
HAL Id: hal-04642304
https://laas.hal.science/hal-04642304

Preprint submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Note on learning sensitivity metrics for a quadrotor
Simon Wasiela, Smail Ait Bouhsain, Marco Cognetti, Juan Cortés, Thierry

Simeon

To cite this version:
Simon Wasiela, Smail Ait Bouhsain, Marco Cognetti, Juan Cortés, Thierry Simeon. Note on learning
sensitivity metrics for a quadrotor. 2024. �hal-04642304�

https://laas.hal.science/hal-04642304
https://hal.archives-ouvertes.fr


Note on learning sensitivity metrics for a

quadrotor

Simon Wasiela1, Smail Ait Bouhsain1, Marco Cognetti1, Juan
Cortés1, and Thierry Siméon1

1LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse,
France, {swasiela,saitbouhsa,mcognetti,jcortes,simeon}@laas.fr

Abstract

Robust trajectory planning can involve the use of ’uncertainty tubes’
which bound the system’s states and inputs. These tubes can be derived
from a variety of metrics, involving complex simulation computations.
This is the case for the sensitivity-based uncertainty tubes computation
we consider in this work. In fact, this computation was shown to be com-
putationally expensive, and even more in the context of sampling-based
planners, where it has to be performed at least once for each new sample.
In order to solve this problem, a learning-based approach is presented in
this work to predict these sensitivity-based uncertainty tubes. The report
is organized as follows: first, it recalls the sensitivity basis and the tube
computation, then presents the chosen system and controller. Next, the
network architecture is presented, and finally the results including dataset
generation, training to different types of network, from LSTMs and RNNs
to GRUs, and evaluation are given in a final section.

1 Reminder: Closed-loop sensitivity

The notion of closed-loop sensitivity was introduced in [1, 2] for quantifying
how variations of some model parameters (supposed to be uncertain) affect the
evolution of the system in closed-loop, i.e., by also taking into account any
controller chosen for executing the task. Consider a generic robot dynamics

q̇ = f(q, u, p), q(t0) = q0, (1)

where q ∈ Rnq is the state vector, u ∈ Rnu the input vector, and p ∈ Rnp

is the vector containing (possibly uncertain) model parameters. Also assume
the presence of a controller of any form to track a desired trajectory πd(a, t)
parameterized by the vector a s.t.,{

ξ̇ = g(ξ, q, a, pc, kc, t), ξ(t0) = ξ0
u = h(ξ, q, a, pc, kc, t),

(2)

1



where ξ ∈ Rnξ are the internal states of the controller (e.g., an integral action),
kc ∈ Rnk the controller gains, and pc ∈ Rnp the vector of nominal parameters
used in the control loop.

In order to quantify how sensitive the states q(t) and the inputs u(t) are
w.r.t. variations of p (w.r.t. the ‘nominal’ pc) for the closed-loop system (1–2),
the state sensitivity matrix Π and the input sensitivity matrix Θ are defined
in [1] and [2], respectively. They do not have in general a closed-form expres-
sion but their evolutions in time can be computed according to their following
dynamics (see [1, 2] for more details):

Π̇(t) = ∂f
∂q

Π+ ∂f
∂u

Θ+ ∂f
∂p

,

Π̇ξ(t) =
∂g
∂q

Π+ ∂g
∂ξ

Πξ,

Θ(t) = ∂h
∂q

Π+ ∂h
∂ξ

Πξ.

(3)

Given a bounded range δpi for each uncertain parameter pi s.t. pi ∈ [pci −
δpi, pci + δpi], and assuming small variations of the parameters s.t. ∆q ≈
Π(t)∆p, it is possible to obtain the so-called uncertainty tubes. The tube along
the i-th component of the state is characterized by its radius rq,i(t), which
bounds the state evolution over time. In other words,

qn,i(t)− rq,i(t) ≤ qi(t) ≤ qn,i(t) + rq,i(t). (4)

with the radius rq,i(t) related to Π(t) by mean of the following equation:

rq,i(t) =
√
ni

TKΠ(t)ni. (5)

where ni ∈ Rn is the i-th direction we are interested in andKΠ(t) = Π(t)WΠ(t)T

with W a diagonal weight matrix using δp (see [3] for details). Note that such
bounds apply to the nominal state (qn)

1 and that similar tubes can be obtained
for the inputs.

