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Abstract. Taking into account the effects of parameter uncertainties
in the robot model is crucial to the robustness of motion generation.
One approach to address this issue is to compute ‘uncertainty tubes’
enveloping the robot state for any combination of parameters within
a given range, and to use these tubes to robustly check for collisions
within a motion planning algorithm. However, computing these tubes
for complex dynamical systems can be too computationally expen-
sive due to the need to solve and integrate potentially numerous non-
linear ordinary differential equations (ODEs) associated with robot
dynamics. To overcome this limitation, we propose a GRU-based ar-
chitecture that provides fast and accurate estimation of these uncer-
tainty tubes. We demonstrate that GRUs achieve the best compro-
mise between prediction accuracy, prediction time, and network size
compared to basic RNNs and LSTMs, justifying our choice. Finally,
we showcase the efficiency of the learning process within a motion
planning framework for an aerial vehicle.

1 Introduction
Robust motion planning is an important and difficult problem to
solve in order to guarantee the safe execution of robot motions. In-
deed, in the presence of parametric uncertainties, deviations between
desired and actual robot trajectories are inevitable, resulting in im-
perfect trajectory tracking. Neglecting these deviations at the motion
planning level may result in collisions with the environment or satu-
ration of the robot control inputs during execution.

In order to plan robust motions that take these deviations into ac-
count, some algorithms, such as the RandUP-RRT [26, 16], simulate
several times the robot dynamics in the presence of random uncer-
tainty in the robot parameters model to approximate the set of states
that can be reached by the system. However, these probabilistic ap-
proaches cannot guarantee formal robustness for all uncertain param-
eter values within a given range. To overcome this limitation, several
recent approaches [25, 18, 7, 28, 23] rely on so-called ’uncertainty
tubes’ that, given a range on the parametric uncertainties, bound the
system state evolution over time. These uncertainty tubes, which are
derived from various metrics, are used during motion planning to ro-
bustly check collisions and control inputs saturation. Nevertheless,
these methods suffer from high computational cost.

In this work, we focus on uncertainty tubes computations based
on the closed-loop sensitivity [21, 4], as it has the advantage of being
applicable to any robot/controller compared to other methods. These
uncertainty tubes were combined to an RRT [14] sampling-based

1 Equal contribution.

Figure 1: Execution by a real perturbed quadrotor of planned trajec-
tories without (left) and with (right) uncertainty tubes prediction. A
virtual collision is observed in the case where tubes are not used,
which is not the case when predicted uncertainty tubes are used.

tree planner to perform robust collisions and saturations checking
within a motion planning framework named SAMP [25]. However,
this framework needs to perform a new tube computation at each
new iteration which requires repeatedly solving tens to hundreds of
ordinary differential equations (ODEs). As thousands of iterations
are required, this process quickly becomes tedious and highly time
consuming, resulting in prohibitively high planning times.

Previous works have proposed learning methods to estimate safe
control inputs [7, 27, 19, 29] or predict uncertainty tubes [9]. How-
ever, they are limited to a specific dynamical system (e.g., [27]) or
a specific control strategy (e.g., MPC [29, 9]). Moreover, they are
presented as applicable in an online manner at the control level only,
making them hard to use in a global motion planning context.

Recurrent neural network architectures are well known for their
excellent application to temporal data sequences, and more specifi-
cally in this case, to trajectories. Their application in motion planning
frameworks has rapidly grown in recent years, e.g., to predict trajec-
tories in sampling-based algorithms [17, 20]. Furthermore, because
of their time-series nature and their ability to handle dependencies
between time steps, they can take advantage of the ODEs structure
[5] or approximate their solutions directly [10].

In this paper, we aim at leveraging recurrent neural networks to es-
timate uncertainty tubes and control inputs,hence avoiding the need
for solving ODEs. We propose a multi-task neural network based on
the Gated Recurrent Unit (GRU) [6] architecture which approximates
these uncertainty tubes given a sequence of past desired states of any
dynamical system, while focusing on a quadrotor robot as a use case.
We demonstrate the performance of the proposed model in terms of



accuracy and inference time, and compare it to other baselines and
traditional methods (e.g. [8]) for solving the ODEs. Finally, we pro-
vide a qualitative demonstration of a real scenario illustrated by Fig-
ure 1 where a quadrotor is able to safely navigate through a narrow
window thanks to the predicted tubes. To the best of our knowledge,
our approach is the first learning-based method for simultaneously
predicting parametric uncertainty tubes and control inputs, applica-
ble to very diverse types of robots and controllers.

