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Abstract—This article presents a novel approach for control-
ling a fleet of drones that can track the location of a flying target
using onboard omnidirectional cameras. The drones use Multi-
Agent Reinforcement Learning (MARL) to learn decentralized
policies that optimize their formation and motion around the
target, minimizing the uncertainty in the triangulated position.
We design a reward function that encourages the trackers to
minimize the trace of the covariance matrix of the triangulated
position, which is derived from an analytical model of uncertainty
propagation. We use Multi-Agent PPO (MAPPO), an extension of
Proximal Policy Optimization (PPO) to the multi-agent setting,
to train the policies using this common reward function that
encourages good formation and avoids collisions. We validate
our approach in simulation and real-flight experiments, demon-
strating its effectiveness and potential in enhancing autonomous
multi-drone coordination for precise tracking.

Index Terms—Reinforcement Learning, Multi-Agent, PPO,
Triangulation

I. INTRODUCTION

In the context of pursuit-evasion scenarios involving multi-
ple drones, there is a need to accurately track the location of
small aerial vehicles in 3 dimensions. Whether to know the
location of other members of the fleet or to track one or more
targets before and during interception.

In this article, we aim to take the first steps toward a novel
approach for controlling a fleet of drones that can track the
location of one or more flying targets using onboard cameras.
The guidance algorithm should optimize the placement of the
drones to minimize the triangulation uncertainty on the tracked
targets, even when they move with unpredictable trajectories.

The proposed approach uses Multi-Agent Reinforcement
Learning (MARL) to optimally position multiple drones to
jointly triangulate the position of a single target using on-board
omnidirectional cameras. We use Multi-Agent PPO (MAPPO)
[1], an extension of Proximal Policy Optimization (PPO) [2] to
the multi-agent setting, to train decentralized policies using a
purpose-built common reward function that encourages good
formation around the target to minimize uncertainty in the
triangulated position. The trained models are validated in
simulation and the resulting behavior is demonstrated in real-
flight experiments.

We investigate MARL over traditional optimization methods
because we expect benefits in solving large-scale triangula-
tion problems. Traditional optimization methods, even using

heuristics, are slow and computationally expensive for large-
scale problems, which is unsuitable with an onboard guidance
algorithm. While training the RL agent is computationally
expensive, it can compute fast solutions after learning.

The organization of this paper is as follows. After reviewing
the relevant related work on drone tracking using drones in
Section II, and presenting the existing background in MARL
and triangulation in Section III, we present our MARL drone
guidance approach for N-view triangulation in Section IV. We
detail the simulation setup and results in Section V. Finally,
we describe the real-flight experiments in Section VI.

II. RELATED WORK

Triangulation is the process of estimating the 3-D position
of a point from its projections on two or more images taken
from different viewpoints. This can be done by intersecting
the projection rays associated with each image point, or by
minimizing the reprojection error between the 3-D point and
the image points. However, triangulation is sensitive to errors
in the camera calibration and pose estimation, as well as to
noise and outliers in the image points. A common technique to
optimize the placement of the cameras and the triangulation
estimation in N-view triangulation is bundle adjustment [3].
Bundle adjustment is a non-linear least squares optimization
method that simultaneously refines the intrinsic and extrinsic
camera parameters, by minimizing the sum of squared repro-
jection errors over all image points and views. This method
is widely used in structure-from-motion problems, where it
helps to reconstruct 3-D scenes from calibrated images taken
by different cameras. However, the computational cost and
memory requirements of bundle adjustment scale superlinearly
with the number of cameras [4].

Tracking is the process of estimating the position and
orientation of a moving object over time from a sequence
of images. Techniques such as Kalman Filters and Nonlinear
Polynomial Regression are commonly used for drone tracking
[4]. Most research on cooperative mobile robots for observing
moving targets focuses on ground targets moving in a 2-D
plane [5]–[7]. Some studies have proposed the use of onboard
cameras for real-time tracking and 3-D localization of multiple
drones [8]. However, the tracking of drones using a camera
aboard another drone remains a relatively less explored area in



the literature, as it poses more difficulties than tracking with
fixed camera systems.