Such radii computation relies on the knowledge of Π(t) and Θ(t) which are
computed numerically by integrating their respective dynamics (3). Depending
on the number of parameters and on the dimension of the system state, this
integration may have a non-negligible computational time. For example, refer-
ring to our quadrotor case in Sect.2, this requires solving a hundred ordinary
differential equations. For trajectories composed of a hundred samples, this may
require from tens to hundreds of milliseconds.

2 Quadrotor dynamics and control

Fig.1 represent the quadrotor state space where the ENU (East North Up)
world frame is defined as FW = {OW , XW , YW , ZW } and FB = {OB , XB , YB ,
ZB} be the quadrotor body frame attached to its geometric center (OB). The

1A nominal state refers to the simulated state of the system in closed-loop under nominal
system parameters (i.e., p = pc).

2



Figure 1: The quadrotor space with a shift in the center of mass.

state of the quadrotor is defined as q = [xv ρω] where x = [x y z] ∈ R3 and
v = [vx vy vz] ∈ R3 are respectively the position and velocity vector of OB

expressed in FW . The body orientation w.r.t. FW is represented by the unitary
quaternion ρ and its angular velocity as ω = [ωx ωy ωz] ∈ R3. Finally, let R(ρ)
be the rotation matrix associated to ρ.

We consider that the center of mass is displaced from the robot’s geometric
center of an offset xc = [xcx, xcy, xcz] expressed in FB . Under this consideration,
the total force (ftot) and torque (τtot) acting on the quadrotor can be expressed
in FB s.t.

ftot = fZW −mgR(ρ)
T
ZW −m[ω]×[ω]×xc

τtot = τ −mg[xc]×R(ρ)
T
ZW − [ω]×(J − [xc]×[xc]×)ω

where f and τ are the propeller total thrust and torques, m is the system mass
and J is the inertia matrix. By considering the spatial inertia matrix

S =

(
mI3 −m[xc]×

m[xc]× J −m[xc]×[xc]×

)
one finally gets the body frame linear acceleration α and angular acceleration

η as:
(
αT ηT

)T
= S−1

(
ftot

T τtot
T
)T

. The dynamic model is then defined as

follows:

q̇ =


ẋ = v
v̇ = α
ρ̇ = 1

2ρ⊗ ω
ω̇ = η

(6)

3



As tracking controller, we consider the so-called Lee (or geometric) con-
troller [4] where the control inputs are the squared rotor speeds u = [ω2

1 ω
2
2 ω

2
3 ω

2
4 ]

T .
This controller first computes as follow the desired thrust fd and torques τd

to be able to track the desired trajectory:

fd = (−kxex − kvev +mge3 +mad)Re3
τd = −kReR − kωeω

(7)

where ex and ev respectively represent the error vector according to the desired
positions and velocities, ad represents the desired acceleration vector and e3 =
[0 0 1]T . Then, the squared rotor speed are computed by mean of an allocation
matrix G evaluated at the estimated nominal parameters pc s.t.

u = G(pc)
−1

[
fd
τd

]
Finally, the computed control inputs are related to f and τ by mean of an

allocation matrix G evaluated at the (potentially unknown) system parameters
p s.t. [

f
τ

]
= G(p)u

The uncertain parameters vector is defined as p = [m, xcx, xcy, Jx, Jy,
Jz]

T ∈ R6, which represents parameters that are difficult to evaluate or likely
to vary during execution. We chose as nominal parameters pc = [1.113, 0.0, 0.0,
0.015, 0.015, 0.007]T and their associated uncertainty range δp = [7%, 3cm, 3cm,
10%, 10%, 10%]T , which represents the percentage variation of the parameters
w.r.t. their associated nominal value except for xcx and xcy whose nominal
values are null. The nominal controller gains used are kx = [20.0 , 20.0 , 25.0],
kv = [9.0 , 9.0 , 12.0], kR = [4.6 , 4.6 , 0.8], kω = [0.5 , 0.5 , 0.08].