2 Closed-Loop Sensitivity
Consider an arbitrary dynamical system with a set of uncertain pa-
rameters p ∈ Rnp (i.e model parameters that are difficult to evaluate
or likely to vary during execution). Let q ∈ Rnq be the system’s
state vector. Given any tracking controller η and a desired state qd to
track, the system’s dynamics can be defined as follows:{

q̇ = f(q, u, p), q(t0) = q0,
u = η(q, qd, pc, kc, t)

(1)

where u ∈ Rnu is the vector of control inputs, pc is the vector of
"nominal" parameters, i.e. the estimated nominal values of p, and
kc ∈ Rnk are suitable controller gains.

Following [21, 4], let Π be the state sensitivity matrix, and Θ the
input sensitivity matrix such that:

Π(t) =
∂q(t)

∂p

∣∣∣∣
p=pc

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

(2)

These quantities allow the quantification of how variations of the
uncertain model parameters p affect the evolution of the system in
closed-loop. Depending on the chosen controller, these matrices gen-
erally do not have a closed-form expression but can be computed
according to the following dynamics (see [21, 4] for more details):{

Π̇(t) = ∂f
∂q

Π+ ∂f
∂u

Θ+ ∂f
∂p

,

Θ(t) = ∂η
∂q

Π
(3)

Given a bounded range δpi for each uncertain parameter pi s.t.
pi ∈ [pci − δpi, pci + δpi], and assuming small variations of the
parameters s.t. ∆q ≈ Π(t)∆p, the uncertainty tube around q is de-
fined by a radius rqi(t) along each i-th component of the state, which
bounds the state evolution qi(t) around the desired state 2 qdi(t) over
time:

qdi(t)− rqi(t) ≤ qi(t) ≤ qdi(t) + rqi(t). (4)

Let the kernel of Π be:

KΠ(t) = Π(t)WΠ(t)T (5)

where W is a diagonal matrix where the diagonal elements are the
components of δp. The radius rqi(t) can be obtained by projecting
KΠ(t) along the i-th component of the state q (see [3] for details).
Note that similar tubes can be obtained for the control inputs u using
the input sensitivity matrix Θ.

Such radii computation relies on the knowledge of Π(t) and Θ(t)
which are computed numerically by integrating the dynamics of
(Eq. 1) and (Eq. 3), and then performing the projection of (Eq. 5)
in both the state and input spaces. Depending on the number of pa-
rameters and the dimensions of the state and input spaces, this com-
putation may be too time consuming when planning robust motions
of complex dynamical systems.

2 In practice, such tubes are centered around the nominal states qn (i.e. the
state of the tracked trajectory without considering parameters perturbations,
meaning p = pc), but for simplicity we consider qd ≈ qn.

In this paper, we present a method for improving the efficiency
of this process for any dynamical system which we illustrate on a
quadrotor case. In the latter, the state vector is q = [x, v, ρ, ω] ∈
R13 where x = [x, y, z] ∈ R3 and v = [vx, vy, vz] ∈ R3 are
respectively the quadrotor position and velocity vectors. The body
orientation is represented by the unitary quaternion denoted with ρ,
while its angular velocity is ω = [ωx, ωy, ωz] ∈ R3. The vector
of uncertain model parameters is p = [m, xcx, xcy, Jx, Jy, Jz]

T ∈
R6, with m the quadrotor mass, xcx,y a shift of the system center of
mass along the x,y-axis, and Jx,y,z the main inertia coefficients.

The controller considered is the Lee (or geometric) controller [15]
where the control inputs u = [u1, u2, u3, u4]

T ∈ R4 are the
squared propeller angular velocities. This controller computes the
control inputs according to a given desired state denoted qd =
[xd, vd, ad, Ψd, Ψ̇d] ∈ R11 respectively composed of the desired
positions, velocities, accelerations, yaw orientation angle, and yaw
angular velocity3. Note that in our quadrotor application, Π ∈ R13×6

and Θ ∈ R4×6. As a result, the computations necessary to find the
uncertainty tubes involve solving nearly hundred ordinary differen-
tial equations per state.

