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Extending Task and Motion Planning with Feasibility Prediction:
Towards Multi-Robot Manipulation Planning of Realistic Objects

Smail Ait Bouhsain1, Rachid Alami1 and Thierry Siméon1

Abstract— The hybrid discrete/continuous nature of task and
motion planning (TAMP) results often in a combinatorial
explosion. This challenge is even more pronounced in multi-
robot TAMP problems due to the increase in dimensionality of
the action space. Previous works use action feasibility prediction
as a heuristic to accelerate TAMP. However, these methods are
limited to box-shaped objects and specific single or dual robot
settings. In this paper, we propose a feasibility-enabled multi-
robot TAMP algorithm capable of tackling complex multi-robot
manipulation problems. Also, we expand on our previous work
on action and grasp feasibility prediction [1] by extending its
use to mesh-shaped objects. We demonstrate the performance
of our method compared to a non feasibility-informed baseline,
and show its ability to handle TAMP problems requiring the
collaboration of multiple robots.

I. INTRODUCTION

Task and motion planning (TAMP, see e.g survey [2])
in robotics involves finding a sequence of steps a robot
should take to achieve a goal, along with their corresponding
motions. It mixes discrete symbolic planning and continuous
geometric planning. This combination results in a high com-
binatorial complexity making the search for a geometrically
feasible task plan tedious, time consuming and, in some
cases, unsolvable in a reasonable amount of time. These chal-
lenges do not only come from the combinatorial complexity
of the search, but also the high time cost of calling geometric
planners to verify the feasibility, particularly infeasibility, of
actions and plan their motions.

Recent works [3]–[6] leverage learning methods in order
to tackle this shortcoming of geometric planners. They
propose to learn to predict the feasibility of actions without
the need for querying geometric planning. These feasibility
predictions can then be used as heuristics during task and
motion planning. In a previous work [1], we propose the
AGFP-Net neural network, which predicts the feasibility of
pick and place actions in 3D environments, as well as the
feasibility of subsets of grasps. This model is integrated in a
feasibility-informed TAMP algorithm which uses feasibility
predictions as a heuristic to accelerate planning. The method
proposed in [1] is however limited to single-robot TAMP
problems and is not able to handle multi-robot settings. Also,
it is limited to box-shaped objects and obstacles.

In this paper, we tackle these limitations by proposing
a new feasibility-informed multi-robot TAMP algorithm.
It takes advantage of AGFP-Net for efficient action and
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(a) Sort problem

(b) Middleman− 3 problem

(c) Middleman− 5 problem

Fig. 1: Visualization of the initial and goal states of 3 of the
multi-robot TAMP problems solved by our method.

grasp feasibility predictions as a heuristic for accelerating
planning time. It also introduces a method for estimating
the feasibility of collaborative actions involving more than a
single robot. Moreover, we propose a method for extending
the use of AGFP-Net to mesh-shaped objects, allowing
feasibility prediction on common everyday objects. To the
best of our knowledge, our approach is the first to tackle
multi-robot TAMP in 3D ”realistic” environments (i.e with
support surfaces at different elevations/overlapping, vertical
and horizontal obstacles and mesh-shaped objects).

II. RELATED WORK

A. Classical TAMP
Early TAMP research [7]–[15] focused on the geometric

aspect, approaching the problem as a multi-modal motion
planning problem, which involves planning among multiple
motion modes. Many current TAMP techniques [16]–[23]
integrate a task planner with a geometric planner, relying



on geometric backtracking to connect the two. These ap-
proaches, nevertheless, face challenges due to the combina-
torics of the hybrid discrete/continuous search. and the heavy
time consumption of geometric planning, as verifying the
feasibility of symbolic plans still necessitates a large number
of costly calls to the geometric planner.