3 Neural network architecture

A simplified representation of our neural network architecture applicable to
RNN, GRU or LSTM is presented in Fig. 2. Blue blocks refer to the input of
the neural network and are composed of a sequence of states, denoted by qk

NN ,
evaluated at the k -th time step of a desired trajectory, and an initial hidden
state hidden0.

The output of the neural network correspond to the green blocks. It is
composed of a sequence of the predicted nominal control input values uk, and of
rq

k and ru
k, which represent the predicted radii of the uncertainty tubes along

the desired direction of the state and of the input spaces, respectively. Finally,
hiddenF corresponds to the hidden state at the last point of our sequence (i.e.,
the last state of our trajectory).

Note that such hidden states encodes some information about our sequence
which will help in predicting the next uncertainty tubes. As the network is
intended to be used in a sampling-based algorithm, where local trajectories are

4



Figure 2: Representation of the neural network architecture applicable to RNN,
GRU or LSTM. Blue blocks correspond to the inputs composed of a sequence
of states qk

NN and an initial hidden state (hidden0). Green blocks refer to the
output, which is a sequence of radii and control inputs (rq

k, ru
k,uk), and the

final hidden state (hiddenF ).

concatenated to form a global one, the final hidden state (hiddenF ) is intended
to be reused as the initial hidden state (hidden0) in future predictions. There-
fore, in general, this initial hidden state is not the null matrix.

Finally, the core of our network is composed of a single-layer GRU/ LSTM/
RNN block that feed our ’decoder’ block, which is a multi layer perceptron
(MLP) composed of several linear layers (see Sec.4).

The prediction process flows as follow: At k = 0, the first state in the
input sequence q0

NN and the initial hidden state hidden0 are given to a single-
layer GRU/LSTM/RNN block, which outputs an updated hidden state hidden1.
The latter is then fed to a MLP, each layer followed by a ReLU activation
function except the final one, to obtain the predicted control inputs u0, the
state uncertainty tubes rq

0 as well as the control uncertainty tubes ru
0. The

updated hidden state h1 is then given back to the GRU/LSTM/RNN block
along with the second element of the input sequence. This process is repeated
for each element qk

NN until all predictions are obtained.
In the case of our quadrotor, we choose the desired states as input parameters

to the GRU, as they form the input to the control loop (see Eq. 7). However,
in order to make the learned model independent of workspace boundaries used
during planning (i.e. robot position and initial orientation), only the desired
linear velocities vd, accelerations ad, and yaw angular velocities (Ψ̇d), are kept
as the network input components. Hence, the input to the neural network is
a vector qk

NN = [vd, ad, Ψ̇d]
T , where k refers to the k-th state of the desired

5



Figure 3: Dataset generation process. At each iteration, a new state qrand is
randomly sampled from a uniform distribution and connected to the previous
connected state qprev using a steering method. If the local trajectory (between
qrand and qprev) execution time is greater than 1s, it is truncated to 1s. Simi-
larly, when the total trajectory time (TF ) exceeds 15s after adding a new state,
we truncate at 15s. After n iterations, a trajectory with a total execution time
of 15s made up of 1s sub-trajectories is generated. Finally, to annotate the
data, the uncertainty tubes and control inputs are computed by simulating the
tracking of the generated trajectory under nominal parameters (i.e p = pc).

trajectory. As for the output vector, it is composed of the predicted control input
values u = [u1, u2, u3, u4]

T , the uncertainty tubes radii along the {x, y, z}-axis
of the state rq =[rx, ry, rz]

T , and the uncertainty tubes radii associated with
the control inputs of the system ru = [ru1, ru2, ru3, ru4]

T .

