A. Modulation instability 

The modulation instability phenomenon has been recently 
comprehensively elucidated beyond the mean field limit [22]. In the 
present study, we opt for the mean field approximation, often 
referred to as the good-cavity approximation, yielding a specific 
Lugiato-Lefever equation (LLE) for Fabry-Perot resonators (FP-
LLE). Initially derived from Maxwell-Bloch equations [26], the FP-
LLE has also been established from coupled mode theory [27] and 
nonlinear Schrödinger (NLS) equations [22]. Here to align with 
experimental results, we consider intrinsic losses 𝑎  yielding the 
following FP-LLE. 
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(3) 

where 𝜓(𝜏, 𝑡)  represents the electric field envelope within the 
cavity, 𝑡𝑅  is the roundtrip time, 𝑡 is the fast time within one cavity 

roundtrip (𝑡 ∈ [−𝑡𝑅/2, 𝑡𝑅/2]) and 𝜏  is the slow time over cavity 

roundtrips.  𝛽2 is the group velocity dispersion coefficient, 𝛾 is the 
nonlinear coefficient and 𝛿  is the cavity detuning. The input and 
intracavity powers, respectively 𝑃𝐼𝑁  and 𝑃𝐼𝐶 , of the steady state 
satisfying the equation: 

𝑃𝐼𝐶

𝑃𝐼𝑁

=
1 − 𝜌2

(1 − 𝑎𝜌2)2 + (6𝐿𝛾𝑃𝐼𝐶 − 𝛿)2
 (4) 

From Eq. (4) we see that PEF is the maximum of the ratio 𝑃𝐼𝐶 𝑃𝐼𝑁⁄  
obtained from FP-LLE is identical to Eq. (3). We have conducted a 
linear stability analysis around the stationary state following the 
method used in [26,28,29]. Derivation method adapted to FFP can 
also be found in [22]. This approach enabled us to compute the MI 
parametric gain spectrum for given intra-cavity power and 
detuning. The MI gain exhibits two lobes symmetrically positioned 
around the pump frequency of the incoming field. An optical power 
gain is observed corresponding to these MI lobes, with the 
maximum gain 𝑔𝑚𝑎𝑥  that can be expressed in terms of the intra-
cavity power and losses: 

𝑔𝑚𝑎𝑥 = −
1 − 𝑎𝜌2

2𝐿
+ 𝛾 𝑃𝐼𝐶 (5) 

where 𝛾 = 2𝜋𝑛2/(𝜆𝐴𝑒𝑓𝑓) and 𝐴𝑒𝑓𝑓  refers to the effective area of 

the fiber. The intracavity power required to surpass losses and 
attain the maximum gain 𝑔𝑚𝑎𝑥 > 0, reads as:  

𝑃𝐼𝐶,𝑡ℎ =  
1 − 𝑎𝜌2

2𝐿𝛾
 (6) 

Beyond this MI power threshold 𝑃𝐼𝐶,𝑡ℎ  the generation of photons 
occurs through degenerate FWM from the pump frequency to 
frequencies within the MI lobes. 

B. MI power threshold 

Considering both 𝑃𝐼𝐶 𝑃𝐼𝑁⁄  (Eq. 4) and 𝑃𝐼𝐶,𝑡ℎ  (Eq. 6), we can 
compute the necessary injected power in order to reach MI 
threshold (𝑃𝐼𝑁,𝑡ℎ ) and appreciate its dependence on the cavity 
detuning 𝛿 and the reflectivity 𝜌 according to: 

𝑃𝐼𝑁,𝑡ℎ =
1 − 𝑎𝜌2

2𝐿𝛾(1 − 𝜌2)
[(1 − 𝑎𝜌2)2

+ (3(1 − 𝑎𝜌2) − 𝛿)2] 

(7) 

Input MI threshold (Eq. 7) is plotted in Fig. 3 as a function of 
reflectivity and detuning. We can appreciate graphically that  𝑃𝐼𝑁,𝑡ℎ 

reaches a unique minimum value 𝑃𝐼𝑁,𝑡ℎ,𝑚𝑖𝑛  labeled by a red spot 
which is given by: 

𝑃𝐼𝑁,𝑡ℎ,𝑚𝑖𝑛 =
27(1 − 𝑎)2𝑎

8𝐿𝛾
 (8) 

 

Fig. 3. Contour plot of input MI power threshold as a function of mirror 
reflectivity and detuning with intrinsic losses 𝑎 = 0.9985. We show the cold 
cavity optimal reflectivity obtained with PEF (black dashed line) and the MI 

optimal reflectivity 𝑅𝑀𝐼 = 99.925%  and detuning 𝛿 = 0.0068  (red 
point). 