B. Learning for TAMP

In recent years, learning methods became increasingly
popular in TAMP [3]–[6], [24]–[34], [1]. Many works aim
at providing a learned heuristic to a TAMP planner, such
as evaluating action affordances [29], leveraging experience
to propose promising actions [26], [27], or providing fast
geometric feedback to the task planner thanks to action feasi-
bility prediction [3]–[6]. These methods are however limited
to tabletop environments. In [1], [33], we propose a learning
approach for predicting action and grasp feasibility in 3D
environments. As most feasibility prediction methods, ours
is limited to box-shaped objects. Wells et al. [3] propose to
use SVMs to predict the feasibility of pick and place actions
on mesh-shaped objects. These objects are represented using
hand-designed features, which makes the generalizability to
various shapes difficult. Park et al. [35] propose a neural
network for predicting the feasibility of grasp modes in
scenes containing one mesh-shaped object and a number of
obstacles. However, this method is object-centric, meaning
that the proposed model needs to be retrained for each
new object shape. In this paper, we extend our action and
grasp type feasibility prediction neural network [1] to mesh-
shaped objects, while maintaining generalizability to 3D
environments containing multiple objects of various shapes.

C. Multi-Robot TAMP

Multi-robot TAMP suffers from a higher combinatorial
complexity due to the increased number of robots, and
thus the increased dimensionality of the action space [36].
Previous works [16], [37]–[41] propose various approaches
for task and motion planning in multi-robot settings such
as graph-based and MDP-based techniques. These methods
suffer however from a combinatorial explosion as the number
of robots increases, resulting in a notable increase in the
already high number of calls to the geometric planner. In
this paper, we propose to accelerate multi-robot TAMP using
robot-centric feasibility predictions, allowing the planner to
mitigate the combinatorial explosion due to the presence of
multiple robots. We focus on sequential motion planning
in which objects are passed between two robots using a
pair of pick-place actions, rather than coordinated motion
planning where objects are exchanged between robots using
handovers. Driess et al. [4], [28] train a neural network to
predict action feasibility on box-shaped objects in tabletop
environments using two robotic arms. This learning approach
is limited, nevertheless, to the multi-robot setting it is trained
on, requiring a new training if the number of robots increases,
or the robots’ placements change. Our proposed feasibility
prediction framework does not depend on these parameters,

since it queries the neural network for each robot individu-
ally. Park et al. [35] propose a similar method, but focus on
environments containing one movable object only.

III. PROBLEM DESCRIPTION

We tackle model-based manipulation planning problems
where the goal is to rearrange a set of movable objects in
a 3D environment, comprising nR robot arms with fixed
bases, nss stable support surfaces, nobs fixed obstacles and
nO movable objects. The shapes, dimensions, initial poses of
all objects (fixed and movable) and the initial configurations
of all robots are fully known.

We define the state of the environment as the configuration
of each robot together with the support surface and pose of
all movable objects. The configuration of a robot r at state
s is denoted s(r), whilst the configuration of an object O
is denoted s(O). A transition between two states s and s′

is defined as an action a which involves a specific robot r
picking an object O from its configuration in s, and placing
it at a new configuration q, which becomes the configuration
of O in s′. The action a can be explicitly represented as:

a = Move(r,O, s(O) → q) (1)

The solution to the TAMP problem is a sequence of
actions τ and their corresponding motions Π, which brings
the environment from the initial state s0 to a goal state sgoal.
We define 3 types of actions at the symbolic level. The first
is a Goal action, which moves an object to its goal state.
The second is a Temp action, which places an object at
a temporary placement. The third is a Pass action, which
aims at placing an object inside the intersection between two
robots’ workspaces, so that the second robot can reach it.
We consider the workspace of a robot r, denoted W (r), as
a sphere centered at the first joint of the robot, with a radius
equal to its reach1.

IV. BACKGROUND

A. Neural Network

In [1], we propose a learning approach based on the
Action and Grasp Feasibility Prediction neural NETwork
(AGFP-Net). Given a representation of the current state of
the environment and the object of interest, it simultaneously
predicts the probability of feasibility of a Pick or Place
action denoted as pF , and the feasibility of 6 classes of
grasps grouped as the vector of probabilities pG. Each grasp
class is the set of grasps related to a side (e.g. top, front,
left) from which the object is approached by the robot.
The 3D environment is represented using 5 depth images
corresponding to different views of the scene, which show
all the objects in the workspace of the robot except the
object to manipulate. Also, all objects’ poses are shown in
the frame of the robot. The object of interest, on the other
hand, is represented using a mask over each depth image,
showing the object to manipulate only at the pose it should

1Note that this simple model of W (r) is generalizable to more precise
workspace representations, provided that mapping the intersection between
two workspaces is possible.



