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Enhanced Visual Predictive Control Scheme for Mobile Manipulator

H. Bildstein†, A. Durand-Petiteville‡ and V. Cadenat†

Abstract—This paper proposes a multi-camera visual pre-
dictive control strategy for a mobile manipulator allowing to
position the end-effector camera with respect to a landmark.
Several issues are considered: (i) the visual landmark possible
loss during navigation, (ii) the realization of large displacements
which implies a large prediction horizon and impacts the closed-
loop stability, (iii) the robot’s high redundancy which may lead
to a large search space and potential non-relevant solutions, (iv)
the processing time. To cope with these challenges, the proposed
strategy relies on (i) the use of two complementary cameras,
(ii) the definition of a cost function depending on both the
vision-based task and the manipulability, (iii) the integration of
constraints allowing to prioritize the former against the latter.
The strategy has been simulated and compared using ROS and
Gazebo, showing its efficiency.

I. INTRODUCTION

In this paper, we tackle the problem of controlling a mobile
manipulator using a multi-camera Visual Predictive Control
(VPC) [1] scheme. VPC combines the advantages of Image-
Based Visual Servoing (IBVS) [2], i.e., reactivity and absence
of metric localization, with the ones of Nonlinear Model
Predictive Control (NMPC) [3], i.e., the possibility to take
into account constraints such as joints limits and camera field
of view during the minimization process. For these reasons,
numerous VPC schemes were designed to control robotic
arms [4] [5] [6], quadrotor UAVs [7], mobile robots [8],
or autonomous underwater vehicles [9]. However, concerning
mobile manipulators, NMPC schemes usually express the task
using the end-effector pose [10] or the generalized coordinates
[11] [12] [13]. Cameras are sometimes used to control mobile
manipulators but the task is not defined in the image space [14]
[15]. In such cases, the end-effector pose estimation accuracy
has a significant impact on the control performances [2].

The design of a VPC scheme to control a mobile manipula-
tor brings together the challenges related to mobile robots and
robotic arms. First, the whole system contains many degrees
of freedom, leading to a large search space for the NMPC
optimization problem. We must then rely on an efficient solver
in order to compute an optimal solution in a very short time.
Next, the system is redundant and the end-effector pose can be
obtained with an infinite number of configurations. However,
these configurations are not equally suitable for the task to
perform, and it is necessary to be able to select the most
relevant ones. Then, if the mobile manipulator is equipped with
a single camera to perform both navigation and manipulation
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tasks, it is challenging to keep the landmark in the field of
view while performing an efficient trajectory. Thus, it might be
interesting to consider a second camera to guarantee landmark
visibility. Finally, unlike fixed robotic arms, a camera attached
to a mobile manipulator has to perform a large displacement
to reach the desired pose. This impacts the stability of the
closed-loop system and it might be necessary to use large
prediction horizons. To our knowledge, the works presented
in [16] and [17] are among the few ones tackling some of the
aforementioned challenges. In [16] the nominal VPC scheme
was introduced, while [17] was a first attempt to navigate with
a tucked arm. It relied on a two-step control scheme, which,
despite promising results, suffered from a slow convergence
rate and needed to be carefully set up.

In this paper, we present a VPC scheme taking into account
the aforementioned challenges. First, the robot is equipped
with two cameras, one on the end-effector and one on the
head. Thus, when the end-effector camera cannot perceive
the landmark, the head camera computes the visual features
which are then projected on the end-effector image sphere
to manage the classical perspective projection issue, i.e.,
without projection singularities. Moreover, the positioning task
is defined in the optimization problem using image moments
[18], which facilitates the mapping between the task and the
pose spaces. In addition to the positioning task, we also include
in the optimization problem a measure of manipulability. This
latter must deal with the redundancy of the robotic system
by promoting configurations far from singularities. We then
propose to extend the problem by adding a set of constraints,
such as the classical visibility and joint limits constraints,
similarly to [16]. Finally, we present the positioning constraint
set guaranteeing the end-effector positioning despite the use
of a local server and the presence of the manipulability
measure in the optimization cost function. This method first
includes the prediction-reference equality constraint, which
is a modified version of the terminal constraint [3]. Next,
the velocity constraint on the last predicted step is relaxed
to ensure the problem’s feasibility. Finally, we include a
novel logarithm-based [19] constraint prioritizing the visual
task over the manipulability maximization. Last but not least,
the optimization problem is implemented using a symbolic
representation to reduce the processing time while computing
a solution sufficiently relevant to successfully achieve the task.

