
HAL Id: hal-04634897
https://laas.hal.science/hal-04634897v1

Submitted on 4 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-camera GPS-free Nonlinear Model Predictive
Control strategy to traverse orchards

Antoine Villemazet, Adrien Durand-Petiteville, Viviane Cadenat

To cite this version:
Antoine Villemazet, Adrien Durand-Petiteville, Viviane Cadenat. Multi-camera GPS-free Nonlinear
Model Predictive Control strategy to traverse orchards. European Conference on Mobile Robots, Sep
2023, Coimbra (PT), Portugal. �hal-04634897�

https://laas.hal.science/hal-04634897v1
https://hal.archives-ouvertes.fr

Multi-camera GPS-free Nonlinear Model Predictive Control strategy to
traverse orchards

A. Villemazet1,2, A. Durand-Petiteville3 and V. Cadenat1,2

Abstract— This paper deals with autonomous navigation
through orchards. It proposes a multi-camera GPS-free strategy
relying on a Nonlinear Model Predictive Control (NMPC)
scheme to follow a reference path. This latter, based on a
Voronoi diagram for the row traversals or a spiral model for the
headland maneuvers, is computed as a Non-Uniform Rational
Spline (NURBS) curve making it possible to deal with multiple
orchard layouts. The method has been implemented on our
robot and validated through experimentation conducted in an
orchard.

I. INTRODUCTION

Robotics has been identified as one of the major solutions
to promote truly sustainable agriculture where the necessary
production increase matches environmental concerns [1]. In
this work, we focus on orchard mechanization, and more
specifically on the autonomous navigation system, which is
mandatory to realize some agricultural tasks such as mowing,
spraying, or harvesting. When moving through an orchard,
a robot has to autonomously drive from the entrance of an
alley to its exit, and then move to the next alley by navigating
in the headlands, i.e., the uncultivated area between the edge
of the trees and the orchard boundary used for machinery
maneuvers. It repeats these two steps to cover the whole
area of interest (see Fig. 1(a)).

As the GPS signal is often blocked or perturbed by the
dense canopy or nets protecting the trees [2], the existing
navigation strategies rely on embedded sensors, either vision
systems [3] [4] [5] [6] or LiDAR sensors [7] [8]. These works
propose to compute and then follow a straight line passing
through the middle of the alleys. The obtained line may be
disturbed by the natural environment where branches and
foliage are uneven and lighting conditions significantly vary.
Moreover, these approaches do not allow coping with modern
orchards whose circular layout is specifically designed to
control pests thanks to ecological processes [9] (see Fig.
1(b)). Regarding maneuvers in the headland, the few existing
works on this topic use dead reckoning because of the lack of
sensory information in these zones. In such a case, the exe-
cution robustness and repeatability are significantly reduced
[10]. We may nonetheless mention the following methods

1Univ. de Toulouse, CNRS, UPS, Toulouse, France
2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

{avillemaze, cadenat}[at]laas.fr
3Departamento de Engenharia de Mecânica, Universi-

dade Federal de Pernambuco UFPE, Recife, PE, Brazil
adrien.durandpetiteville[at]ufpe.br

This work is funded by the Agence Nationale de la Recherche (ANR-20-
CE33-0011-01) and the Fundação de Amparo a Ciência e Tecnologia do
Estado de Pernambuco (FACEPE APQ-0139-3.04/20)

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

(a) Straight orchard. (b) Gotheron circular or-
chard.

Fig. 1. Example of orchards.