Fig. 2: Feasibility prediction pipeline for mesh-shaped objects. Scene projections and object masks are generated using the
bounding boxes of objects with complex shapes, then fed to AGFP-Net [1] to obtain the action and grasp types feasibility.

be picked or placed at. It is important to note that these
depth images are NOT obtained from depth cameras. Our
planning approach is model-based, meaning that the shapes
and poses of all objects are fully known. We use OpenCV
[42] to construct orthographic projections from this known
state of the 3D environment to obtain the aforementioned
depth images. These are a mere scene representation method
without any depth camera involved (even in practice).

AGFP-Net is trained on a fully synthetic dataset, com-
prised of randomly generated scenes containing a single
robot, 2 box-shaped objects and up the 4 support surfaces.
The dimensions and poses of these objects are sampled
randomly within fixed bounds. Our results in [1] show a good
generalization to new environments with a higher number of
objects, obstacles and support surfaces. Also, since the input
is internally generated, the sim-to-real gap is non-existent.
Nonetheless, the neural network is by design limited to a
single robot, and it can be used on box-shaped objects only.
We refer the reader to [1] for more details.

B. Action and Grasp Feasibility

Given a state of the environment s, the tested action a and
the object to manipulate O, The action a defined in (1) can
be decomposed into Pick and Place sub-actions as follows:

a(r,O, s(O),q) = Pick(r,O, s(O)) + Place(r,O,q) (2)

where Pick corresponds to picking object O using r from
s(O), and Place refers to placing O using robot r at q.

For each one of the Pick and Place actions, we generate
scene projections and object masks as explained in Section
IV-A and [1]. These projections are then given as input
to AGFP-Net to obtain the probability of feasibility of
performing the action on the object of interest, as well
as the feasibility of each one of the defined grasp types.
Following [1], we define the probability of feasibility paF of
the complete action a as:

paF = pPick
F × pPlace

F ×max(pa
G) (3)

where pPick
F and pPlace

F are the predicted probabilities of the
Pick and Place sub-actions respectively, and pG(a) is the
vector of combined grasp type probabilities:

pa
G = pPick

G ⊗ pPlace
G (4)

⊗ being the element-wise product.

The probability of feasibility of the action paF is used at
the task planning level to prioritize feasible actions during
the search, while the feasibility of grasp types pa

G is used
during geometric planning to prioritize feasible grasps.

V. FEASIBILITY PREDICTION GENERALIZATION

A. Generalization to Mesh-shaped Objects

In this work, we aim at generalizing AGFP-Net to objects
with more complex shapes. One possibility could be to
retrain the neural network on a new dataset with scenes
containing mesh-shaped objects. However, since the scene
projections are constructed internally, building depth images
of mesh objects can be time consuming, which defeats the
purpose of accelerating TAMP. Also, this method does not
guarantee the generalizability to unseen shapes during train-
ing. Therefore, we propose to represent mesh-shaped objects
at the feasibility prediction level using their bounding
boxes. This allows the neural network to generalize to objects
with complex shapes, without the need for any additional
data generation/annotation and training effort to [1], and
without an overhead in inference time.

When querying the neural network, the input scene projec-
tions are generated using the bounding boxes of mesh objects
as shown in Figure 2. Just as for box-shaped objects, AGFP-
Net outputs the probability of feasibility of performing an

Fig. 3: Visualization of the 6 grasp types depending on the
angle of approach of the robot’s gripper.



Fig. 4: Visualization of AGFP-Net’s input on an example 2-robot scene. To predict the feasibility of a Pick or Place action,
the neural network is queried for each robot individually, using depth images showing the objects inside their workspaces,
respectively. Objects in the intersection of both workspaces can be seen in both scene projections (i.e mustard bottle).

action on mesh-shaped objects, as well as the feasibility of
each grasp type. Since these grasp types represent continuous
subsets of grasps, we need to associate the mesh object’s
grasps (obtained using an off-the-shelf grasp planner or from
a grasp database) to one of these grasp types.