3 Method
3.1 Problem statement

The goal is to train a neural network to approximate sensitivity-based
uncertainty tubes, hence avoiding the computational cost of solving
many ODEs. Moreover, we aim at predicting the control inputs that
the system will exert to successfully track a desired trajectory, in ad-
dition to the uncertainty tubes on these control inputs. Given a se-
quence of desired robot state vectors M = {q0

d, q
1
d, ..., q

n
d} repre-

senting the desired robot’s motion (i.e. a desired trajectory to follow),
the task at hand is to learn a function g that estimates the radii of un-
certainty tubes for each state qk

d as well as the robot control inputs at
this state such that:

{rq
k, ru

k,uk} = g(q0
d, q

1
d, ...q

k−1
d ) (6)

Since evaluating the function g on qk
d depends on all the previous

states of the robot in M, recurrent neural network architectures are a
good fit given their ability to encode and accumulate temporal infor-
mation while keeping inference time low.

3.2 Neural network architecture

We propose a multi-task learning neural network based on a GRU
architecture, which takes as input the desired states of the dynamical
system and outputs the control inputs as well as the uncertainty tubes
around the states and the control values. A representation of our neu-
ral network architecture is presented in Figure 2. Blue blocks refer
to the inputs of the model which are composed of an initial hidden
state h0 and of a sequence of desired robot states. For the quadrotor
case, in order to make the learned model independent of workspace
boundaries used during planning (i.e. robot position and orientation
bounds) and initial robot orientations, only the desired linear veloc-
ities, accelerations, and yaw angular velocities (Ψ̇d), are kept as the
network input components. Hence, the input to the neural network is
a vector qk

in = [vd, ad, Ψ̇d]
T , where k refers to the k-th state of

the desired trajectory.

3 The quadrotor system being under-actuated (i.e not all components are con-
trollable), the desired state qd differs from the system state q (see [15] for
more details).



Figure 2: Representation of the proposed neural network architecture.

The outputs of the neural network correspond to the green blocks.
In the case of a quadrotor, it is composed of the predicted uncertainty
tubes radii along the {x, y, z}-axis of the state rq =[rx, ry, rz]T ,
and the uncertainty tubes radii associated with the control inputs of
the system ru = [ru1, ru2, ru3, ru4]

T . Moreover, the control input
values u = [u1, u2, u3, u4]

T are required for the motion planning
algorithm, and their computation depends on ODE forward integra-
tion (as shown in (Eq. 1)). Since our approach aims at eliminating
the need for solving ODEs, we need to train the neural network to
also predict the control inputs. Finally, hN corresponds to the hidden
state at the last point of our sequence (i.e., the last trajectory state).

At k = 0, the first state in the input sequence q0
in and the initial

hidden state h0 are given to a single-layer GRU block with a hidden
state size of 512, which outputs an updated hidden state h1. The latter
is then fed to a 3-layer multi-layer perceptron (MLP), each layer fol-
lowed by a ReLU activation function except the final one, to obtain
the predicted control inputs u0, the state uncertainty tubes rq

0 as
well as the control uncertainty tubes ru

0. The updated hidden state
h1 is then given back to the GRU block along with the second ele-
ment of the input sequence. This process is repeated for each element
qk
in until all predictions are obtained.
The network is intended to be used in a sampling-based tree plan-

ner, where local trajectories are concatenated to form a global one.
Thus, since the hidden state encodes and accumulates temporal in-
formation about the input sequence, the final hidden state hN of a
local trajectory obtained after an iteration of a sampling-based tree
planner can be saved and then given back as the initial hidden state
h0 for future local trajectories considered during the next iterations.
Therefore, in practice, this initial hidden state is generally not null.