Reinforcement learning (RL) is a machine learning
paradigm that enables an agent to learn from its own ac-
tions and rewards. RL has been applied to various problems
involving the optimal placement of sensors and guidance
algorithms for drones and fleets of drones. RL has been used
for depth observation of indoor scenes using multiple cameras,
where the agent learns to select the best camera positions
and orientations to minimize the depth observation error [9].
Alternatively, an RL-based approach for drone pursuit-evasion,
where the agent learns to follow a target drone using sensor
data and a deep object detector, was presented in [10]. These
works mainly focus on single-agent RL, where one agent
interacts with the environment independently. MARL is a
branch of RL that deals with multiple agents that cooperate or
compete with each other in a shared environment. MARL has
been used to learn the optimal formation and motion of a fleet
of drones for triangulation, by maximizing the coverage and
diversity of the views and to optimize the communications [7],
[11], but again these studies focus on observing ground targets
moving in a 2-D plane. To our knowledge, no recent studies
have addressed the optimal placement of a fleet of drones using
MARL to track flying objects using onboard cameras.

III. BACKGROUND

A. Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs)

We consider a fully cooperative multi-agent task that can be
described as a Decentralized Partially Observable Markov De-
cision Process [12] defined by a tuple (n, S,A,Ω, T,O,R, γ),
where n is the number of agents, S is the state space,
A = A1 × . . . × AN and Ω = Ω1 × . . . × ΩN are the set
of joint actions and joints observations with each Ai and Ωi

being the local action and local observation sets of agent i,
T : S × A × S → [0, 1] is the state transition probability
function, O : S×A×Ω → [0, 1] is the observation probability
function, R : S × A → R is the instant reward function, and
finally γ ∈ [0, 1] is the discount factor.

At each time step t, each agent i chooses an action ai,t ∈ Ai

based on its local observation history oi,1:t, and receives a local
observation oi,t+1 ∈ Ωi based on the resulting state st+1. The
joint action at = (a1,t, . . . , aN,t) determines the immediate
reward rt = R(st, at) and the next state st+1 according to
the transition probability T (st, at, st+1) = Pr(st+1|st, at).
The objective is to find a policy πθ(ai,t|oi,1:t) parameterized
by θ that produces an action ai,t from the local observation
history oi,1:t, which maximizes the expected discounted return
J(θ) = E[

∑T
t=0 γ

trt]. The state value function V πθ (s) =
Eπθ

[
∑∞

k=0 γ
krt+k+1|St = s] is the expected return from

starting in state s and following policy πθ thereafter. The state-
action value function Qπθ (s, a) = Eπθ

[
∑∞

k=0 γ
krt+k+1|St =

s,At = a] is the expected return from starting in state s, taking
action a, and following policy π thereafter.

B. Single-Agent Reinforcement Learning Algorithms

Most Reinforcement Learning methods can be divided into
two groups: value-based and policy-based methods. Value-
based methods, such as Deep Q-Learning (DQN) [13], use
deep neural networks to estimate the value functions and
derive the optimal policy π∗ from the optimized value func-
tions by choosing for each state s the action that maximizes
the action-value: π∗(s) = argmaxa Q

∗(s, a). Policy-based
methods on another hand directly parameterize the policy
πθ(a|s) as a function of the state and the action. Policy
gradient methods are a subclass of policy-based methods that
update the policy parameters θ by following the gradient of
the expected return: ∇θJ(θ) = Eπ[∇θ log πθ(a|s)Qπ(s, a)].
Using the full return from each episode to estimate the gradient
leads to high variance in the gradient estimates. To reduce this
variance, Actor-Critic methods were introduced [14]. These
methods maintain an explicit separate function approximator
(the Critic) to estimate the value function, which is used as a
baseline to compute the Advantage function. The Advantage
function, Aπ(s, a) = Qπ(s, a)− V π(s), measures how much
better an action a is compared to the average action at state
s under policy π. This helps reduce the gradient estimates’
variance, leading to more stable learning. PPO [2] is a further
development in policy gradient methods that seeks to update
the policy in a way that avoids large, abrupt changes that could
destabilize the learning process, thereby ensuring stable and
efficient learning.