The rest of the paper is organized as follows. First, the
different models are introduced before detailing the proposed
VPC strategy and its simulation validation on TIAGo robot.
Finally, the obtained results are thoroughly discussed.



II. PRELIMINARIES

A. Robotic system description and modeling

The objective is to position a camera mounted on the
end-effector of a mobile manipulator relatively to a specific
landmark. The considered system is the TIAGo robot from
PAL Robotics, which consists of an upper body attached to a
differential mobile base (cf. Fig. 1a). The upper body includes
a 2-degree-of-freedom (DoF) head and a 7-DoF arm, with two
RGB-D cameras fixed on the head and wrist. As a result, the
wrist camera is operated using only 5 DoF (na = 5), while the
head camera only utilizes the yaw joint (nh = 1).

(a) The TIAGo robot (b) The robot model

Fig. 1: The robotic system

First, we introduce four frames denoted as
F0(O0,x0,y0,z0), Fb(0b,xb,yb,zb), Fch(Och ,xch ,ych ,zch),
and Fcee(Ocee ,xcee ,ycee ,zcee), which respectively correspond
to the world, mobile base, head camera, and end-effector
camera frames (cf. Fig. 1b). In the sequel, the generic symbol
c will be used to represent the relations for both cameras, the
subscripts h or ee being indicated only when necessary. The
mobile base pose and its control vector are defined as:

χb =
[
X ,Y,θ

]T
, ub =

[
v,ω

]T (1)

where X , Y and θ are respectively the base coordinates in
F0 and the angle between Fb and F0. v and ω are the linear
and rotational velocities along xb and around zb. The arm
configuration and its control vector are expressed as:

χa =
[
q1,q2,q3,q4,q5

]T
, ua =

[
q̇1, q̇2, q̇3, q̇4, q̇5

]T (2)

where qi is the ith joint angle and q̇i is the ith joint velocity.
The same reasoning holds for the head configuration and its
control vector:

χh = h1, uh = ḣ1 (3)

Thus, the mobile manipulator pose and its control vector are:

χmm =
[
χT

b ,χ
T
a ,χh

]T
, umm =

[
uT

b ,u
T
a ,uh

]T (4)

Now, it remains to express the end effector camera motion.
Denoting by Ja and Jb the jacobian matrices of the arm and the

mobile basis, the end effector camera kinematic screw TC∈RC/R
can be expressed as follows:

TC∈RC/R = J̄b+a ·
[
uT

b uT
a
]T (5)

where J̄b+a = J̄a + J̄b with:

J̄a =
[
06×2 Ja

]
(6)

J̄b =
ceeXb ·

1 0 0 0 0 0 0
04×7

0 1 0 0 0 0 0

 (7)

ceeXb is the action matrix of the homogeneous transformation
matrix ceeHb with:

cee Hb =

( ceeRb
ceetb

0 1

)
, ceeXb =

( ceeRb t̂ cee Rb
0 ceeRb

)
(8)

ceeRb, ceetb and t̂ are respectively the rotation matrix between
both frames, the position vector OceeOb, the skew-symmetric
matrix deduced from ceetb.

B. Spherical projection method and visual features

Now, we focus on the choice of visual features allowing us
to characterize the landmark. As classically done, we extract
N interest points from the image provided by the camera. We
can thus define a first visual feature vector Sip made of the
coordinates (xi,yi) of the N interest points of the landmark1.