where dead reckoning is coupled with other techniques in
an attempt to overcome this drawback: a slip compensation
solution [11], automatic detection of the rows extremities
using either a laser [12] or dedicated artificial landmarks
[13]. It then would be interesting to provide a navigation
strategy able to cope with the different types of orchard
layouts, while improving the headland maneuver robustness
and avoiding any environmental instrumentation. Some of
our earlier works have proposed to perform the U-turn using
data provided by a 2d laser rangefinder. We have designed a
sensor-based nonlinear controller following a spiral centered
on the last row tree [14] [15]. This approach was later
extended to unify both in-row and headland navigation in
a unique spiral-based framework [16] in a straight orchard.
Despite promising results regarding the use of a unique
sensor-based framework for both parts of the navigation,
the solution presented oscillation issues, especially when re-
entering the alley. This was due to the idea of modeling the
orchard navigation as a point regulation problem where the
robot had to reach a sequence of waypoints, i.e., without
considering the robot orientation. Moreover, it is necessary
to use a more robust perception method. Indeed, although
allowing to validate the approach in simulation, a 2d laser
rangefinder has a planar field of view, not allowing to detect
trees in a robust way in an orchard.

In this paper, we present a novel sensor-based framework
allowing the robot to navigate through an entire orchard,
i.e., both the alleys and the headlands, without adding any
landmark nor considering a particular layout. First, the robot
has been equipped with a vision system made of four RGB-D
low-cost cameras. On the one hand, it offers a relatively inex-
pensive solution to acquire 3D data, thus increasing the tree
detection capabilities with respect to 2D laser rangefinder-
based solutions. On the other hand, it allows benefiting from
an overall large field of view to perceive trees both in the row
and in the headland, making sensor-based control possible.

https://www.inrae.fr/en/news/gotheron-orchard-when-biodiversity-becomes-circular

Second, instead of defining the orchard navigation in terms
of point regulation, we now state it as a path-following
problem, to reduce the previous oscillations. The reference
path is a local path iteratively updated using the position
of the trees computed by the vision system. To do so, we
use a Voronoi diagram for row traversals and a spiral model
for the headland maneuvers. Next, a Non-Uniform Rational
Spline (NURBS) curve is computed to unify the different
sections of the path and provides a smooth reference to
follow. This problem formulation presents three advantages:
(i) the in-row and headland navigation are unified during
the path computation and are not merged at the controller
level as in [16]; (ii) it allows dealing with numerous orchard
layouts (and not only rectangle-shaped ones); and (iii) it
offers a more consistent reference than the straight-line
following approach and takes into account the robot orien-
tation. The path following is performed using a Nonlinear
Model Predictive Control (NMPC) scheme coupled with
a Frenet-based formulation of the problem. It provides an
efficient minimization of the error between the computed and
desired paths over the whole prediction horizon while taking
into account specific constraints such as actuator saturation.
Finally, in order to evaluate the relevancy of the proposed
approach, it is first compared with [16] using the Gazebo
simulator, and next implemented on the Hunter 2.0 robotic
platform to navigate in an orchard.

The rest of the paper is organized as follows. We first
present the robotic system before focusing on the proposed
navigation framework. The simulated and experimental re-
sults are then presented to show the approach’s efficiency.

II. MODELLING

(a) The perception system
and the related frames.

(b) The robot model.

Fig. 2. The robotic system models.

The considered platform is the Agilex Hunter 2.0 car-like
robot equipped with a laser rangefinder and four RGB-D
cameras (see Fig. 2(a)). To obtain the necessary wide field
of view, two cameras are placed at the front of the robot and
respectively oriented left forward and right forward, while
the two other ones are placed on the sides of the platform
(see Fig. 2(a)). To model the system, we define Fw =
(Ow,xw,yw, zw) as the world frame, Fr = (Or,xr,yr, zr)

as the robot frame, Fl = (Ol,xl,yl, zl) as the laser frame,
and Fci = (Oci ,xci

,yci
, zci

) as the frame of the ith

camera, with i ∈ [1, 4]. We rely on the Ackermann model
to represent the robot and therefore its pose is given by
χ(t) = [x(t), y(t), θ(t), γ(t)], where x(t) and y(t) are the
coordinates of Or in Fw, θ(t) represents the angle from xw

to xr, and γ(t) is the angular position of the steering angle
(see Fig. 2(b)). Moreover, we define the control vector by
U(t) = [υ(t), γ(t)] where υ(t) is the linear velocity along
xr. For such a system, considering L the distance between
the front and rear wheels, the kinematic model is:

ẋ(t) = υ(t) cos(θ(t))

ẏ(t) = υ(t) sin(θ(t))

θ̇(t) = υ(t)
L tan(γ(t))

(1)

III. ORCHARDS TRAVERSAL STRATEGY

To navigate in the orchard, the robot has to cross an alley,
maneuver in the headlands to switch from an alley to the
next one, and repeat these two steps until its navigation is
completed. In this section, we detail the different processes
involved in the proposed navigation framework. We first
present the vision system and data processing. Next, we
introduce our solution to compute the local path to follow
both in the alleys and in the headlands. Finally, our NMPC-
based path-following strategy is detailed.