C. Multi-Agent Reinforcement Learning

Single-agent RL methods often fail in multi-agent settings
due to the well-known curse of dimensionality and non-
stationarity. Recently, MARL approaches addressed these is-
sues with the Centralized Training, Decentralized Execution
(CTDE) approach. By training the agents in a centralized
manner to leverage global information and then executing the
learned policies in a decentralized manner, CTDE ensures
scalability and robustness. Several MARL algorithms have
been developed under the CTDE framework, including value-
based methods like QMIX [15] and VDAC [16], and policy
gradient methods like COMA [17] and MADDPG [18]. PPO
has shown great promise in the MARL setting: Multi-Agent
PPO (MAPPO) [1], an extension of PPO in the CTDE frame-
work, uses a centralized critic and decentralized actors and
has demonstrated superior performance in various complex
multi-agent tasks compared to other state-of-the-art MARL
algorithms [1].

D. N-View Linear Triangulation

Linear triangulation is a method to estimate the 3-D co-
ordinates of a point from its 2-D projections in two or
more images taken by different cameras. The principle of
linear triangulation is based on the pinhole camera model,
which relates the 3-D point X and its 2-D projection x in
homogeneous coordinates by the 3 × 4 camera matrix P
as x = PX. The camera matrix P encapsulates both the
intrinsic parameters (such as focal length and optical center)



and extrinsic parameters (including rotation and position) of a
camera.

Linear triangulation solves an overdetermined linear system
of the form AX = 0, which in the case of N-view triangu-
lation, with n of these image points and camera calibration
matrices gives:
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where X = (λx, λy, λz, λ)T , λ being an unknown scale factor,
and ui, vi and P jT

i are the image coordinates and the jth row
of the camera matrix Pi of the ith camera. To find X, one
finds a non-zero solution X that satisfies AX = 0. In the
case of noisy measurements, because the n rays defined by
the 2-D projection points and their respective camera centers
don’t intersect in a single point, the system has no non-zero
solutions, and the problem is transformed into a minimization
problem to find an approximate solution, usually solved with
least-square techniques [19].

IV. MULTI-AGENT REINFORCEMENT LEARNING DRONE
GUIDANCE FOR N-VIEW TRIANGULATION

A. Presentation of the scenario

Our problem consists of multiple drones, named hereafter
“trackers”, chasing a single drone, the “target” to track its
position, using on-board sensors such as cameras. The trackers
aim to arrange their fleet formation so that the triangulated
position uncertainty is minimal.

The trackers and the target motions are omnidirectional,
we did not implement a drone flight model in this study. We
assume that the target has a constant flight velocity. The drones
fly in a squared arena without any obstacles in it. Neither
the trackers nor the target can get out of the arena: their
actions are clipped to stay inside the arena borders. Collisions
between trackers, or between a tracker and the target, result
in a failure. Crashing into the ground also results in a failure.
The orientation of the drones is not considered in this study,
it is assumed that all drones are aligned with their heading
parallel to the positive direction of the X-axis in the global
coordinate system.

We assume that the trackers can differentiate the other track-
ers from the target. We did not consider partial observability in
this study. We make the strong assumption that every tracker
knows the exact 3-D positions in the world, without noise, of
the other trackers of the fleet and also of the target. However,
the actions taken by the trackers are decentralized, meaning
that they do not know the actions taken by the other members
of the fleet.