3.3 Dataset

In order to train the proposed neural network, we generated a dataset
of trajectories computed in an obstacle-free environment as depicted
in Figure.3. This ensures that the resulting learned model is totally
independent of the environment and only depends on the system.
Each global trajectory starts from the same initial hovering state
(qinit) initialized at zero velocities and accelerations4. Based on
the same principle as a sampling-based planner, the global trajec-
tory is made up of local sub-trajectories until a total execution time
length (TF ) of 15s is reached. Each local sub-trajectory is gener-
ated by uniformly sampling an arrival state (qrand) and connecting
it to the previous sampled state (qprev) using a Kinosplines steer-
ing method [2]. These kinosplines have the advantage of enforc-
ing the following kinodynamic constraints on the generated splines

4 Note that this initialization does not hurt the generalizability of our model
to different initial conditions and environments with obstacles (cf. Sect. 6).

Figure 3: Dataset generation process. Starting from the hovering state
qinit, at each iteration a new state qrand is randomly sampled and
connected to the previous state qprev until a total trajectory length
(TF ) of 15s is reached. Data annotation is performed by simulating
the tracking of the generated trajectory under nominal parameters.

Figure 4: Velocity norm distribution in the training (left) and test sets
(right).

[vmax, amax, jmax, smax], where vmax, amax, jmax and smax rep-
resent the maximum allowed velocity, acceleration, jerk and snap re-
spectively. If the local trajectory (between qrand and qprev) ex-
pected execution time is greater than a maximum local duration Tl,
it is truncated to Tl. Similarly, when the total trajectory duration TF

exceeds 15s after adding a new state, it is truncate at 15s.
To generate the outputs, i.e. to annotate the data with uncertainty

tubes and control inputs, the closed-loop dynamic and the sensitiv-
ity matrices are computed by simulating the tracking of the global
trajectories using an integration time step ∆T which corresponds to
the same time step used for collision checking in a sampling-based
motion planner.

Using this mechanism, a training set composed of 8.000 trajecto-
ries and a validation set composed of 2.000 trajectories were gen-
erated, making sure that every trajectory in the dataset is different.
These trajectories were generated considering a maximum local du-
ration of Tl = 1s and an integration time step ∆T = 0.05s.



The kinodynamic constraints enforced on the generated splines are
[vmax, amax, jmax, smax] = [5.0m.s−1, 1.5m.s−2, 15.0m.s−3,
30.0m.s−4]. The nominal values of the uncertain parameters pre-
sented in Sect. 2 are pc = [1.113, 0.0, 0.0, 0.015, 0.015, 0.007]T and
their associated uncertainty range used for the tubes computation
are δp = [7%, 3cm, 3cm, 10%, 10%, 10%]T , which represents the
variation of the parameters w.r.t. their associated nominal value. The
controller gains used are kx = [20.0 , 20.0 , 25.0], kv = [9.0 , 9.0 ,
12.0], kR = [4.6 , 4.6 , 0.8], kω = [0.5 , 0.5 , 0.08].

In order to show the reliability and generalizability of the learned
model, a test set composed of 1.000 trajectories was generated in
the same way, but considering a maximum local duration Tl = 2s.
As a result, trajectories with higher velocities are encountered in the
test set compared to the validation set, as depicted in Figure 4 where
velocity norms can reach up to 7 m.s−1 in the test set, compared with
only 3 m.s−1 in the validation set5.

The data annotation was performed by computing and integrating
(Eq. 1) and (Eq. 3) by mean of the dopri5 [8] ODEs solver along
a desired trajectory. Once Π and Θ had been computed, a simple
projection was performed to recover the tubes thanks to (Eq. 5). Note
that the control inputs u are computed during the ODEs resolution.
The mean and standard deviation values of the various components
of the output vector for the validation and test sets generated by this
setup are provided in Table.1.

Output Validation set Test set
rq 1.0e−1 ± 2.0e−2 1.1e−2 ± 2.1e−2

u 12469.3± 861.6 12476.8± 1016.5
ru 7782.6± 3172.3 7828.6± 2845.7

Table 1: Mean and standard deviation of the output vector compo-
nents norm after data annotation for the validation and test sets. rq is
expressed in m, and (u, ru), are squared propeller angular velocities
[(rad/s)²].

4 Experiments
4.1 Training

Before training the neural network, the input features of the dataset
(train, val, and test) were min-max scaled according to the maximum
velocity and acceleration values used to generate the kinosplines of
Sect.3.3 as it is guaranteed that the velocities and accelerations gener-
ated cannot exceed these values. This ensures that all velocity values
are in the interval [−vmax, vmax], while all the acceleration values
are in [−amax, amax]. The annotations were also normalized using
a standard scaling based on the mean and standard deviation values
of the training set annotations.