4 Results

4.1 Dataset

In order to train the proposed neural network, we generated a dataset of trajec-
tories computed in an obstacle-free environment as depicted in Figure.3. This
ensures that the resulting learned model is totally independent of the environ-
ment and only depends on the system. Each global trajectory starts from the
same initial hovering state (qinit) initialized at zero velocities and accelerations2.
Based on the same principle as a sampling-based planner, the global trajectory
is made up of local sub-trajectories until a total execution time length (TF )

2Note that this initialization does not hurt the generalizability of our model to different
initial conditions and environments with obstacles.

6



Figure 4: Velocity norm distribution in the training (left) and test sets (right).

of 15s is reached. Each local sub-trajectory is generated by uniformly sam-
pling an arrival state (qrand) and connecting it to the previous sampled state
(qprev) using a Kinosplines steering method [5]. These kinosplines have the
advantage of enforcing the following kinodynamic constraints on the generated
splines [vmax, amax, jmax, smax], where vmax, amax, jmax and smax represent the
maximum allowed velocity, acceleration, jerk and snap respectively. If the local
trajectory (between qrand and qprev) expected execution time is greater than
a maximum local duration Tl, it is truncated to Tl. Similarly, when the total
trajectory duration TF exceeds 15s, it is truncate at 15s.

To generate the outputs, i.e. to annotate the data with uncertainty tubes
and control inputs, the closed-loop dynamic and the sensitivity matrices are
computed by simulating the tracking of the global trajectories using an integra-
tion time step ∆T which corresponds to the same time step used for collision
checking in a sampling-based motion planner.

Using this mechanism, a training and validation sets respectively composed
of 8.000 and 2.000 trajectories were generated considering a maximum local
duration of Tl = 1s and an integration time step ∆T = 0.05s, making sure that
every trajectory in the dataset is different.

In order to show the reliability and generalizability of the learned model,
a test set composed of 1.000 trajectories was generated in the same way, but
considering a maximum local duration Tl = 2s. As a result, trajectories with
higher velocities are encountered in the test set compared to the validation set,
as depicted in Figure 4 where velocity norms can reach up to 7 m.s−1 in the
test set, compared with only 3 m.s−1 in the validation set3.

The kinodynamic constraints enforced on the generated splines are [vmax,
amax, jmax, smax] = [5.0m.s−1, 1.5m.s−2, 15.0m.s−3, 30.0m.s−4]. The data an-
notation was performed by computing and integrating (Eq. 6) and (Eq. 3) by
mean of the dopri5 [6] ODEs solver along a desired trajectory. Once Π and
Θ had been computed, a simple projection was performed to recover the tubes
thanks to (Eq. 5). Note that the control inputs u are computed during the
ODEs resolution. The mean and standard deviation values of the various com-

3Note that the velocity norms exceed the velocity limit vmax, this is expected since this
limit applies to the components of the velocity vector rather than the norm.

7



ponents of the output vector for the validation and test sets generated by this
setup are provided in Table.1.

Output Validation set Test set
rq 1.0e−1 ± 2.0e−2 1.1e−2 ± 2.1e−2

u 12469.3± 861.6 12476.8± 1016.5
ru 7782.6± 3172.3 7828.6± 2845.7

Table 1: Mean and standard deviation of the output vector components norm
after data annotation for the validation and test sets. rq is expressed in m, and
(u, ru), are squared propeller speeds [(rad/s)²].

4.2 Training

RNN GRU LSTM
LR 1e−4 1e−3 1e−3

HIDDEN 512 512 512
LINEAR 3 3 3

Table 2: Implementation details for each neural network after hyper-parameters
optimization where LR refers to the learning rate, HIDDEN to the hidden state
size and LINEAR to the number of linear layers.