The corresponding reflectivity 𝑅𝑀𝐼 = 𝜌𝑀𝐼
2 and detuning 𝛿𝑀𝐼  are 

expressed analytically as a function of intrinsic losses: 

𝜌𝑀𝐼
2 =

3𝑎 − 1

2𝑎
 (9) 

𝛿𝑀𝐼 =
9

2
(1 − 𝑎) (10) 

Hence, a new optimal reflectivity 𝑅𝑀𝐼  is observed for the 
minimization of 𝑃𝐼𝑁,𝑡ℎ . We can appreciate graphically (Fig. 3) and 

analytically that 𝑅𝑀𝐼 > 𝑅𝑜𝑝𝑡  for a passive cavity ( 𝑎 < 1 ). The 

obtained 𝑃𝐼𝑁,𝑡ℎ,𝑚𝑖𝑛  has to be compared to the minimum power 
threshold when taking 𝑅𝑜𝑝𝑡  which is 𝑃𝐼𝑁,𝑡ℎ,𝑅𝑜𝑝𝑡

= 32(1 − 𝑎)2𝑎/

8𝐿𝛾. This optimal reflectivity is shifted towards higher reflectivity 
in order to minimize 𝑃𝐼𝑁,𝑡ℎ,𝑚𝑖𝑛 . The reduction in power is 5/32 =
15.625%. This result highlights the necessity of under-coupling the 
resonator to optimize the generation of MI in FFP.  This under-
coupling is crucial, even though the resonator will not be optimized 
in terms of linear transmission. In this scenario, we achieved an 
optimum transmission loss of -11 dB (compared to  
-6 dB to maximize PEF), concurrently increasing both the Q factor 
and finesse. Within the scope of FFP resonator with a Q factor 
generally approaching 108 this enhancement is a significant 
advantage due the required high input power. It is also important to 
note that the design of under-coupled FFP dedicated to lower the MI 
threshold will not be compatible and optimized for linear 
applications such as optoelectronic oscillator whose cold cavity 
performance is compulsory. Regardless of the reflectivity, the best 
detuning always corresponds to the maximum of the tilted 
resonance reaching the power threshold (Fig. 4(a)). 

4. MI TRESHOLD MEASUREMENT 

Since controlling losses during the manufacturing process is 
challenging, comparing resonators with varying reflectivity but 
similar intracavity losses are difficult to realize. However, we can 
readily conduct a study based on the variation of detuning. This is 
the approach we propose in this experimental section. We select 
three resonators of different fiber types, each with nearly identical 
losses and reflectivity, resulting in a finesse 𝐹 around 500.  



 

Fig. 4. (a) Theoretical nonlinear transfer function of a LEAF resonator of 7 cm 
with 𝑅 = 0.9984  and 𝑎 = 0.995  for a scan to the upper ∆ (blue dashed 
line). MI area is highlighted in orange. (b) MI input power threshold as a 
function of detuning for three different fiber resonators with a close couple 
(𝑅, 𝑎). Solid lines are theory [Eq. (7)] while crosses show experimental data. 
Green: LEAF fiber as in (a); red: HNL fiber; blue: SMF28 fiber. 

Mirrors are designed by depositing 9 pairs of alternated high 
(nH=2.2) and low (nL=1.47) refractive index quarterwave layers 
achieving a reflectivity of 99.84% at 1550 nm and a total thickness 
of 4.2 µm. Fig. 4(a) illustrates the method used to link input power 
threshold and detuning with large effective area fiber (LEAF) 
( 𝐴𝑒𝑓𝑓 = 72 µ𝑚2 ) resonator features. Starting from a negative 

detuning and by increasing the detuning, intracavity power follows 
the upper branch to the tilted resonance peak and then jumps to the 
lower branch (blue dashed line in Fig.4(a)). MI is observable when 
𝑃𝐼𝐶 exceeds 𝑃𝐼𝐶,𝑡ℎ  (green circle in Fig. 4). By experimentally 
detecting the beginning of MI we can determine the normalized 
detuning ∆𝑀𝐼= 𝛿𝑀𝐼/𝛼 , where 𝛼 = 1 − 𝑎𝜌2 , for which the pump 
power equals 𝑃𝐼𝑁,𝑡ℎ. By increasing the pump power from 0 to 2 W, 
and by repeating the detuning scans, we obtain the detuning values 
for which MI appears as a function of the pump power (Fig. 4(b)). 
The theoretical predictions are plotted in Fig. 4(b) (blue, green and 
red solid lines) using Eq. (7). The three resonators have similar 
reflectivity and losses but the HNL one (𝐴𝑒𝑓𝑓 = 12 µ𝑚2; red line 

and crosses in Fig. 4(b)) has additional insertion losses because the 
upstream system is single-mode (SMF28) with a higher effective 
area 𝐴𝑒𝑓𝑓 = 85 µ𝑚2 . Insertion losses elucidate why the input 

power threshold 𝑃𝐼𝑁,𝑡ℎ is higher than expected with such a highly 
nonlinear fiber. The experimental measurements are in perfect 
agreement with our theoretical prediction. 

5. CONCLUSION 

We analyzed the impact of mirror reflectivity on the performance of 
a FFP resonator. We have shown that optimizing the resonator for 
nonlinear operation result in a different set of parameters than for 
linear regime. We have revealed that employing an under-coupled 
cavity by a careful selection of the reflectivity can significantly 
reduce by 15.6% the pump power required to induce a modulation 
instability comb. This result is particularly noteworthy as FFP 
systems require intense pumping for successful comb generation; 
Hence, reducing this threshold marks a substantial advancement in 
comb generation. Moreover, we have shown that the laser detuning 
can also be leveraged to optimize MI generation, yielding results 
that closely reproduce our experimental results. Collectively, our 

findings deepen the comprehension of FFP design prerequisites 
essential for the generation of Kerr frequency combs. 
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