After data normalization, the neural network was trained for 200
epochs using the Adam optimizer [13] with a learning rate of 1e−3

and a batch size of 128. It was trained using the MSE (Mean Squared
Error) loss function and evaluated continuously on the validation set.
The weights achieving the best performance on the validation set
were saved and used during our experiments.

4.2 Evaluation

In order to demonstrate the necessity of using a recurrent neural net-
work due to the temporal dependencies of the predictions, we im-
plemented a simple MLP baseline by substituting the recurrent layer

5 Note that the velocity norms exceed the velocity limit vmax, this is ex-
pected since this limit applies to the components of the velocity vector
rather than the norm.

with a single-layer linear encoder which takes as input a single ele-
ment in the sequence and outputs its corresponding predictions.

Also, in order to justify the choice of a GRU architecture, we com-
pare our proposed model to two other versions which replace the
GRU block by a basic RNN [22] and an LSTM [11] block respec-
tively. Note that we do not report the comparison with Transformers
[24] as they do not benefit from the hidden state when starting pre-
dictions from non zero values, and poorly generalize to longer se-
quences than those in the training set. The RNN and LSTM models
were trained with a hidden state size of 512, a MLP composed of 3
linear layers, and a learning rate of 1e−4 for the RNN case against
1e−3 for the LSTM model. Note that an LSTM layer is composed of
a hidden state and a cell state (contrarily to GRUs and RNNs which
have a hidden state only), so the real LSTM latent state size is 2×512.
All used hyper-parameters were validated using a grid search.

Finally, in order to measure the computational cost gain achieved
by our method and compare the inference time of the neural network
to traditional methods, we implemented two known ODEs integra-
tors which we applied to uncertainty tubes computation. The first is
dopri5, which leverages the Runge Kutta-4 algorithm to numerically
approximate the solutions to ODEs. The second is the Euler method,
which is known to be faster but yields less accurate results.

4.3 Metrics

We evaluate the performance of our model using the Mean Absolute
Error (MAE) over the different outputs. Rather than comparing the
results on each sub-component of the input (e.g {x, y, z} for rq),
we combine them into a single metric in order to obtain simpler and
more general comparisons, as follows:

• MAErq : represents the mean absolute error on the norm of rq .
For a given datapoint, given the ground truth and predicted state
uncertainty tubes rq = [rx, ry, rz]

T and r̂q = [r̂x, r̂y, r̂z]
T , we

compute the norms ∥rq∥ and ∥r̂q∥. We then compute MAErq

as:
MAErq = MAE(∥rq∥, ∥r̂q∥) (7)

This metric is expressed in meters (m).
• MAEu : represents the mean absolute error on the norm of u.

We compute the norms of the ground truth and predicted control
inputs ∥u∥ and ∥û∥. We then compute MAEu as the mean ab-
solute error between these two norms. It is expressed in [(rad/s)²].

• MAEru : represents the mean absolute error on the norm of ru.
As for the two previous metrics, MAEru is defined as the mean
absolute error between the norms ∥ru∥ and ∥r̂u∥. This metric is
expressed in [(rad/s)²].

These metrics are averaged over all elements of a sequence, then
averaged over all sequences in the validation and test sets. In addi-
tion, we use inference time as metric in order to evaluate the com-
putational cost of our method compared to the defined baselines, as
well as traditional uncertainty tubes computation methods involving
an ODE solver. Time is denoted Tsolver/NN according to the model
or solver used.

4.4 Implementation details

The ODEs were implemented using the JiTCODE [1] module which
converts the equations to be integrated into C-compiled code. The
Euler method or the dopri5 integrator were then used to solve
each ODE and take advantage of this compiled function. All fol-
lowing results were obtained on an Intel i9 CPU@2.6GHz pro-
cessor with one RTX A3000 GPU. The code is available at:
https://gitlab.laas.fr/swasiela/learning_sensitivity.

https://gitlab.laas.fr/swasiela/learning_sensitivity


5 Quantitative Results

5.1 Model comparison
Table 2 reports the MAE for the different output vector components
on the validation and test sets. First of all, we note that the MLP pro-
vides a poor performance, confirming the need for a recurrent neural
network. We observe up to a 30% deviation from the average ex-
pected values (cf. Table 1) on the validation and test sets.