Given an object O which axes are (xO,yO, zO), and a
grasp g of O which direction of approach is defined by the
axes (xg,yg, zg), we define the angles Θ, Φ, Ψ as the angles
between xg and zO, xg and xO, yg and xO, respectively (cf.
Figure 3). The grasp type of g can be obtained as follows:

type(g) =



Front |Θ| > π
4 and |Φ| > 3π

4

Rear |Θ| > π
4 and |Φ| ≤ π

4

Right |Θ| > π
4 and −3π4 ≤ Φ < −π

4

Left |Θ| > π
4 and π

4 < Φ ≤ 3π
4

Topx |Θ| ≤ π
4 and π

4 < |Ψ| ≤ 3π
4

Topy |Θ| ≤ π
4 and (|Ψ| ≤ π

4 or |Ψ| > 3π
4 )
(5)

Using this formulation, we define the probability of feasibil-
ity of g as the probability of feasibility of its type.

B. Generalization to Multi-Robot Settings

AGFP-Net [1] is by design robot-centric, meaning that it
is dependent on the kinematics of the robot only, and does
not depend on any other factors such as where the robot
is placed in the environment. Also, the model covers the
whole workspace the robot. These properties are achieved by
expressing all objects poses, fixed or movable, in the frame of
the robot. The scene projections are constructed such that the
center of the robot’s workspace is at the center of the depth
images, and each projection covers the whole workspace
of the robot. As a result, the scene projections only show
the objects inside the robot’s workspace, hence feasibility
prediction can be performed on each one of these objects.
These capabilities allow a smooth generalization of AGFP-
Net to multi-robot problems. Indeed, the neural network can
be queried for each robot individually by making sure the
input shows the objects (or parts of objects) in the workspace
of the said robot only, and that the shown poses of these
objects are in the frame of the latter, as shown in Figure 4.

The challenge, however, lies in estimating the feasibility
of collaborative actions which involve two robots such as

Pass actions or Handover actions. In this paper, we focus
on Pass actions (the proposed approach can nonetheless be
easily extended to Handover actions). A Pass action aims
at moving an object to the intersection region between two
robots’ workspaces using one robot, so that the other is able
to manipulate it. Therefore, a Pass action is feasible only if
one robot is able to pick the object, place it at the intersection
region, and if the other robot is able to pick it from this
region. In order to be reliable, feasibility prediction must
take into account both robots when evaluating collaborative
actions. We propose a new method for estimating collabora-
tive actions feasibility (CF).

Given an object O’s pose in the world frame qO and a
robot r’s frame transform Tr, the pose of O expressed in
the frame of the robot is simply qr

O = T−1r qO. For a state
s and a Pass action apass(r1, O, s(O) → q) between two
robots r1 and r2, we transform the pick and place poses to
the frame of each robot to obtain s(O)r1 , qr1 and qr2 2.
Then, we compute the probability of feasibility p

apass

CF of the
Pass action between r1 and r2 as:

p
apass

CF = p
apass

F (r1, O, s(O)r1 ,qr1)× pPick
F (r2, O, qr2) (6)

For non-collaborative actions agoal of type goal, and atemp

of type Temp using a robot r, the probability of feasibility
is computed as in (3):

p
agoal

F = p
atemp

F = paF (r,O, s(O)r,qr) (7)

We develop a TAMP algorithm which uses these probabil-
ities of feasibility to prioritize feasible actions and speedup
the search for a geometrically feasible task plan.

VI. TASK AND MOTION PLANNING

We propose a feasibility-informed multi-robot TAMP al-
gorithm capable of solving problems involving multiple
robots. The main algorithm, shown in Algorithm 1, is based
on a best-first tree search, where nodes represent states
and edges are actions allowing transitions between states,
following the definitions of Section III. A list Q of open
nodes is maintained and sorted according to a defined cost.
At each iteration, the node s with the minimum cost is

2Note that qr1 and qr2 represent the placement pose expressed in the
frame of robots r1 and r2 respectively, and are not robot configurations.



extracted from Q and compared to the goal state sgoal.
If s is a goal state, we retrieve the complete task plan
leading to s then query the geometric planner to check the
feasibility of every action in the task plan and plan their
corresponding motions. If the action sequence is feasible,
then a solution was found. Otherwise, the search continues.
During geometric planning, the probabilities of feasibility
of grasp types for each action are given to the geometric
planning to prioritize feasible grasps.