Sip =
[
x1,y1, . . .xi,yi, . . .xN ,yN

]T (9)

If 2D points are often used in visual servoing, it has been
shown that they induce a strong DoF coupling, which may be
an issue with complex systems such as a mobile manipulator.
In this context, some works have exhibited an interest in
considering the spherical projection model and using 3D
moments [18]. To consider this approach, it is necessary to
determine the 3D point position (Xi,Yi,Zi) in the camera frame.
As the robot is equipped with RGB-D cameras, Zi is available.
Considering a normalized focal distance, Xi and Yi can be
deduced using the perspective projection model:[

Xi
Yi

]
=

[
Zi 0
0 Zi

][
xi
yi

]
(10)

The spherical projection consists in the projection of the 3D
points XXX i =

[
Xi,Yi,Zi

]T on the unit sphere centered in Oc:[
x̃i, ỹi, z̃i

]T
=XXX i/∥XXX i∥ (11)

If O is the observed object and Osp its spherical projection,
3D discrete moments are defined by :

ml, j,k = ∑
Osp

x̃l
i ỹ j

i z̃k
i (12)

From them, we have built the following visual features vector
allowing us to obtain a good DoF decoupling, thus making
easier the tuning of certain parameters of the control law [16]:

S =
[
xg,yg, I1,Nv × zc,zg,αsp

]T (13)

1Generally, it is necessary to consider at least 4 points to control the whole
camera motion.



where (xg,yg,zg) are the landmark gravity center coordinates,
I1 is a suitable combination of 3D moments, Nv the normal
vector to the target plane and αsp the orientation of the object
projection around zc. More details can be found in [16] and
[18]. Using this projection method and the proposed visual
features allows: (i) avoiding the inherent singularity around
Zc = 0 of the classical perspective projection and (ii) obtaining
a nice decoupling DoF behavior [18], which will ease the
tuning of the control law.

C. The re-projection model: the multi-camera solution

As previously mentioned, our robot is equipped with two
cameras fixed on the end-effector and on the head. The
task consists in positioning the first one with respect to a
landmark. However, using only the visual features provided
by this latter camera may lead to an undesired behavior:
the arm will be stretched towards the landmark during the
navigation, inducing vibrations and perturbations. To avoid
this issue and allow motions with a tucked arm, we propose to
project the visual information of the head camera in the end-
effector camera frame. This re-projection is done using the
homogeneous transformation matrix ceeHch which depends on
χa and χh. Thus, when the end-effector camera cannot perceive
the landmark, the head camera computes the visual features
which are then projected on the end-effector image sphere to
manage the classical perspective projection issue, i.e., without
projection singularities. The control law will then be fed using
the visual features either directly provided by the wrist camera
as mentioned above or recomputed from the data issued by the
head vision system thanks to the re-projection model.

III. THE MULTI-CAMERA VPC STRATEGY

Now, we focus on our VPC strategy. We first state the con-
sidered optimal control problem before detailing the required
different elements and constraints.

A. The VPC control problem

As mentioned before, VPC is the result of coupling NMPC
with IBVS. It thus shares characteristics from these two
particular control techniques. As NMPC, it consists in finding
an optimal control sequence U∗(·) that minimizes a cost
function JNp over a Np steps prediction horizon under a set of
user-defined constraints C(U(·)). The obtained optimal control
sequence is a Nc-dimensional vector where Nc is called the
control horizon. It means that the Nc first predictions of the
Np long prediction horizon are computed using independent
control inputs, while all the remaining ones are obtained using
a unique control input equal to the Nth

c element of U(·). Now,
let us focus on JNp . It is made of two terms. The first one Fvs,
similarly to IBVS, explicitly depends on the visual features
S and is expressed as the weighted quadratic error between
the predicted visual features vector Ŝ and the desired ones
S∗. The weighting is done through a diagonal positive definite
matrix denoted by QS which allows to prioritize specific DoF
against others. This matrix can be easily tuned thanks to the
nice decoupling properties of the considered visual features

vector S. The second term, Fw, is intended to improve the
manipulability of the arm and of the entire mobile manipulator.
It is defined by weighting two dedicated indices w′

a and w′
b+a

through a gain αw > 0. These indices, which tend to zero when
the robot comes closer to singularities and joint limits, will be
defined in the next section. Finally, the balance between Fw and
Fvs is performed through a dedicated gain denoted by Kw > 0.
This leads to the following optimal control problem:

U∗(·) = min
U(·)

(
JNp(S(k),U(·))

)
(14)

with

JNp(S(k),U(·)) =
k+Np

∑
p=k+1

F(p) (15)

and

F(p) = Fvs(p)+KwFw(p) (16)

Fvs(p) =
[
Ŝ(p)−S∗

]T
QS

[
Ŝ(p)−S∗

]
(17)

Fw = αw/ŵa(p)+(1−αw)/ŵb+a(p) (18)

subject to

Ŝ(k) = S(k) (19a)
χ̂a(k) = χa(k) (19b)

Ŝ(p+1) = f (Ŝ(p),U(p)) (19c)
χ̂a(p+1) = g(χ̂a(p),U(p)) (19d)
C(U∗(·))≤ 0 (19e)

where U∗(·) = [u∗mm(k), . . . ,u
∗
mm(k+Nc − 1)] is the computed

optimal control and k represents instant tk = kTs, Ts being the
prediction sampling period. f , g and C(U∗(·)) respectively de-
note the prediction models and the inequality set of constraints
(see next section). Once the problem is solved, only u∗mm(k) is
applied to the robot, and the process is repeated. The previous
optimization results are used to warm-start the solver.

B. The prediction models

Two prediction models f and g are needed. The first one,
f , is obtained with the global and exact method used in [16].
It consists of first computing the homogeneous transformation
matrix bHc between Fb and Fc thanks to the forward kine-
matic model. Then, the exact integration of the mobile base
kinematic model is used to determine matrix bk Hbk+1 which
connects two successive mobile robot poses. The prediction
model for the points in camera frames is given by [16]:

XXX i(k+1) = ck+1Hbk+1
bk+1Hbk

bk HckXXX i(k) = H(k)XXX i(k) (20)

where the bar indicates homogeneous coordinates. The second
prediction model, g, corresponds to the integration of the
robotic arm kinematic model.



C. The manipulability indices

1) Manipulator manipulability: To address the aforemen-
tioned issues of singularities and joint limits, a specific metric
called w′

a [20] is proposed. This metric combines the envelope
of a joint limits penalty function P with the classical manip-
ulability index wa, as shown by the following equation:

w′
a = Pw2

a (21)

where:

P = 1− exp(−k
5

∏
i=0

(qi −qimax)(qimin −qi)

qimax −qimin
) (22a)

wa = det(Jred
a (χa) Jred

a (χa)
T ) (22b)

qimax and qimin define the minimal and maximal joint limits
and k is a positive constant. Jred

a is the jacobian Ja of the arm
reduced to take into account only translation velocities. This
reduction is needed because only 5 joints are controlled. Thus,
w′

a tends to 0 when the robot comes closer to singularities or
joint limits. This term has thus to be maximized.

2) Mobile manipulator manipulability: We now define a
metric taking into account the mobile base, which affects
the manipulability of the entire robot. From the previous
reasoning, we propose the following measure:

w′
b+a = Pw2

b+a = P det(J̄red
b+a(χa) J̄red

b+a(χa)
T )2 (23)

where P is given by (22a), wb+a being deduced from the
entire system jacobian J̄red

b+a. As w′
a, this term tends to 0 when

singularities and joint limits are close.

D. The visibility constraint

In the context of visual servoing, it is crucial to ensure that
the target remains within the camera’s field of view at all times.
In the proposed framework, the visibility constraint is always
set on the head image, allowing the arm to keep full freedom of
movement. To achieve this, the following constraint is applied
to the head image to guarantee that the visual cues do not
exceed the image’s limits:[

Sch
ip(p)−Su

Sl −Sch
ip(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (24)

where Sl and Su are respectively the lower and upper image
boundaries of the head camera.