Among recurrent models, we observe that RNN offers the least
accurate predictions, with up to 7% error on the ru components of
the test set. On the other hand, GRU provides the best accuracy on
all the components on both sets except for ru on the validation set,
but for which predictions remain close to expected values with less
than 1% deviation from expected mean values. GRU shows the best
reliability and generalizability of the trained model to unseen sam-
ples from a different distribution. GRU performance on the test set
shows that the predictions along rq remain highly accurate (less than
1 millimeter average error) and that the highest errors are obtained on
ru but do not exceed 4% of the expected average value. The LSTM
provides the best predictions on the ru component of the validation
set. However, the results show a slightly lower accuracy than GRU
on the other components with an average error of 4.5% on test set
ru predictions. Nevertheless, LSTM is more accurate on all compo-
nents than RNN. Overall, RNN performs the worst while GRU and
LSTM provide similar results, with an overall better accuracy for
GRU. Moreover, the latter shows a better generalization to unseen
trajectories that are slightly different from the training set.

In order to choose the most advantageous model or method for
computing uncertainty tubes in terms of prediction time, the meth-
ods/models are applied to trajectories of different lengths (i.e. made
up of a certain number of desired states). Table 3 shows the results
obtained on trajectories of several hundred states. Note that with the
current system, the number of ordinary equations solved for each ele-
ment in the sequence (i.e. trajectory state) is equal to 91 (see Sect. 2).
We observe that the greater the length of the trajectory to be inte-
grated, the greater the gap between ODEs solver methods and neural
networks in average prediction time. Results show that as the num-
ber of states in the trajectory increases, the time gain reaches two
orders of magnitude using recurrent neural network architectures.
We also note that among these models, RNN is the fastest to per-
form the predictions, which is explained by the fact that the network
size is smaller than LSTM, and the RNN cell performs fewer inter-
nal operations than the GRU cell. In a robust sampling-based mo-
tion planning context, the neural network is meant to be queried tens
of thousands of times on multi-states trajectories. Hence, these ob-
served gains can be exponential depending on the number of trajec-
tories to be evaluated.

Finally, even if RNN excels in inference time when making pre-
dictions; its accuracy is noticeably lower when contrasted with that
of GRU. As for the LSTM, it provides the slowest inference time and
less accurate predictions than the GRU, except for the ru component
of the validation set. Additionally, its hidden state implementation re-
sults in twice as many parameters having to be saved per sampling-
based motion planner iteration compared to GRU, which translates
by a higher memory cost when growing trees or graphs with thou-
sands of nodes. Therefore, based on the models implementation de-
tails and results presented above, the use of GRU is recommended in
the context of a sampling-based motion planner. Indeed, the latter is
much faster than methods based on ODEs solvers while offering the
most accurate predictions, thus offering the best trade-off between
inference time and accuracy.

5.2 Ablation study

In theory, all the inputs to our neural network are needed by the con-
troller and the uncertainty tubes computation methods to obtain the
desired outputs. In order to confirm this for the neural network as
well, we conduct an ablation study on the GRU model to show that
the choice of input vector components described in Sect. 3.2 is the
most relevant for the quadrotor case. The components considered for
the study are the desired linear and angular velocities, and the desired
accelerations, denoted V and A respectively. Our proposed model
takes both inputs and is denoted GRUV A. We define two ablations,
one for each input, resulting in two models: GRUV which takes as
input the linear and angular velocities only, and GRUA which only
takes the accelerations as input. Each model is trained in the same
way detailed in Sect. 4.1 and is evaluated according to the MAE met-
rics described in Sect. 4.3.

Note that since the network is intended to be used in a sampling-
based approach, no ablation study is performed on the output vector
since our objective is to use a single model within the planner, keep-
ing the memory and computational costs low.

Table 4 provides the results of the ablation study. Results show that
each input component specializes in predicting one of the desired
outputs. Specifically, the model GRUV using the velocity compo-
nent only yields accurate results for rq and ru on both the validation
and test sets, while the one solely using the accelerations leads to
accurate results on u on both sets.