Algorithm 1 Task and motion planner
Input: E, s0, sgoal,Γ ▷ Environment, Initial and goal states, robots graph
1: Q← {s0} ▷ Set of nodes to expand
2: while Solution not found do
3: s← argmincostQ
4: if s ∈ sgoal then
5: [τ,Π]← retrieveSolution(s)]
6: if Π is feasible then
7: return τ , Π
8: end if
9: else

10: Q← Q ∪ findChildren(s, E, sgoal,Γ)
11: end if
12: end while

Algorithm 2 findChildren
Input: s, E, sgoal,Γ
1: children← ∅
2: A← findPossibleActions(s, E, sgoal,Γ)
3: for each a in A do
4: [pa

F , pa
G)]← predictFeasibility(s, E, a)

5: child← nextState(s, a)
6: child.cost← computeCost(child, sgoal, pF (a), E)
7: children← children ∪ child
8: end for
9: return children

If s in not a goal state, we expand the node using
the function findChildren, shown in Algorithm 2. It first
samples applicable actions at state s, by calling the function
findPossibleActions which is detailed in Algorithm 3. For
each movable object O in the environment, we find the set
of robots capable of reaching O at its pose in s, using the
function findReachingRobots(s(O), E). For each robot ri
in the obtained set, we generate Goal, Pass and Temp
actions. In the case where O is not already at its goal pose, if
sgoal is reachable by ri, we sample a set of goal placements
in the workspace of ri. Otherwise, if the goal pose of O is
not reachable by ri, we try to generate Pass placements.

We first find the set of robots that are able to reach sgoal.
The planner needs to figure out how to bring O to each one
of these robot’s workspace. In order to do that, we build a
graph Γ which vertices are all the robots in the environment,
and edges represent the existence of an intersections between
two robots’ workspaces. For each robot rg reaching sgoal,
we use a Breadth-First Graph Search to find all possible
paths from ri to rg , and we extract the first robot from each
path. These are all the robots ri can pass object O to in
order to bring it closer to its goal pose. For each robot rj
in the obtained set of robots, we sample a number of Pass
placements at the intersection between W (ri) and W (rj).

Finally, we sample a set of Temp placements in the
workspace of ri. Then, we generate actions corresponding
to each one of the Goal, Pass and Temp placements

sampled3. Once these actions have been generated, we call
predictFeasibility for each action a, which queries AGFP-
Net and uses (3), (4) and (6) to compute the probability of
feasibility of the action and the feasibility of the grasp types.
We construct a new child as the result of applying a at s,
we compute its cost and add it to the list of open nodes. We
define the cost of a node as:

CTotal = CSoFar + CToGoal + CFeasibility (8)

where CSoFar is the number of actions in the branch leading
to the node, CToGoal is the minimum number of actions
to reach the goal state, and CFeasibility is the feasibility
cost detailed in [1]. In this work, CToGoal is constructed
differently compared to [1] [33] in order to tackle multi-
robot problems. Indeed, we take advantage of the previously
constructed graph Γ to compute for each object the shortest
path length to the goal using Breadth-First Graph Search. We
then sum the obtained path lengths to obtain the minimum
number of actions to reach the goal state.

Algorithm 3 findPossibleActions
Input: s, E, sgoal,Γ
1: A← ∅
2: for each O in movable objects do
3: for each ri in findReachingRobots(s(O), E) do
4: P ← ∅
5: if s(O) /∈ sgoal(O) then
6: if sgoal(O) is reachable by ri then
7: P ← P ∪ sampleGoal(ri, E, sgoal(O))
8: else
9: for rg in findReachingRobots(sgoal(O), E) do

10: next robots← BFS(Γ, ri, rg)
11: for rj ∈ next robots do
12: P ← P ∪ samplePass(ri, rj , E)
13: end for
14: end for
15: end if
16: end if
17: P ← P ∪ sampleTemp(ri, E)
18: for each q ∈ P do
19: a←Move(ri, O, s(O)→ q)
20: A← A ∪ a
21: end for
22: end for
23: end for
24: return A

VII. EXPERIMENTS

A. Test TAMP problems

In order to demonstrate the performance of our TAMP al-
gorithm, we construct multiple TAMP problems with varying
challenges in different single and multi-robot settings. Each
problem contains a number of mesh-shaped objects extracted
from the YCB [43] and KIT [44] objects databases. Note
that none of these objects nor their bounding boxes were
used during the training of AGFP-Net. Also note that each
object is annotated with up to 200 grasps to be used by the
geometric planner, that is much more than other works (eg.
[22]) which generally use a single to a few grasps only.