The camera on board the trackers is assumed to be omnidi-
rectional, without a restricted field of view, and unaffected by

occlusions. The camera center coincides with the trackers’ 3-D
location. We also assume that the camera’s intrinsic parameters
do not introduce any distortion in the measurements. Rather
than measuring the location of a world point’s projection
on a 2-D camera plane, the omnidirectional camera simply
measures the polar and azimuth angles within a spherical
frame that is centered around the tracker’s position. In light
of these simplifications, the triangulation uncertainty is only
the result of the measurement uncertainty along the polar
and azimuth angles within each tracker frame. This drove the
shaping of the reward function described in Section IV-D.

B. Multi-Agent Reinforcement Learning Algorithm

In this study, we employ the Multi-Agent Proximal Policy
Gradient (MAPPO) algorithm as our Deep RL algorithm due
to its simplicity, its ability to work in continuous state and
action spaces, and its demonstrated effectiveness in various
MARL tasks [1]. We assume all agents to be homogeneous,
enabling us to use parameter sharing for training, thereby
accelerating the learning process and maximizing the infor-
mation extracted from each interaction with the environment.
MAPPO operates on a CTDE framework, it uses a centralized
critic and decentralized actors: while all agents are governed
with a common policy, and trained centrally, they act in-
dependently based on their local observations at each time
step, creating a decentralized system. We train a policy for a
given number n of trackers. This approach is needed as we
did not address the varying length of the state representation
depending on the number of trackers in the environment.

C. State Representation

The state space, observation, and action spaces are continu-
ous. Each tracker 3-D position in world Cartesian coordinates
is encoded in a 3-D vector pi. The 3-D position of the target
is pT. The n trackers are ordered so that pi is always the
position of the ith tracker. The state of the environment is the
ordered tuple s = (p1,p2, . . . ,pn,pT) and is the input of the
centralized critic network used in the MAPPO algorithm. For
each tracker i, its observation of the environment is encoded in
the ordered tuple oi = (pi,p1, . . . ,pi−1,pi+1, . . . ,pn,pT)
and is the input of the decentralized actor-network.

As for the action space, as explained in Section IV-A,
the trackers’ motion is holonomic. At each step, the agents
navigate within a sphere of a 20cm radius centered on their
prior location (this value is directly inherited from the simula-
tion environment CrazyRL [20] that we adapted to implement
our simulation environment, see Section V). This radius is
determined by the agent’s maximum speed (approximately
2m/s) divided by the control frequency (10Hz in the training
environment). To compute this next step position, the actor
network outputs a 3-D point in [−1, 1]3, which is subsequently
scaled by 20cm.

D. Reward Structure

At each time step, every agent receives a common reward
designed to encourage the trackers to reach positions around
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Fig. 1. Representation of omnidirectional cameras in spherical frame. Polar
angles θ are shown with respect to horizontal plane for easy visualization.

the target where the uncertainty on the result of the triangula-
tion algorithm is minimal.

The evaluation of the uncertainty of the result of an es-
timation algorithm can be done with two approaches. An
a posteriori approach involves implementing a Monte Carlo
method: the uncertainty of the output is statistically obtained
from repeated random sampling given a noisy input distribu-
tion. While being easy to implement, it requires a significant
number of runs, which can be time-consuming. The second
method is an a priori approach, which involves developing
analytical relationships using linear approximations to describe
how uncertainty propagates from inputs to outputs. This sec-
ond approach requires only one run to compute the uncertainty
of the output. This makes it the preferred approach for our
reward function, since it is computed at each interaction step
with the environment.