A. Data processing

(a) Top view of a point cloud con-
taining shadows due to the presence
of trees [6].

(b) Example of
four point clouds
expressed in Fl.

Fig. 3. Data processing examples.

The presented navigation strategy relies on the position
of the tree trunks in the current robot frame. The positions
are computed using the point clouds provided by the four
onboard RGB-D cameras. To do so, we rely on the algorithm
[6] which estimates the tree trunk positions by detecting
shadows in the point cloud due to the presence of trees (see
Fig. 3(a)). The algorithm processes, therefore, the four point
clouds separately and provides the position of the detected
trees in each camera frame Fci .

The tree coordinates must then be expressed in a common
frame, which is the laser frame Fl. Indeed, the laser field
of view overlaps the one of the four cameras, allowing
computing the extrinsic parameters between Fl and the four
Fci . The calibration process between Fl and Fci , i.e., the
computation of the homogeneous transformation matrix Hl|ci

is performed using [17]. An example of the result is shown
in Fig. 3(b).

B. Path generation

In this section, we present how the tree coordinates in the
current robot frame are used at each iteration to generate
a new path to follow. The proposed path generation is a
two-step process: first, we calculate a set of waypoints,
and next, we compute a path based on these waypoints.
The waypoints computation is done differently for the alley
traversing and the headland navigation. For the alleys, we
generate a Voronoi diagram [18] using the tree coordinates.
The vertices of the diagram, which approximately lie in the
middle of the row, will then be used to compute the path to
follow (see steps 1 and 5 in Fig. 5).

Fig. 4. Several robot frames while describing a spiral.

For the headland maneuver, we propose to compute way-
points lying on a spiral centered on the last tree of the row,
called the pivot point and denoted Op (see step 3 in Fig. 5).
It is used as the origin of the frame Fp, whose orientation
is arbitrary. We rely on the spiral model presented in [19]
where Op, the pivot point, is considered as the spiral center,
d(t) is the distance between the robot and the pivot point,
i.e., between Op and Or, and α(t) is the oriented angle from
the xr vector to the OrOp one (see Fig. 4). Finally β(t) is
the angle between xp and OpOr. It is shown in [19] that if
both υ(t) and α(t) are constant, then Or describes a spiral,
and the following equations hold:

ḋ(t) = −υ cosα (2)

d(β) = d0e
cotα(β0−β) (3)

Eq. (2) shows that the type of spiral only depends on
parameter α. Indeed, if α ∈ [−π; 0], then Or turns clockwise
with respect to Op and counter-clockwise if α ∈ [0;π].
Moreover, if α ∈]−π;−π

2 [∪]
π
2 ;π[, then the spiral is outward

and inward if α ∈] − π
2 ; 0[∪]0;

π
2 [. It becomes a circle if

α = ±π
2 , with a radius equal to d. Thus, the design of

the spiral first consists in selecting a value for α and an
initial distance d0. Finally, the set of waypoints belonging
to the spiral is computed over an angular horizon δβ using
(3). Note, that the frame Fp is readjusted at each iteration
to align the xp and OpOr vectors. This approach allows
maneuvering in the headlands on the sole basis of the current

exteroceptive data and does not require any localization
process.