We modify the Access and Sort domains defined in [1]
to measure the performance of our generalization to mesh

3Although the number of placements sampled is a parameter fixed by the
user, we give the planner the possibility to resample new placements, in
case the previous ones do not lead to a feasible solution.



(a) Access problem (b) Clear problem (c) Longswap problem

Fig. 5: Visualization of the initial and goal states for 3 of the 6 problem domains used to test our approach.

objects and multi-robot settings. In the Access problem
shown in Figure 5a, a single robot has to move a meat can.
A number of mesh objects are however blocking access to
it, which requires removing all blocking objects to access
the wanted one, before returning them to their initial pose.
The Sort problem, illustrated in Figure 1a is a dual-robot
problem where the goal is to sort objects on two pre-
occupied tables. Here, the algorithm has to find feasible sets
of placements on narrow surfaces, although each robot can
reach one of the tables and a subset of the objects only.

We also define TAMP problems in which the presence
of multiple robots makes planning more challenging. In the
Clear problem, illustrated in Figure 5b, two large objects
(in red) span over the intersection region of two robots’
workspaces, rendering Pass actions infeasible. The robots
have to first clear the intersection region before moving
a set of objects from one table to another. In the the
Longswap problem (Figure 5c), three sequential robots
have to collaborate to swap the placements of 4 objects.
The intersection regions between robots’ workspaces are,
however, partially blocked by a set of obstacles. Finally, we
define the Middleman − 3 problem, shown in Figure 1b,
in which three robots form a triangle such that there is an
intersection between every pair of robots’ workspaces. One
of the intersection regions is blocked by a fixed obstacle,
forcing the robots to perform two Pass actions via a
middleman robot to move three objects from one counter to
the other. In order to demonstrate the ability of our approach
to handle arbitrary multi-robot settings, we define a 5-robot
version of this problem named Middleman−5 (Figure 1c).
In the latter, four symbolic action sequences allow each one
of four objects to be moved from a shelf to a table, however
three of them are blocked by fixed obstacles. The planner
must find the only geometrically feasible sequence of robots
exchanges to solve the problem.

B. Implementation details

We run our feasibility-informed TAMP algorithm on each
one of these problems for 10 trials each, with a timeout set to
900 seconds per trial. We use Moveit! Task Constructor [45]
for geometric planning with a BiTRRT motion planner [46].
On the feasibility prediction side, we reuse the neural net-
work weights obtained using the training approach detailed
in [1]. Experiments were conducted on an Intel i9-11950H
@ 2.60GHz, with 32GB of RAM and NVIDIA RTX A3000
GPU. For comparison, we also run a baseline version of our
algorithm that does not use feasibility prediction, by setting
all probabilities of feasibility to 1 during the search.

VIII. RESULTS

Table I shows the averaged results obtained for each
problem. Results show that our feasibility-informed TAMP
algorithm is able to solve most problems with 100% success
rate, compared to the non-informed baseline which com-
pletely fails to solve 3 of the 6 defined problems. Given the
high combinatorial complexity of these TAMP problems, this
outcome can be expected and shows that our method is able
to efficiently filter the tree search to reach a solution faster.

On the Access problem, our approach improves the suc-
cess rate from 0% to 100%, averaging a planning time
of 86.6s. Similarly, on the dual-robot Sort problem, our
informed planner improves the success rate from 10% to
90%, and accelerates planning time by a factor of 6.2. These
results are comparable to the ones obtained in [1], which
shows that our proposed feasibility prediction generalization
framework is able to handle mesh-shaped objects and multi-
robot systems without hurting planning time.

Results on the Clear problem show a 93% reduction in
planning time using feasibility prediction. AGFP-Net is able
to predict that Pass actions are initially infeasible due to the
objects blocking the intersection region between the robots’
workspaces, and allows the planner to prioritize clearing this
region first. This is particularly shown by the reduction in
the number of infeasible task plans generated from 21.4 to
0.4. The three-robot Middleman − 3 problem presents a
similar scenario, except the objects blocking the intersection
region are fixed obstacles. Also, the added robot adds to
the combinatorial complexity of the problem. Results show
an improvement in success rate from 0% without feasibility
prediction to 100% using AGFP-Net. Also, total planning
time using the latter is at least 33 times faster. This shows that
our feasibility-informed planner avoids spending extensive
effort on trying to perform a single Pass action directly to
the goal robot, and prefers the use of a middleman robot with
two Pass actions for each object, leading to a reduction in
the number of infeasible task plans from 146.6 to 0.4.