These outcomes are expected since rq depends indirectly on the
state of the robot q only, which can be inferred from the velocities
easily. On the other hand, the inner workings of the chosen controller
give more importance to the accelerations of the robot, while the ve-
locities are used for computing internal errors. This explains the fact
that GRUA yields good results for the u predictions.

On the other hand, Table 4 shows an improvement on both the
control inputs u and the control uncertainty tubes ru using both the
velocities and the accelerations as inputs to the neural network. In-
deed, even though a slight degradation can be noted in the perfor-
mance of rq predictions, GRUV A achieves the best overall results
on both the validation and test sets, thus justifying our implementa-
tion of Sect. 3.2. This can be explained by the fact that the output
values are not related to the input components independently, they
also depend on the interactions between these variables. Also, we re-
mind that the chosen controller and uncertainty tubes computation
methods use both the velocities and the accelerations of the robot to
obtain the desired outputs.

Note that the results of this ablation study are specific to the chosen
case of the quadrotor/controller. Another dynamical system might
need a different set of inputs to obtain accurate predictions.

6 Qualitative Results

The robust generalization of the GRU model to the test set is high-
lighted in Figure 6, depicting predictions for all the components
of the output vector for a trajectory composed of 300 states (i.e.
TF = 15s). We observe larger prediction errors during transient
phases involving the higher velocities present in the test set than in
the training one. We note that the neural network predictions in these
phases have a moving average ‘behavior’. However, an overall good
fitting of the predictions can be highlighted.

In addition to the results discussed in Sect. 5.1, Figure 7 shows an
example of MLP’s inability to provide accurate predictions on a 300-
state test set trajectory, with a tendency to simply average expected



Method Validation set Test set
MAErq (m) MAEu [(rad/s)2] MAEru [(rad/s)2] MAErq (m) MAEu [(rad/s)2] MAEru [(rad/s)2]

MLP 8.9e−3 559.6 2079.0 9.5e−3 608.5 2050.9
RNN 4.5e−4 35.8 166.4 1.4e−3 103.3 544.8

LSTM 3.1−4 17.7 58.7 1.4e−3 79.7 308.1
GRU (ours) 2.6e−4 17.3 64.5 1.1e−3 71.0 279.8

Table 2: MAE on the rq , u and ru components of the output vector computed on the validation and test sets for a trained RNN, GRU, and
LSTM model.

Time (ms) 100 states 200 states 300 states
Teuler 63.9± 18.3 136.7± 29.9 260.5± 38.0
Tdopri5 251.7± 17.3 537.2± 29.8 755.6± 34.5
TRNN 0.9± 0.3 1.8± 0.3 2.2± 0.5
TLSTM 2.5± 0.3 4.8± 0.3 7.7± 0.8

TGRU (ours) 2.1± 0.2 4.3± 0.3 5.8± 0.4

Table 3: Average prediction time (ms) over 100 predictions on trajec-
tories composed of 100 states, 200 states and 300 states, for an RNN,
GRU, LSTM, the Euler integrator, and the dopri5 integrator.

values over the latter. In comparison, the GRU model is able to ac-
curately predict the control inputs and the uncertainty tube across the
whole trajectory. We also note a close performance between GRU
and LSTM on all tasks, while RNN lags behind and tends to under-
estimate large variations of control uncertainty tubes ru.

In order to show the stability of the proposed method, Figure 5
depicts the norm of predicted vectors for a 600-state trajectory gen-
erated in the same way as the test set but considering a total length
of 30s (i.e. TF = 30s). Note that this trajectory is twice as long
as those used in training, validation and test sets. The results show
the same behavior in transient phases where higher velocities are en-
countered. However, we observe that the model is consistent through-
out longer sequences even with a different distribution from the one it
was trained one. This is convenient in a sampling-based motion plan-
ning context, where successive local trajectories must be evaluated.
Note that, in the dataset all trajectories start from an hovering state
(i.e., null velocities and accelerations). Hence, in order to generalize
to trajectories where initial velocities and accelerations are not null
we can simply append a planned sub-trajectory arriving at this initial
state and starting from the hovering state.