E. The joint limits constraints

Next, it is also essential that the arm joints never exceed
their lower and upper boundaries χal and χau defined by the
elements qimax and qimin which leads to the constraints:[

χa(p)−χau
χal −χa(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (25)

F. The positioning constraint set

The positioning constraint set is necessary for three reasons.
First, it guarantees the closed-loop stability of the NMPC
scheme. Second, it forces the realization of the positioning
task to avoid a compromise with manipulability maximization.
Third, it prevents the robot from being stuck in a local
minimum that might appear when relying on local, and thus
sub-optimal, solvers. In this section, we first present the three
constraints comprised in this set, and we next detail their use.

1) The prediction-reference equality constraint: Inspired by
the terminal constraint method [3], we propose a prediction-
reference equality constraint. It imposes that given predicted
visual features are equal to the reference ones. This is ex-
pressed in the following form:

∥Ŝ(k+ pTC)−S∗∥= 0 (26)

where the pTC is the constrained prediction index.
2) The prediction-prediction decrease constraint: We now

propose a second constraint imposing the transformation be-
tween two predicted poses to decrease. To do so, we first define
HpTC as the transformation matrix between the pose at the
predicted instant k + pTC − 1 and the one at k + pTC. Next,
we rely on the logarithmic map log6 that allows transferring
an element H of the Lie group SE(3) to the corresponding
element ν of its Lie algebra se(3) [19]:

ν = log6(H) (27)

In this work, H = HpTC is used in its homogeneous trans-
formation matrix form and ν in its 6 dimensional motion
vector form. Actually, ν corresponds to the velocity, linear and
rotational, that should be applied during 1 second to obtain
the transformation described by H. Thus, the constraint can
be written as:

∥log6(HpTC)∥< minlog −δmin (28)

where HpTC = H(k + pTC − 1), and minlog represents the
smallest ∥log6(HpTC)∥ value observed up to the current instant.
δmin is introduced to force a minimum decrease, inspired by
[21]. It must be large enough to speed up the convergence but
small enough to let the solver focus on the tasks.

3) The velocity constraints: To provide the necessary large
prediction horizon, the velocity constraints of the last inputs
can be relaxed [8]. This approach leads to the following set
of constraints for the mobile manipulator velocities:[

umm(p)−uu|t
ul|t −umm(p)

]
≤ 0, ∀p ∈ Jk, k+Nc −Nr −1K[

umm(p)−uu|r
ul|r −umm(p)

]
≤ 0, ∀p ∈ Jk+Nc −Nr, k+Nc −1K

(29)

Nr is the number of prediction steps with relaxed bound-
aries, ul|t and uu|t are respectively the lower and upper tight
boundaries corresponding to the ’true’ limits of the actuator,
and ul|r and uu|r are respectively the lower and upper relaxed
boundaries.



4) Using the constraints: At the beginning of the servoing,
pTC is set up to Np. On the one hand, constraint (26) forces
the last predicted features to be equal to the desired ones,
guaranteeing that the task is feasible. It should be noted that
this constraint can be respected thanks to constraint (29). On
the other hand, constraint (28) imposes the transformation
between the last two predicted poses to decrease, prioritizing
the visual task and preventing the robot from being stuck in a
local minimum.

pTC is maintained to its current value until the logarithm
becomes smaller than a threshold δlog, meaning the poses
predicted at instants k+ pTC −1 and k+ pTC are close enough
to be considered equal. At this moment, the current constraint
does not have an impact on the optimization anymore, and
the constraint configuration must be updated by applying
pTC = pTC −1. This process is repeated until pTC = 1 so that
the command applied to the robot actually makes it reach the
desired pose.