Results on the Longswap and Middleman− 5 problems
demonstrate the ability of our approach to generalize to
different multi-robot settings. On the Longswap problem,
in addition to an improvement in success rate from 40%
to 100%, our feasibility-informed planner reduces the total
planning time by at least 90%. Using AGFP-Net, our al-
gorithm identifies which of the sampled Pass placements
are collision-free and prioritizes them. It also recognizes
occupied goal placements and includes Temp placements
in its solution in order to free them. On the Middleman−5



TABLE I: Planning performances with and without using feasibility prediction, averaged over 10 trials. Speedup is computed
over all the trials by considering the timeout for failed cases and the average total planning time for successful ones.

Problem Method
Success Total Geometric Planning Feasibility Infeasible

Rate Planning Time (s) Prediction Task Speedup
(%) Time (s) Feasible actions Infeasible actions Time (s) Plans

Access Baseline 0% > 900 > 458 > 440.3 - > 303.3
> 10.4Ours 100% 86.6 (+/-52.7) 33.9 (+/-10.3) 5.3 (+/-10.1) 44.4 (+/-49.9) 1.7 (+/-1.1)

Sort Baseline 10% 666.1 (+/-0.0) 23.7 (+/-0.0) 639.8 (+/-0.0) - 93.0 (+/-0.0)
> 6.2Ours 90% 56.4 (+/-35.0) 27.5 (+/-11.9) 0.8 (+/-1.6) 26.5 (+/-27.2)) 0.3 (+/-0.5)

Clear Baseline 70% 299.8 (+/-117.4) 16.4 (+/-6.9) 282.8 (+/-113.7) - 21.4 (+/-9.1)
> 13.7Ours 100% 35.0 (+/-22.1) 12.2 (+/-4.5) 7.4 (+/-11.8) 15.0 (+/-9.9) 0.4 (+/-0.7)

Middleman-3 Baseline 0% > 900 > 137.4 > 766.7 - > 146.6
> 33Ours 100% 27.3 (+/-8.3) 19.4 (+/-8.0) 0.2 (+/-0.4) 7.3 (+/-3.6) 0.4 (+/-0.9)

Longswap Baseline 40% 438.4 (+/-144.4) 58.4 (+/-11.8) 377.9 (+/-133.9) - 29.8 (+/-13.3)
> 9.9Ours 100% 72.0 (+/-27.3) 34.1 (+/-3.1) 23.9 (+/-22.5) 12.4 (+/-5.4) 1.6 (+/-1.2)

Middleman-5 Baseline 0% > 900 > 69.5 > 842.1 - > 54.4
> 3.4Ours 90% 198.0 (+/-173.3) 46.8 (+/-14.8) 40.2 (+/-53.1) 90.8 (+/-74.4) 1.4 (+/-2.0)

problem, the gain in performance is even more significant
with a success rate of 90% compared to the baseline which
completely fails to solve the problem. Feasibility prediction
guarantees a high success rate even if the combinatorial
complexity is much higher due to the increased number of
robots, which is shown by an average planning time of 198s,
higher than the one obtained on the other problems, but still
reasonable given the complexity of the problem.

We conduct an ablation study in order to evaluate the
benefit of using the collaborative feasibility introduced in
Section V-B. Table II shows a comparison of success rates,
total planning time, number of expanded nodes and number
of feasibility checks, with and without using collaborative
feasibility (CF). Results show a clear performance improve-
ment on all multi-robot problems when collaborative feasi-
bility is used. Indeed, both the Pick and the Place actions
composing a Pass action can be feasible. However, the
following Pick action using the receiving robot might not
be. Taking into account the feasibility of this second Pick
action allows the planner to prioritize other Pass actions,
or actions that aim at clearing the intersection region if
necessary. This translates into less expanded nodes as well
as less feasibility checks, which can be observed in Table II
on all problems. Particularly, results obtained on the harder
Middleman−3, Longswap and Middleman−5 problems
show CF not only reduces the number of expanded nodes and
feasibility checks, it also improves success rate and planning
time. On the Middleman − 3 problem, in addition to a
50% improvement in success rate, planning time is 3.9 times
faster. Moreover, the number of expanded nodes is 68 times
lower, while the number of feasibility checks is reduced by
96%. Table II shows a 90% improvement in success rate
for the Longswap problem thanks to the use of CF, with
58% faster planning time, 59 times less expanded nodes and
23 times less feasibility checks. On the Middleman − 5
problem, results show that the planner completely fails to
solve the problem without collaborative feasibility, compared
to a 90% success rate using CF. This demonstrates the
necessity of using CF for the more complex problems.