The waypoints having been computed for both alleys and
headlands, it is then necessary to connect them to make the
robot navigate in the orchard. In other words, we have to
connect the spiral to the last vertex of the Voronoi diagram
to make the robot exit the alley and to connect the spiral to
the first vertex of the new diagram when the robot enters a
new alley. First, when the robot exits the alley, d0 is defined
as the distance between the pivot point Op and the last vertex
of the diagram in order to connect the two parts of the path.
Moreover, we set up α = ±π

2 to make the robot follow
a circle of radius d0 centered on the pivot point (see step
2 in Fig. 5). This approach initially makes it possible to
safely turn around the pivot point but does not guarantee
that the spiral will connect with the first vertex of the next
alley diagram. Thus, once the next alley is visible and it
is possible to compute the next Voronoi diagram, the spiral
parameters are modified. First, α is adjusted to make the
spiral pass via the vertex (from here the path is no more a
circle, but a spiral), and the angular horizon δβ is modified to
make coincide the end of the spiral with the vertex (see step
4 in Fig. 5). Setting up the spiral parameters as described
guarantees the continuity between the different parts of the
path.

Fig. 5. Examples of path generation. Green circle: tree - Black circle:
pivot point - Orange circle: Voronoi vertex - Dark red circle: Spiral point
- Blue curve: NURBS - Step 1/5: alley crossing - Step 2: path connecting
the alley crossing to the headland maneuver - Step 3: headland maneuver -
Step 4: path connecting the headland maneuver to the alley crossing.

Finally, we propose to use a NURBS (Non-Uniform Ratio-
nal B-Spline) [20] curve to compute a smooth path passing
through the waypoints. To summarize, this particular type
of curve is defined by a set of weighted control points that
locally influence its curvature. Mathematically, its general

form is given by [20]:

C(u) =

∑n
i=1 Ni,p(u)wiPi∑n
i=1 Ni,p(u)wi

, u ∈ [0, 1] (4)

where n is the number of control points Pi, wi are the
corresponding weights and Ni,p are the B-Spline basis
function of pth degree. More details are available in [20].
In our case, the control points are either the endpoints of
the Voronoi segments (see orange circles in Fig. 5) or the
points belonging to the spiral (see dark red circles in Fig.
5). The NURBS curve was chosen because of its three
properties which are useful in our application: the degree
of the curve which depends on the number of control points,
the knot vector (used by the B-Spline basis function), and
the weighted control points. First, the high degree of the
curve allows for generating a path for both straight and
curved tree rows as well as the circular path for the headland
maneuver. Next, the knot vector ensures that the curve passes
through the first and the last control points allowing to avoid
an abrupt re-alignment of the robot on the reference path.
Finally, the weights allow us to adjust the influence of the
control points on the curve to make a smooth path and thus
obtain a better robot trajectory. We propose to define them as
follows: [1, w1, ..., wn−2, 1]. First, the first and last weights
are set to 1 with respect to the second property. w1, ..., wn−2

must thus be chosen as a compromise to obtain the most
stable path over the iterations.

C. Path following

Fig. 6. Principle of the path tracking. [21]

We now present our approach for following a given path
using an NMPC controller. As shown in Fig. 6, it consists
in orthogonally projecting the center of the robot Or on
the reference path to define a Frenet frame F ′

r associated
with Or. It is then possible to define θe as the orientation
error and ye as the lateral error. The path following is then
performed by minimizing the error vector epf = [ye, θe]
over a prediction horizon. This approach does not require
including the linear velocity in the minimization problem as
it is not aiming at reaching a set of points at a given instant
sampled from the path, such as in [16]. The linear velocity
can be fixed at a constant value or computed accordingly

to a different criterion, such as terrain traversability. Thus,
in this work, the linear velocity υ(t) is considered constant
so that υ(t) = υ, (υ ̸= 0). The only control input is thus
the steering angle γ. The path following is performed via
an NMPC scheme considering the following optimization
problem:

γ∗(k) = min
γ(k)

(JNp(epf (k), γ(k))) (5)

with

JNp
(epf (k), γ(k)) =

k+Np∑
p=k+1

êpf (p)
T êpf (p)

+ λγ(γ(p)− γ(p− 1))2

(6)

subject to

êpf (p+ 1) = f(êpf (p), γ(p)) (7a)
êpf (k) = epf (k) (7b)