IV. RESULTS

This section presents simulation results (cf. video) to eval-
uate the efficiency of the proposed approach. It is divided into
three parts. In the first one, the presented VPC scheme is run
and analyzed. Next, the scheme is tested with two different
decrease constraints: one is based on the command, as in
[17], and the other on the proposed logarithmic constraint to
highlight its relevance. The last part analyses the influence of
the manipulability measure.

All algorithms are implemented using the C++ language
and the optimization problem is solved with the SLSQP
solver from the NLopt package. All gradients are symbolically
computed with the CasADi software [22] offline, and only
evaluated online. Matrices bHc and bk Hbk+1 are obtained with
Pinocchio [23], a rigid body dynamics library. All tests are
performed on an Intel Core i7-10850H and the VPC runs at
a frequency of 5Hz. The solver timeout is set to 0.15s, Np
and Nc are fixed to 10 steps with a sampling time Ts = 0.4s.
The target is a rectangle centered in (3,0,1.08625). The
camera and the mobile base have to travel about 2m to reach
the target. The arm is initially tucked. The bounds on the
mobile base linear and angular velocities are respectively
equal to ±0.1 m/s and ±0.3 rad/s. The minimal and maximal
joint limits are given by: χau = [2.68,1.02,1.50,2.29,2.07],
χal = [0.07,−1.50,−3.46,−0.32,−2.07], χhu = 1.24 and χhl =
−1.24. Matrix QS(p) is the identity matrix, while Nr = 1. Time
units of the plots are the control loop iterations.

A. Proposed scheme results

In this section, the approach is tested with the initial robot
pose (0,0,0). Additional results for other initial configurations
are available in the supplementary video.

1) Visual task realization: Fig. 2b and 2c show that the
visual task is correctly performed. Indeed, the controller
successfully drives the camera to bring the interest points to
their desired values (indicated by the green crosses), which is
realized by vanishing the error between the image moments

(a) Points trajectory - Head
camera

(b) Points trajectory -
End-effector camera

(c) S−S∗ evolution (d) S−S∗ without CasADi

Fig. 2: Task realization results

and their desired values. However, Fig. 2a shows that the
visibility constraint may be sometimes violated, as the visual
features may leave the head camera field of view. This problem
is due to the optimization process which may terminate before
satisfying all constraints because of the incorporated time-out.
To deal with this issue, this constraint has been set up in a
conservative way to avoid the loss of visual features. Finally,
Figure 2d provides the results obtained without the use of
the symbolic gradient computation with CasADi. This figure
shows that an accurate positioning cannot be achieved.

2) Stability: Figure 3a displays the error between the pTC
th

predicted image moments and their desired values, where a
small error implies that the terminal constraint is satisfied.
This figure clearly illustrates that the proposed scheme enables
the satisfaction of the constraint despite the initial irrelevant
arm configuration regarding the visual task and the large
distance between the initial and desired poses. Red vertical
lines represent the shifts realized to accelerate the convergence
and are more detailed in section IV-B. Figure 3b presents
again the obtained results without CasADi, and illustrates the
difficulty to satisfy the terminal constraint when the arm is
tucked. Indeed, it requires many iterations of the solver to
calculate a solution respecting all the constraints, which cannot
be done in a reasonable time (< 200ms) without CasADi.

3) Joints and commands evolution: Finally, Fig. 4 shows
the velocities and joint angles evolution. The values of the
former remain within the given boundaries despite the use of
a relaxed constraint. Concerning the joint angles, they stay
away from their limits thanks to the manipulability measure.