These results show that our proposed approach is able

TABLE II: Comparison of the planning performances ob-
tained with (+) and without (-) collaborative feasibility (CF).

Problem CF Success Planning Expanded Feasibility
Rate Time (s) Nodes Checks

Sort - 70% 120 444 6166
+ 90% 56 144 2363

Clear - 90% 31 60 1635
+ 100% 35 40 1025

Middleman-3 - 50% 106 1093 14417
+ 100% 27 16 598

Longswap - 10% 172 1771 22330
+ 100% 72 30 961

Middleman-5 - 0% > 900 > 4616 > 104433
+ 90% 198 797 6271

to tackle single and multi-robot TAMP problems involving
mesh-shaped objects. Feasibility prediction not only guaran-
tees almost 100% success rate on all problems, but it also
reduces considerably the planning time. Also, the overhead
due to feasibility prediction is largely compensated by the
time saved in geometric planning time.

IX. CONCLUSION

In this paper, we present a feasibility-informed multi-
robot TAMP algorithm, capable of solving complex problems
involving multiple robots in 3D environments. We introduce
a method for extending the use of AGFP-Net [1] to mesh-
shaped objects, allowing action and grasp feasibility predic-
tion on realistic objects. We also propose a framework for
predicting the feasibility of actions in arbitrary multi-robot
settings, taking advantage of the robot-centric nature of the
neural network, and using a new approach for estimating the
feasibility of collaborative actions such as Pass actions. We
demonstrate the performance of our method on six TAMP
problems containing multiple mesh-shaped objects, and dif-
ferent single and multi-robot settings. Results show a notable
gain in success rate and planning time using feasibility
prediction as a heuristic. Future work involves extending the
approach to more collaborative actions such as handovers,
and to coordinated motion planning problems, allowing a
parallel execution of tasks. We also plan to experimentally
demonstrate our TAMP planner in real settings.



REFERENCES

[1] S. A. Bouhsain, R. Alami, and T. Simeon, “Simultaneous action
and grasp feasibility prediction for task and motion planning through
multi-task learning,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

[2] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems, 2021.

[3] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learn-
ing feasibility for task and motion planning in tabletop environments,”
IEEE robotics and automation letters, 2019.

[4] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuris-
tics: Learning feasibility of mixed-integer programs for manipulation
planning,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA).

[5] L. Xu, T. Ren, G. Chalvatzaki, and J. Peters, “Accelerating integrated
task and motion planning with neural feasibility checking,” arXiv
preprint arXiv:2203.10568, 2022.

[6] Z. Yang, C. R. Garrett, and D. Fox, “Sequence-based plan feasibility
prediction for efficient task and motion planning,” arXiv preprint
arXiv:2211.01576, 2022.

[7] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps,” in The fifth international symposium on Robotics research,
1990.

[8] Y. Koga and J.-C. Latombe, “On multi-arm manipulation planning,”
in 1994 IEEE International Conference on Robotics and Automation.

[9] J. M. Ahuactzin, K. Gupta, and E. Mazer, “Manipulation planning for
redundant robots: a practical approach,” The International Journal of
Robotics Research, 1998.
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[46] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
rrt to deal with complex cost spaces,” in 2013 IEEE International
Conference on Robotics and Automation.


	Introduction
	Related Work
	Classical TAMP
	Learning for TAMP
	Multi-Robot TAMP

	Problem Description
	Background
	Neural Network
	Action and Grasp Feasibility

	Feasibility Prediction Generalization
	Generalization to Mesh-shaped Objects
	Generalization to Multi-Robot Settings

	Task and Motion Planning
	Experiments
	Test TAMP problems
	Implementation details

	Results
	Conclusion
	References