1) Triangulation with omnidirectional cameras: In our sim-
plified case with omnidirectional cameras, instead of mea-
suring the position of the projection of the world point on
the 2-D camera plane, we measure the polar and azimuth
angle in the spherical frame centered on the tracker’s position.
For each tracker at location p = (px, px, pz) in Cartesian
global coordinates, the Cartesian global coordinates of a point
X = (x, y, z) are related to its local spherical coordinates
following: xy

z

 = r ×

sin θ cosϕsin θ sinϕ
cos θ

+

pxpy
pz

 (2)

with θ ∈ [0, π] the polar angle, and ϕ ∈ [0, 2π[ the azimuth
angle. The radial distance r ∈ R+, is unknown in the
triangulation problem. Let’s define the following vector :

di =

dx,idy,i
dz,i

 =

sin θi cosϕi

sin θi sinϕi

cos θi

 (3)

This vector, often named direction cosines, defines the direc-
tion of the point X in the ith tracker local Cartesian coordinate
system using the spherical coordinates. Together with the
location of the tracker pi, they define a line passing by X.
In the case of triangulation with two omnidirectional cameras,
we have: {

X = r1 × d1 + p1

X = r2 × d2 + p2

(4)

We can eliminate the unknown radial distances with a cross-
product to obtain three equations for each tracker, very similar
to the one of linear triangulation in the case of pinhole cameras
in (1). Note that, the third equation is a linear composition of
the two others and could be removed.

dy,i(z − pz,i)− dz,i(y − py,i) = 0

dz,i(x− px,i)− dx,i(z − pz,i) = 0

dx,i(y − py,i)− dy,i(x− px,i) = 0

(5)

We obtain, for n trackers, an overdetermined linear system
of the form AX = b, which is solvable using a method
such as Singular Value Decomposition or using least-square
techniques to obtain the value of X.

A1 0 . . . 0
0 A2 . . . 0
...

...
0 0 . . . An



X− p1

X− p2

...
X− pn

 =


0
0
...
0

 (6)

with

Ai =

 0 −dz,i dy,i
dz,i 0 −dx,i
−dy,i dx,i 0

 (7)

2) Propagation of uncertainty: The triangulation equations
in (6) has the implicit form:

fρ(X,v) = 0 (8)

where fρ is parameterized by the parameter vector ρ =
(p1, . . . ,pn), X is the triangulated 3-D point in output of
the triangulation algorithm and v is a vector of noisy inputs
v = (θ1, ϕ1, . . . , θn, ϕn), governed by Gaussian noise with
covariance matrix Σv.

In such case, the covariance matrix ΣX of the output X, is
related to the covariance matrix Σv by [21], [22]:

JXΣXJX
T = JvΣvJv

T (9)

where JX and Jv are the Jacobians matrices of the partial
derivatives of fρ with respect to, respectively, the output X
and the input v. Then, the output covariance matrix can be
expressed as a function of the input covariance matrix (which
is either known or presumed) by:

ΣX = JX
+Jv(ΣvJv

T )(JX
+)T (10)

where JX
+ is the pseudo-inverse of JX.

In our case, the Jacobians can be analytically expressed
using (6). The input vector v can be decomposed in v =
(v1,v2, . . . ,vn) with vi = (θi, ϕi), then fρ(X,v) can be
written:

fρ(X,v) =
[
fp1(X,v1) . . . fpn(X,vn)

]T
(11)

with each fpi
(X,vi) = [Ai ·(X−pi)]

T . Hence, the following
Jacobians matrices:



JX =


∂fp1

∂X
∂fp2

∂X
...

∂fpn

∂X

 =


A1

A2

...
An

 (12)

Jv =


∂fp1

∂v1
0 . . . 0

0
∂fp2

∂v2
. . . 0

...
. . .

...
0 0 . . .

∂fpn

∂vn

 (13)

with
∂fpi

∂vi
=

[
∂Ai

∂θi
·(X−pi)

∂Ai

∂ϕi
·(X−pi)

]
(14)

3) Comparison with Monte Carlo approach: To validate the
previous analytical model of the output uncertainty, we com-
pared the uncertainty obtained with the analytical approach
with the results of a Monte Carlo approach. We set up, in
simulation, two cameras at different locations in a sphere
around a target point. Assuming that the inputs are subject
to Gaussian noise, we added Gaussian noise with standard
deviation (σθi , σϕi

) to the true measurements and used a
triangulation algorithm based on (6) and a least-square solver
to calculate estimated output positions. We then computed the
statistical uncertainty of the target position for each pair of
camera locations.