B. Visual task convergence: Logarithmic vs command de-
crease constraint

To ensure the visual task convergence over the manipula-
bility maximization, the positioning constraints set is needed.

https://drive.google.com/file/d/1Eus9Y7izJGXgCpY9Ujy0WR2M3GQ7EBjc/view?usp=share_link
http://github.com/stevengj/nlopt


(a) Evolution of last Ŝm − Ŝ∗m with CasADi

(b) Evolution of last Ŝm − Ŝ∗m without CasADi

Fig. 3: Evolution last Ŝm − Ŝ∗m

(a) Velocities evolution (b) Joint values evolution

Fig. 4: Joints and commands evolution

In this section, we compare the logarithm-based method pre-
sented in this paper with the command-based one presented
in [17]. To do so, we focus on the evolution of pTC which
quantifies the convergence rate (see Fig. 5). Indeed, the faster
the value of pTC is equal to zero, the faster the visual
task will be completed. For both methods, the prediction-
reference equality constraint is initially applied to the Nth

p
prediction, which remains unchanged for a long time due to
the input relaxation. Next, the prediction-reference equality
is progressively shifted to the previous prediction until it is
positioned on the first prediction, i.e., pTC = 0. However,
the prediction-prediction decrease constraint being different,
logarithm-based for Fig. 5a and command-based for Fig. 5b,
we observe two different behaviors. In Fig. 5a, the switches
are started earlier than in Fig. 5b, and the servoing is shorter.

This highlights the efficiency of the logarithm-based constraint
over the command-based one.
Remark: As can be seen in Fig. 3a, the prediction-reference
equality constraint value is not exactly equal to zero. The
chosen value to trigger the switch of the prediction-reference
equality constraint has an impact on the shifting process. A
smaller value smooths the transitions but increases the con-
vergence time, while a larger one speeds up the convergence
time but leads to rough changes in the optimization problem
that might lead to the non-respect of the constraints.

(a) With logarithmic decrease constraint

(b) With command decrease constraint

Fig. 5: pTC evolution
Figure 6 can be directly confronted to figure 2c. It shows

that the visual task realization is much slower using the
command decrease function.

Fig. 6: S−S∗ evolution with command decrease constraint

C. Manipulability measure analysis

This last section studies the influence of the manipulability
measure choice. Four cases are considered:

Figures 7a, 7b and 7c respectively presents the wa, wb+a,
and P evolution obtained for each case. These figures clearly
show that the C2 and C3 cases are indeed the scenarios where
w′

a and w′
b+a are respectively maximized, as expected. They

also demonstrate that, in the C4 case, the trade-off between
both manipulabilities is reached, again as expected. It can also
be noted that the evolution of w′

b+a in C3 and C4 leads to
similar results in terms of maximization. However, Fig. 7c
shows that P drops for the C3 case. It can be shown that this
is due to the joint q4 which is coming close to its limit, thus
inducing convergence issues that can be observed in the video.
The same behavior for P can be seen for the C1 case except
it occurs lately. These two results highlight the importance of
keeping the term w′

a in Fw. Thus choosing Kw = 0 or αw = 0
does not appear to be the most relevant choice. Now, regarding



C2 and C4 cases, it is more difficult to draw a conclusion.
Indeed, performances are similar in the studied simulation
scenario and a more thorough analysis should be conducted.

(a) wa evolution

(b) wb+a evolution

(c) P evolution

Fig. 7: Manipulability measures evolution

V. CONCLUSION

This work proposes a multi-camera VPC strategy to control
a mobile manipulator. It benefits from two complementary
vision systems to perform a task consisting in positioning the
end-effector camera with respect to a given landmark. The
proposed approach allows to deal with several challenges: (i)
the large displacements which imply a large prediction horizon
and question the stability, (ii) the large number of DoFs which
induces a large search space when optimizing, and a high
redundancy leading to possible non-suitable configurations and
undesired behaviors, (iii) the processing time. It relies on a
cost function depending on both the visual features and the
manipulability coupled with several constraints. Among them,
an original positioning constraint set allows prioritizing the
vision-based task against the manipulability while avoiding
local minima and guaranteeing closed-loop stability despite
a large prediction horizon has been introduced. In addition,
to deal with the processing time, we have also implemented
the optimization problem using a symbolic representation.
The strategy has been simulated using ROS and Gazebo and
compared to our previous work, thus demonstrating its interest
and efficiency. In the future, we plan to extend this new
framework to handle the presence of obstacles.
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