In order to chose the most suitable model for our needs we compare 3 differ-
ent models: a basic RNN, a GRU and a LSTM. Each of these is dependent on
the following hyper-parameters: learning rate (LR), hidden state size (HIDDEN)
and number of linear layers (LINEAR). The size of the linear layer (llinear) is
related to the hidden state size by letting llinear = HIDDEN

2 .
We optimize the hyper-parameters of the 3 models using a grid search where

LR = {1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5}, HIDDEN = {32, 64, 128, 256, 512} and
LINEAR = {1, 2, 3}, and details of the best implementations found are reported
in Table.2. Note that the LSTM has both a hidden state and a cell state that
are the same size, so the total size of the LSTM input is 2×512.

Each model is then trained using the MSE (Mean Squared Error) loss func-
tion over 200 epochs and using 80% of the dataset generated in Sect.4.1 for the
training set and the 20% left for the validation set. The outputs vector are
standardize according to the mean and standard deviation of the training set,
and the inputs features are min max scaled according to the maximum velocity
and acceleration values of Sect.4.1.

4.3 Evaluation

The metrics chosen to quantify models performances are as follows:

8



Method
Validation set Test set

MAErq MAEu MAEru MAErq MAEu MAEru

RNN 4.5e−4 35.8 166.4 1.4e−3 103.3 544.8
LSTM 3.1−4 17.7 58.7 1.4e−3 79.7 308.1
GRU 2.6e−4 17.3 64.5 1.1e−3 71.0 279.8

Table 3: MAE (Mean Absolute Error) on the rq, u and ru components of
the output vector expressed, and computed on the validation and test sets for
a trained RNN, GRU and LSTM model. MAErq [m] and (MAEu, MAEru)
[(rad/s)²].

Time (ms) 100 points 200 points 300 points
TRNN 0.8± 0.5 1.7± 2.7 2.5± 1.6
TGRU 2.3± 0.4 4.4± 0.3 7.3± 1.1
TLSTM 2.8± 0.3 5.9± 0.5 8.1± 0.6
Teuler 63.9± 8.3 132.4± 9.9 261.1± 18.0
Tdopri5 251.7± 17.3 537.2± 29.8 755.6± 34.5

Table 4: Average prediction time (ms) over 100 predictions on trajectories com-
posed of 100 states, 200 states and 300 states, for an RNN, GRU, LSTM, an
ODE Euler integrator, and the ODE dopri5 integrator.

• The MAE (Mean Absolute Error) of the norm of the different output com-
ponents rq, u and ru, denotedMAErq , MAEu andMAEru respectively.
We then compute MAEu as:

MAEu = MAE(∥u∥, ∥û∥) (8)

The same goes for MAErq and MAEru .

• Prediction time compared with traditional methods involving ordinary
equation solvers (e.g. Runge Kutta 4). Inference time is denoted Tsolver/NN

according to the model or solver used. The ODEs were implemented using
the JiTCODE [7] module which converts the equations to be integrated
into C-compiled code. The Euler method or the dopri5 integrator were
then used to solve each ODE and take advantage of this compiled function.
All following results were obtained on an Intel i9 CPU@2.6GHz processor
with one RTX A3000 GPU.

Table 3 reports the MAE for the different output vector components on the
validation and test sets. First of all, we observe that RNN offers the least
accurate predictions, with up to 7% error on the ru components of the test set.
On the other hand, GRU provides the best accuracy on all the components on
both sets except for ru on the validation set, but for which predictions remain
close to expected values with less than 1% deviation from expected mean values.
GRU shows the best reliability and generalizability of the trained model to

9



Figure 5: Example of GRU predictions on a 300-state trajectory of the test set.
Predicted outputs are displayed in blue against true values in black. rx, ry, rz
are expressed in m, and control input associated values (ui, rui) are squared
propeller speeds [(rad/s)²].

unseen samples from a different distribution. GRU performance on the test
set shows that the predictions along rq remain highly accurate (less than 1
millimeter average error) and that the highest errors are obtained on ru but
do not exceed 4% of the expected average value. The LSTM provides the best
predictions on the ru component of the validation set. However, the results
show a slightly lower accuracy than GRU on the other components with an
average error of 4.5% on test set ru predictions. Nevertheless, LSTM is more
accurate on all components thanRNN. Overall, RNN performs the worst while
GRU and LSTM provide similar results, with an overall better accuracy for
GRU. Moreover, the latter shows a better generalization to unseen trajectories
that are slightly different from the training set, as illustrated in Fig. 5 where
higher velocities than in the training set are encounter. In addition, Fig. 6 shows
predicted vectors for a 600-state trajectory generated in the same way as the
test set but considering a total length of 30s (i.e. TF = 30s), thus demonstrating
the stability of the proposed method.