Fig. 2 shows the results of comparing the proposed analyti-
cal model and the Monte Carlo simulations for different pairs
of camera locations in a plane. The first camera is fixed at
10m of the target along the X axis, and the second camera
is positioned uniformly in the circle around the target on
the XY plan. We used for both cameras an input standard
deviation of σθi = σϕi

= 0.003 rad. For each pair of camera
locations, 100 Monte Carlo runs were used to compute the
statistical uncertainty of the output. The uncertainty of the x
coordinate of X as a function of the distance and the angle
in the XY plane of the second camera is plotted. The other
components are not presented here, but the x component is the
most illustrative, as the first camera is aligned on the X-axis.

Fig. 2. Uncertainty of the triangulated output on the X axis for two cameras
parallel to the XY plane.

It is easy to see that the Monte Carlo values closely align with
the analytical results.

4) Reward function: At each time step, the trackers receive
the following reward:

ri =


1√

Tr(ΣX)
,

if di,target > dthreshold
and di,ground > dthreshold
and ∀j ̸= i di,j > dthreshold

−rpenalty, otherwise

(15)

Where Tr(ΣX) denotes the trace of the covariance matrix
ΣX, i.e. the variance of the distance of the X vector to
its means. This encourages the trackers to reach positions
around the target where the uncertainty on the result of
the triangulation algorithm is minimal. This is a common
reward calculated using the position of every tracker, which
encourages collaboration.

If any of the trackers collide with the target, the ground,
or another tracker within a specified time step (based on a
distance threshold dthreshold), then the tracker receives an
individual penalty (−rpenalty). This encourages each tracker
to avoid collisions.

V. SIMULATION EXPERIMENTS

We implemented our scenario in simulation by adapting the
simulation environments of CrazyRL [20] based on Farama
Foundation’s standard API for MARL environments, Petting-
Zoo [23]. CrazyRL is a MARL Python library that provides
simulation environments and tools to do MARL with Crazyflie
2.1 drones, commercialized by Bitcraze AB. We used this
library to test later our trained RL models in real flights as
presented in VI. CrazyRL training environments are very fast,
which is necessary to be able to train our agents in a reasonable
amount of time, yet this comes at the expense of complexity,
as the drone’s dynamic model is not considered, as specified
in IV-A. CrazyRL’s existing simulation environments were
heavily customized to fit our scenario description, our new
reward function, and the addition of domain randomization
(the starting positions of the target and the trackers were
randomized on each run, a feature not present in the origi-
nal CrazyRL implementation but necessary to achieve better
generalization).

We trained our RL models using the original implemen-
tation of MAPPO [1] using Pytorch [24]. The training loop
examples provided in the original implementation by the
authors of [1] were adapted to fit PettingZoo’s API.

Our policies are parameterized by a two-layer Multi-Layer
Perceptron with 64 units per layer. The actor-network maps
the agent observations to the mean and standard deviation
vectors of a Multivariate Gaussian distribution followed by a
Tanh transformation, from which the continuous actions are
sampled. The Tanh transformation is used to constrain the
output actions to a finite interval [25].