C(γ∗(.)) ≤ 0 (7c)

It computes an optimal steering angle sequence γ∗(k) of
γ(k), with γ(k) = [γ(k), ..., γ(k + Np)] which minimizes
the cost function JNp over a prediction horizon of Np steps
while taking into account the physical boundaries of the robot
actuators as constraints C(γ∗(k)). The values of both the
prediction and control horizons are considered equal.
Cost function: JNp

is divided in two parts. The first one is
defined as the sum of the quadratic predicted configuration
êpf , and is intended to track the reference path. The second
one is the sum of the quadratic differences between two
consecutive commands, weighted by the parameter λγ , which
allows smoothing of the control inputs and limiting velocities
variations between two instants.
Remark: To project the predicted positions onto the reference
path, we discretize the NURBS curve and search for the
closest position belonging to the path for each prediction.
The search relies on the k-d tree structure [22] which
proposes an efficient nearest neighbor search based on a
space-partitioning data structure.
Prediction model: Assuming that the steering angle γ(t1) is
constant between the instant t1 and t2 = t1 + Ts, where Ts

is the sampling time, the robot predicted pose is computed
by integrating (1) with a Runge-Kutta method of order 4.
Input constraints: The input constraints take into account
the physical limits of the mobile base. They are given by:[

γ(i)− γu
γl − γ(i)

]
≤ 0 (8)

where i ∈ [1, Np], γl and γu are respectively the lower and
upper boundaries.

IV. RESULTS

In this section, we present the obtained results, first using
a simulator, then using a robotic platform. In both cases,
the considered robot is the Hunter 2.0 car-like mobile base.
The robot is equipped with a vision system consisting of
four Intel Realsense RGB-D cameras, two D455 and two

D435, positioned as shown in Fig. 7(b) to enlarge the field of
view as explained earlier. The robot has also been endowed
with Slamtech’s RPLIDAR S1 range-finder for the camera
calibration step. The physical boundaries of the Hunter 2.0
actuators as well as the optimal ranges of the cameras are
shown in Table I.

(a) Side view. (b) Top view.

Fig. 7. Robotic platform.

TABLE I
SYSTEM SPECIFICATIONS.

minimum range maximum range
Linear velocity −1.5 m/s 1.5 m/s
Steering angle −0.461 rad 0.461 rad

D455 0.6 m 6 m
D435 0.3 m 3 m

Furthermore, the robot is equipped with an NVIDIA Jetson
Xavier NX GPU and an Intel Core i7-1165G7 48 GB RAM
CPU. The former is dedicated to data processing while the
latter calculates the control inputs. The implementation relies
on the C++ 14 language and the ROS middleware. The
data processing part uses the OpenCV and PCL libraries
and is partially implemented using the CUDA language.
The NMPC part is based on several libraries allowing to
implement the following features: the clustering method, the
Voronoi diagram, the NURBS curve, the k-d tree structure
and the SQP solver.

A. Simulation

We first compare the proposed approach, the NURBS-
based method, with the one described in [16], the spiral-
based method. We recall that the NURBS-based method
relies on a path following while the spiral-based one consists
in reaching a sequence of positions. The simulations are per-
formed with the straight and circular orchards shown in Fig.
8(a)) and Fig. 8(b)) where the trees’ position and orientation
were randomly modified to obtain a more realistic layout.
The parameters for both methods are listed in Table II. For
the spiral-based method, the set of parameters is similar to
the one used in [16] with the exception of the solver tolerance
values which are slightly modified to increase performance
in the circular orchard. In addition to using a different cost
function, path-following vs. positioning, the methods differ

in their use of a terminal constraint. Indeed, the spiral-
based method requires a terminal constraint to guarantee the
stability of the positioning process while it is not required for
the path-following approach. Finally, the lower/upper limits
of the input constraints γl and γu in the NURBS-based
method are no longer the physical limits of the steering angle
of the Hunter 2.0 actuators, as in the spiral-based method, but
the maximum positions reachable in Ts second (± 2 degrees
for the Hunter 2.0). This allows only feasible commands to
be calculated for the robot, thus reducing solver disturbances
between iterations and improving robot behavior.