In order to choose the most advantageous model or method for computing
uncertainty tubes in terms of prediction time, the methods/models are applied
to trajectories of different lengths (i.e. made up of a certain number of desired
states). Table 4 shows the results obtained on trajectories of several hundred
states. Note that with the current system, the number of ordinary equations
solved for each element in the sequence (i.e. trajectory state) is equal to 91 (see
Sect. 2). We observe that the greater the length of the trajectory to be inte-
grated, the greater the gap between ODEs solver methods and neural networks
in average prediction time. Results show that as the number of states in the tra-

10



Figure 6: Example of GRU predictions on a 600-state trajectory generated in
the same way as the test set. ||rq||, ||u|| and ||ru|| refer to the norm of their
respective vector. Predicted outputs are displayed in blue against true values in
black. ||rq|| is expressed in m, and control input associated values (||u||, ||ru||)
are squared propeller speeds [(rad/s)²].

jectory increases, the time gain reaches two orders of magnitude using recurrent
neural network architectures. We also note that among these models, RNN is
the fastest to perform the predictions, which is explained by the fact that the
network size is smaller than LSTM, and the RNN cell performs fewer internal
operations than the GRU cell. In a robust sampling-based motion planning
context, the neural network is meant to be queried tens of thousands of times
on multi-states trajectories. Hence, these observed gains can be exponential
depending on the number of trajectories to be evaluated.

Finally, even if RNN excels in inference time when making predictions;
its accuracy is noticeably lower when contrasted with that of GRU. As for the
LSTM, it provides the slowest inference time and less accurate predictions than
the GRU, except for the ru component of the validation set. Additionally, its
hidden state implementation results in twice as many parameters having to be
saved per sampling-based motion planner iteration compared to GRU, which
translates by a higher memory cost when growing trees or graphs with thousands
of nodes. Therefore, based on the models implementation details and results
presented above, the use of GRU is recommended in the context of a sampling-
based motion planner. Indeed, the latter is much faster than methods based
on ODEs solvers while offering the most accurate predictions, thus offering the
best trade-off between inference time and accuracy.

11



5 Conclusion

We have presented a GRU-based neural network architecture to predict uncer-
tainty tubes and control inputs along sequences of desired states for any dy-
namical system. Results on a quadrotor use case show that leveraging recurrent
neural network architectures is of key importance due to the temporal depen-
dency of the predictions. Furthermore, we have shown that a GRU is more
appropriate in a sampling-based tree planner context than RNN or LSTM as
it proposes the best compromise between prediction accuracy, generalizability,
inference time and memory cost.

References

[1] P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation
for minimum closed-loop state sensitivity,” in IEEE ICRA, 2018.

[2] P. Brault, Q. Delamare, and P. Robuffo Giordano, “Robust trajectory plan-
ning with parametric uncertainties,” in IEEE ICRA, 2021.

[3] P. Brault, “Robust trajectory planning algorithms for robots with paramet-
ric uncertainties,” Ph.D. dissertation, Université de Rennes, 2023.

[4] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a
quadrotor uav on se(3),” in IEEE CDC, 2010.

[5] A. Boeuf, J. Cortés, and T. Siméon, “Motion planning,” Aerial Robotic
Manipulation: Research, Development and Applications, 2019.

[6] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formu-
lae,” vol. 6, no. 1. Elsevier, 1980, pp. 19–26.

[7] G. Ansmann, “Efficiently and easily integrating differential equations with
JiTCODE, JiTCDDE, and JiTCSDE,” vol. 28, no. 4, 2018, p. 043116.

12