Finally, to demonstrate the model’s ability to predict accurate un-
certainty tubes in the context of a sampling-based motion planner,
we provide a motion planning scenario involving a real quadrotor,

Figure 5: Example of GRU predictions on a 600-state trajectory gen-
erated in the same way as the test set. ||rq||, ||u|| and ||ru|| refer to
the norm of their respective vector. Predicted outputs are displayed
in blue against true values in black. ||rq|| is expressed in m, and
control input associated values (||u||, ||ru||) are squared propeller
angular velocities [(rad/s)²].

with perturbed parameter values with respect to the nominal values
in the model, navigating through a narrow window. In order to plan
the trajectories, we used an implementation of RRT with and with-
out tubes prediction, referred to as "non-robust" and "robust" respec-
tively. In the latter case, the neural network was incorporated within
the collision checking function, enlarging the robot shape by the pre-
dicted uncertainty tubes on the robot state rq and checking that the
predicted control inputs u remain within acceptable limits for the
system using the predicted control inputs uncertainty tubes ru.

A non-robust trajectory and a robust trajectory were planned and
executed 10 times by a ‘perturbed’ real quadrotor. In order to disturb
the system, a mass unknown to the controller was attached to the
drone, so the system mass, center of mass and inertia become uncer-
tain in the range δp of Sect. 4.2. Collisions were virtually checked
over the real executions, thus mitigating the risk of real crashes and
damaging the drone. Figure 1 shows an execution with virtual col-
lision checking of a non-robust and a robust trajectory by the real
quadrotor with uncertain parameters. Overall, the results show solely
85% success rate for the non-robust case against 100% for the ro-
bust one, demonstrating the ability of the proposed model to learn
efficient tubes in order to plan robust motion. Furthermore, an RRT
implementation using the GRU shows up to 5 times faster plan-
ning compared to implementations involving the traditional tubes
computation methods. This gain considerably improves for optimal
sampling-based tree planners such as RRT∗[12], since they evaluate
much more local trajectories in order to refine solutions.

7 Conclusion

In this paper we have presented a GRU-based neural network ar-
chitecture to predict uncertainty tubes and control inputs along se-
quences of desired states for any dynamical system. Results on a
quadrotor use case show that leveraging recurrent neural network ar-
chitectures is of key importance due to the temporal dependency of
the predictions. Furthermore, we have shown that a GRU is more
appropriate in a sampling-based tree planner context than RNN or
LSTM as it proposes the best compromise between prediction accu-
racy, generalizability, inference time and memory cost. The applica-
tion scenario involving a quadrotor demonstrates the model’s ability
to predict efficient uncertainty tubes in order to plan safe motions.
However, although the proposed GRU is independent of the robot’s
environment, it is still dependent on the system’s nominal parame-
ters and controller gains. Future work will focus first on learning the
controller’s optimal gains, given that these are still hand-tuned, and
then on making the model independent of the system’s nominal pa-
rameters. Moreover, we plan on validating the proposed approach on
other dynamic systems with different complexities.
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Method Validation set Test set
MAErq (m) MAEu [(rad/s)2] MAEru [(rad/s)2] MAErq (m) MAEu [(rad/s)2] MAEru [(rad/s)2]

GRUV 2.5e−4 25.2 74.6 1.0e−3 92.8 365.6
GRUA 2.6e−4 17.9 77.6 1.3e−3 82.7 418.5

GRUV A 2.6e−4 17.3 64.5 1.1e−3 71.0 279.8

Table 4: Results of the ablation study measured in term of MAE on the rq , u and ru components of the output vector. V,A refer to the different
inputs considered (linear and angular velocities, accelerations respectively). The presence of one as a subscript to the GRU model means that
it is used as an input (e.g. GRUA takes as input the acceleration only).

Figure 6: Example of GRU predictions on a 300-state trajectory of the test set. Predicted outputs are displayed in blue against true values in
black. rx, ry, rz are expressed in m, and control input associated values (ui, rui) are squared propeller angular velocities [(rad/s)²].

Figure 7: Comparison of predictions obtained using the different recurrent neural network architectures as well as the MLP on a 300-state
trajectory of the test set. ||rq||, ||u|| and ||ru|| refer to the norm of their respective vector. True values are displayed in black, GRU predictions
in blue, MLP predictions in purple, LSTM outputs in yellow, and basic RNN predictions are in red.
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