(a) Simulated straight or-
chard.

(b) Simulated circular or-
chard.

(c) Robot trajectories in the
straight orchard.

(d) Robot trajectories in the cir-
cular orchard.

(e) Computed steering angles in the straight
orchard.

(f) Computed steering angles in the circular
orchard.

Fig. 8. Navigation results in simulation. (c-d-e-f) Blue plots: spiral-based
method results - Orange plots: NURBS-based method results - (e-f) Green
vertical lines: Start of the alley crossing for the spiral-based method (dashed
lines) and the NURBS-based one (dotted lines) - Red vertical lines: Start of
the headland maneuver for the spiral-based method (dashed lines) and the
NURBS-based one (dotted lines).

Figure 8 presents the results obtained for both methods
and orchard layouts. In Fig. 8(c) and Fig. 8(d), it can
be seen that the robot successfully achieves the navigation

https://github.com/cdalitz/hclust-cpp
https://github.com/JCash/voronoi
https://github.com/pradeep-pyro/tinynurbs
https://github.com/jlblancoc/nanoflann
https://github.com/stevengj/nlopt

TABLE II
SIMULATION PARAMETERS.

Approach υ Ts Np Maximum timea Absolute tolerancea ϕZEC
b Number of points NURBS wi λγ

Spiral 1 0.2 12 0.16 10−3 10−4 N/A N/A N/A
NURBS 1 0.1 20 0.09 10−6 N/A 3000 10−2 10
aStopping criterion of the SQP solver.
bZero terminal equality constraint tolerance.

task in the straight and curved orchards relying on both
the spiral-based and the NURBS-based methods. Indeed, it
successfully drives through the three alleys and maneuvers
in the headlands to switch from one alley to the next one
performing a 126 meters long path in the straight orchard
and a 187 meters long one in the circular one. Thus, from a
task point of view, both approaches are capable of navigating
in different orchard layouts unlike other works focusing on
straight lines. However, from a control perspective, it can
be noticed that the spiral-based method tends to generate
oscillations when the path is curved (entrance of a new
alley or in the alleys of the circular orchard). This is due
to the fact that it is a positioning approach not taking into
account the robot’s orientation. Thus, as long as the robot
is oriented toward the next goal point, it navigates without
oscillating, e.g., when crossing the straight alleys. However,
when it is not initially oriented toward the point to reach,
it has a tendency to oscillate e.g., when entering a new
alley or driving through a curved alley. On the contrary,
the NURBS-based method presented in this paper does not
lead to such oscillations. Indeed, using a path-following
formulation of the problem allows for taking into account
the robot’s orientation. Thus, the quality of the robot path
is consistent when navigating in a straight or curved alley
or when maneuvering in the headlands. This analysis is
supported by the evolution of the steering angles shown in
Fig. 8(e) and 8(f). Indeed it can be seen that the value of
the steering angle varies more for the spiral-based approach
than for the NURBS-based one, for both orchard layouts.
Thus, despite the interest in the spiral-based method, the
NURBS-based method significantly improves the quality of
the navigation system.

B. Experimentation

To show the efficiency of the NURBS-based method, we
conducted an experiment at the agricultural high school1 in
Auzeville-Tolosane, France. The considered orchard has 40
meters long by 4 meters wide tree rows with a space of
1 meter between two consecutive trees. At the time of the
experiments, only four tree rows were usable. The following
parameters were chosen: υ = 0.5m/s, Ts = 0.1s, Np =
20, which corresponds roughly to a prediction window of 1
meter, and λγ = 5. The other parameters remain identical to
the simulation.

The orchard navigation is presented in the attached video.
Some additional snapshots, completed with an RVIZ view
of the detected trees and the computed path, display the

1”Lycée Général et Technologique Agricole des Sciences Vertes”

(a) Alley crossing.

(b) Beginning of the clockwise headland ma-
neuver.

(c) Clockwise headland maneuver.