[1] provides best-practice suggestions for hyperparameter
choice for training models using MAPPO. Following these
recommendations, the relevant hyperparameters used to train
our models are summarized in Table I. Leveraging the fact



TABLE I
TRAINING HYPERPARAMETERS

Hyperparameters Value
num training episodes num training steps / buffer length

batch size num envs × buffer length × num agents
mini batch size batch size / num of mini-batches

num parallel envs 128
num training steps 30e6

buffer length 1024
num of mini-batches 1

num of epoch per training 15
actor learning rate 5e-4
critic learning rate 5e-4

clip parameter 0.2
entropy coefficient 0.1

value loss coefficient 0.5
optimizer Adam

optimizer epsilon 1e-5
weight decay None

that our agents are homogeneous, we used parameter sharing
and parallelization to speed up training. We use reward and
observation normalization. We trained our models on a desktop
machine with 32 GB DDR2 RAM, an 8-core 2.00GHz CPU,
and a GeForce 1080Ti GPU for 30 million environment steps
and then evaluated them on several evaluation episodes to
average the various metrics presented in Table II.

The results in this paper were obtained with agents trained
against a fixed target. The target’s position is still randomized
on each training episode, but it doesn’t move.

The average episode cumulated reward over the training for
2 and 3 trackers is shown in Fig. 3. It is easy to see that in both
cases, the training converged. We can observe that compared
to the 3-tracker case, the 2-tracker case converges to slightly
lower final returns in the same amount of training steps. This
difference can be attributed to the reward function that rewards
the minimization of the uncertainty in the triangulated position,
and this uncertainty is known to scale down with the number of
points of view. Both cases have a similar speed of convergence,
with the 2-tracker case slightly faster, which is to be expected
as the training time scales up with the size of the model to
train, even though the batch size used for each training episode
with MAPPO also scales up with the number of agents.

To evaluate the performances of the trained models, we

Fig. 3. Average episode cumulated reward during training for different
numbers of agents

TABLE II
EVALUATION RESULTS IN SIMULATION

Metrics Values
Num agents 2 Trackers 3 Trackers

Env Training Bullet Training Bullet
Mean

angle (°) 91.14 102.0 96.56 85.44

Std
dev (°) 9.15 9.98 13.64 26.34

Crash
rate (%) 12.26 22.0 6.90 14.34

first evaluated them at convergence against the same simplistic
simulation environment used for the training. Afterward, the
models were evaluated in a more realistic environment, named
dronesim [26], that uses the Bullet Physics engine [27]. This
time, the dynamic model of the drones is simulated, and the
drones are guided using realistic command laws. As often in
drone simulators, dronesim simulator has high-level guidance
controllers that accept reference positions as input. Recall that
the trained policy in the simplistic environment computes, as
a control action, a position increment in a 20cm sphere around
the current drone position in the inertial frame. The sum of the
current drone position and the policy’s position increment can
then be used as a reference position and fed to the controller
of the drone’s autopilot, at 48Hz.

Each time, the final position of each tracker with respect to
the target was measured to evaluate how they surrounded the
target to optimally triangulate its position. We didn’t concern
ourselves with the distance to the target in this evaluation, as
in real-life applications this optimal distance is a function of
the field of view and camera intrinsic parameters, which are
not modeled in this study. The remaining relevant metric is the
angle determined by the lines connecting the agents’ positions
to the target position. We averaged the angles between agents
and over 1000 iterations and also measured its standard
deviation. We also kept track of the number of times at least
one tracker crashed. The results are presented in Table II.

The uncertainty evaluations presented in Fig. 2 give a
baseline of what the optimal formation around the target is. For
two drones, the obvious best position to triangulate the target
is with both drones at 90◦ from each other. We can see in
Table II, that in the 2-tracker case, the obtained trained policy
performs fairly well, reaching the optimal angular position in
most of the cases. This validates experimentally our choice of
reward function in the 2-tracker case. Results obtained with
the 3-tracker case are presented in Table II.