(d) Counter-clockwise headland maneuver.

(e) Entering the next alley.

Fig. 9. Navigation snapshots - left: robot centered RVIZ data visualization
(green circle: detected trees - blue circle: selected pivot point - orange circle:
NURBS control points - blue curve: NURBS) - right: video screenshots.

main key steps of the navigation in Fig. 9. As shown in
the video, the navigation task is correctly achieved. The
robot successfully moves along the three alleys twice and
performs two clockwise and two counter-clockwise U-turn
maneuvers in the headlands. It has thus realized a 222 meters
long path in 480 seconds. Now, let us go into further details
and analyze the main steps of the navigation: the sequence
of row followings and U-turn maneuvers. First, the system
successfully computes a path based on the tree positions
allowing to drive through the alley (see Fig. 9(a)). The path
computing/following process is repeated at each iteration

https://drive.google.com/file/d/1ETrccSsNOE7ZZy9FLKkIjpcjgL_lVemp/view?usp=sharing

until the row crossing is achieved. Once the robot gets closer
to the end of the alley, one of the last trees is selected as
the pivot point and the generated path is composed of both
a row crossing section and a spiral one (see in Fig. 9(b)).
The pivot point is chosen so that the robot makes a loop
in the orchard and thus sequences the four U-turns. Next,
the robot performs the clockwise/counter-clockwise headland
maneuver following a spiral computed on the sole basis of
the pivot point as seen in Fig. 9(c) and 9(d). Finally, in Fig.
9(e) the robot is about to reach the next alley. The spiral
parameters are adjusted to connect the spiral section of the
computed path to the row-crossing section. By doing so, the
robot manages to enter the next alley and then restart the
crossing step.

Fig. 10. Computed and applied steering angles. Blue line: computed
steering angles - Orange line: Applied steering angles - Green vertical
dashed line: beginning of the alley crossing - Red vertical dashed line:
beginning of the headland maneuver.

Finally, the computed and applied commands are displayed
in Fig. 10. As shown in this figure, the computed steering
angle tends towards 0 degrees during the alley crossings and
towards ± 18 degrees during the headland maneuvers, which
is consistent with the orchard layout. The variations are
mainly due to the variations of the computed tree coordinates.
Indeed, these latter are computed on the sole basis of the
current data and the results may differ from one iteration to
the other. As the command frequency rate is higher than the
steering angle capabilities, the robot path is not impacted by
these oscillations. This leads to appropriate overall behavior
and thus validates the control strategy.

V. CONCLUSION

This paper presents a novel multi-camera-based NMPC
strategy allowing autonomously navigating through vari-
ous shaped orchards without instrumentation. The proposed
method relies on an original fully vision-based computation
and update of the reference path and does not require any
map. The path following problem is expressed using the
NMPC framework, making easier the transition between in-
row and headland navigation and the constraints handling.
The approach has been implemented and validated through
an experimental campaign conducted in an orchard. The
obtained results show the relevance and efficiency of the
approach. Regarding future works, we plan to increase the
perception system robustness by adding a particle filter able
to track the trees and coupling the point processing to
an image-based tree detection. We also aim at integrating
new constraints in NMPC to avoid obstacles and to reduce
undesired vibrations due to rough terrains.

REFERENCES

[1] J. F. Reid, “The impact of mechanization on agriculture,” Bridge,
vol. 41, no. 3, pp. 22–29, 2011.

[2] M. Li, K. Imou, K. Wakabayashi, and S. Yokoyama, “Review of
research on agricultural vehicle autonomous guidance,” International
Journal of Agricultural and Biological Engineering, vol. 2, no. 3, pp.
1–16, 2009.

[3] J. Radcliffe, J. Cox, and D. M. Bulanon, “Machine vision for orchard
navigation,” Computers in Industry, vol. 98, pp. 165–171, 2018.

[4] S. Opiyo, C. Okinda, J. Zhou, E. Mwangi, and N. Makange, “Me-
dial axis-based machine-vision system for orchard robot navigation,”
Computers and Electronics in Agriculture, vol. 185, p. 106153, 2021.

[5] J. Gai, L. Xiang, and L. Tang, “Using a depth camera for crop row
detection and mapping for under-canopy navigation of agricultural
robotic vehicle,” Computers and Electronics in Agriculture, vol. 188,
p. 106301, 2021.

[6] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Tree detection with low-cost three-dimensional sen-
sors for autonomous navigation in orchards,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3876–3883, 2018.

[7] P. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden, and
G.-H. Kim, “Robot navigation in orchards with localization based
on particle filter and kalman filter,” Computers and Electronics in
Agriculture, vol. 157, pp. 261–269, 2019.

[8] A. Danton, J.-C. Roux, B. Dance, C. Cariou, and R. Lenain, “De-
velopment of a spraying robot for precision agriculture: An edge
following approach,” in 2020 IEEE Conference on Control Technology
and Applications (CCTA). IEEE, 2020, pp. 267–272.

[9] A. Favery. The gotheron orchard: when biodiversity
becomes circular. [Online]. Available: https://www.inrae.fr/en/news/
gotheron-orchard-when-biodiversity-becomes-circular

[10] S. G. Vougioukas, “Agricultural robotics,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 2, pp. 365–392, 2019.

[11] V. Subramanian and T. F. Burks, “Autonomous vehicle turning in the
headlands of citrus groves,” in 2007 ASAE Annual Meeting. American
Society of Agricultural and Biological Engineers, 2007, p. 1.

[12] G. Bayar, M. Bergerman, A. B. Koku, and E. Ilhan Konukseven, “Lo-
calization and control of an autonomous orchard vehicle,” Computers
and Electronics in Agriculture, vol. 115, pp. 118–128, 2015.

[13] J. Zhang, S. Maeta, M. Bergerman, and S. Singh, “Mapping orchards
for autonomous navigation,” in 2014 Montreal, Quebec Canada July
13–July 16, 2014. American Society of Agricultural and Biological
Engineers, 2014, p. 1.

[14] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Design of a sensor-based controller performing u-turn
to navigate in orchards,” in International Conference on Informatics
in Control, Automation and Robotics, vol. 2, 2017, pp. 172–181.

[15] E. Le Flecher, A. Durand-Petiteville, F. Gouaisbaut, V. Cadenat,
T. Sentenac, and S. Vougioukas, “Nonlinear output feedback for
autonomous u-turn maneuvers of a robot in orchard headlands,” in
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), 2019.

[16] A. Villemazet, A. Durand-Petiteville, and V. Cadenat, “Autonomous
navigation strategy for orchards relying on sensor-based nonlinear
model predictive control,” in 2022 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, 05 2022.

[17] Y. Li, Y. Ruichek, and C. Cappelle, “3d triangulation based extrinsic
calibration between a stereo vision system and a lidar,” Conference
Record - IEEE Conference on Intelligent Transportation Systems, pp.
797–802, 10 2011.

[18] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations
- Concepts and Applications of Voronoi Diagrams. John Wiley, 2000.

[19] K. N. Boyadzhiev, “Spirals and conchospirals in the flight of insects,”
The college mathematics Journal, vol. 30, no. 1, p. 23, 1999.

[20] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York, NY,
USA: Springer-Verlag, 1996.

[21] V. Cadenat, P. Souéres, and T. Hamel, “A reactive path-following
controller to guarantee obstacle avoidance during the transient phase,”
International Journal of Robotics and Automation, vol. 21, no. 4, pp.
256–265, 2006.

[22] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Commun. ACM, vol. 18, no. 9, p. 509–517,
sep 1975. [Online]. Available: https://doi.org/10.1145/361002.361007

https://www.inrae.fr/en/news/gotheron-orchard-when-biodiversity-becomes-circular
https://www.inrae.fr/en/news/gotheron-orchard-when-biodiversity-becomes-circular
https://doi.org/10.1145/361002.361007

	Introduction
	Modelling
	Orchards traversal strategy
	Data processing
	Path generation
	Path following

	Results
	Simulation
	Experimentation

	Conclusion
	References