Fig. 4 presents multiple trajectories obtained with the
dronesim simulation. In the top two figures, we can observe
how the trackers circle a fixed target and hover at fixed
positions at a safe distance from the target. The position
commands outputted by the RL policy network are plotted, and
we can see a close match between the position commands and
the final drones’ trajectories. The inference time of the policy
network was short enough to allow controlling the drones
in a closed loop at a high frequency (48Hz). Finally, even



Fig. 4. Trajectories obtained during simulated flights using the Bullet Physics
Engine. The trajectories of the drones are plotted in gradients of blue, and
the position commands from the RL policy are in cyan.

though it was not trained for, we evaluated our policy against
a moving target. The bottom two figures present a 2-tracker
case with a target moving in a circle at the same maximum
speed as the trackers (2m/s). We can observe that despite being
trained with fixed targets, the resulting policy can adapt to
slowly moving targets. This outcome is due to the Markovian
properties inherent in reinforcement learning, as the control
actions are computed based on the current state only and not
on past data. However, since the policies were not trained
with a moving target, the trackers did not learn to anticipate
the movements of the target, leading to a delay in the trackers’
response.

VI. TEST WITH REAL-FLIGHTS

The control policy for the trackers is solely learned from
the interactions inside the simple simulator. To illustrate the
behavior of the learned policy in real-life scenarios, we have
deployed the 2-tracker and 3-tracker fixed target observation
scenarios into real-life demonstrations.

The experiments took place at ENAC’s micro indoor flight
arena named crazyTown, shown Fig. 5. The flight space
dimenstions are L×W ×H = 3× 3× 2.5m and is equipped
with LightHouse positioning system from Bitcraze AB. Un-
like traditional motion capture systems, which calculate the
position and orientation of the tracked objects in a centralized
computer, the LightHouse system is completely decentralized,
i.e. each vehicle calculates its position on-board with the
specific hardware module.

The vehicles used during the demonstration are Crazyflie
V2.1 with the corresponding Lighthouse modules for the
localization. We used Crazyflie’s Python library, which has
high-level guidance controllers that accept reference positions
as input. Therefore, similarly to V with the simulated drones,
we feed directly the calculated position command to the
Crazyflies, but at only 10Hz.

Fig. 5. The Left picture shows the 27g Crazyflie 2.1 quadrotor from Bitcraze
AB that is used during this work, and the right picture captures an instance
from the real flights with two trackers following a circling target inside
crazyTown.

Examples of flight trajectories are shown in Fig. 6 and
Fig. 7. One can immediately notice the noisy trajectories
obtained during the real flights. This may come from noise
in the trackers position estimates, and some effort may be put
on smoothing the decisions during the learning phase.

However, the policy successfully reaches and stabilizes
over a fixed target point for both 2-tracker and 3-tracker
demonstrations, as shown in the bottom row of Fig. 6. As
explained in Section V, the policy is also tested on a moving
virtual target, which circles horizontally at the center of the
crazyTown with a radius of 0.6m and at 0.6m height.

VII. CONCLUSION

We have introduced a MARL-based drone guidance ap-
proach for N-view triangulation of flying targets using onboard
omnidirectional cameras. We employed MAPPO to success-
fully learn decentralized policies that enable the drones to
dynamically adjust their positions to optimally triangulate the
target, reducing the uncertainty in the location estimation.
We proposed a reward function based on the trace of the
covariance matrix of the triangulated position, computed using

Fig. 6. The top row depicts real flights where the drones are tracking a target
moving in circles. The bottom row presents real-flight with a fixed target.



Fig. 7. Example of successive trackers movements when the target is moving
in circles.

an analytical model of the uncertainty propagation. A com-
parison with Monte Carlo approach shows a good agreement
with the proposed model. Furthermore, we have evaluated
the trained policies in simulation and tested them in real-
flight experiments, showing that they can handle different
scenarios and transfer to realistic settings. Our approach is
a promising step towards leveraging MARL for multi-drone
tracking. Besides more thorough experimental evaluation and
analyses, in future work, we will evaluate the system behavior
with more agents. More importantly, we will no longer assume
that the trackers’ positions are known to every tracker, but only
partially observed by vision. We will also consider the multiple
targets case.
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