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1 Introduction

The job-shop scheduling problem (JSSP) is a well studied and NP-hard problem where
a set of jobs are to be processed on a set of machines. Each job is composed of a sequence
of operations that must be processed on machines with given processing times in a given
job-dependent order, and each machine can process only one operation at a time. The
JSSP has received considerable attention and both metaheuristics and exact methods have
been developed to solve the problem, the majority of them with the assumption that
the parameters are deterministically known. However, in the real world, many sources of
uncertainty can affect the quality and even the feasibility of a schedule.

There exist two major approaches to deal with data uncertainty: stochastic optimization
and robust optimization. While stochastic optimization considers probability distribution,
robust optimization assumes that uncertain data belong to a given uncertainty set and
aims to optimize performance considering the worst-case scenario within that set.

In this paper, we propose exact solution methods to solve the robust job-shop scheduling
problem. A two-stage robust optimization approach is used to deal with processing times
uncertainty, where the first stage fixes the sequence of operations on machines whilst the
second stage sets the operation start times.

2 Problem statement

An instance of the JSSP implies a set of jobs J and a set of machines M. Each job
i ∈ J consists of a sequence of ni operations. The jth operation Oi,j ∈ Oi of a job i must
be performed by machine µi,j ∈ M (with µi,j = m ⇐⇒ Oi,j ∈ Im, where Im is the set
of operations processed by machine m) and pi,j denotes its processing time. Each machine
can process at most one operation Oi,j ∈ Im at a time, each job can only be processed
on one machine at a time, and preemption is not allowed: once an operation is started, it
must be processed without any interruption.

We consider that the processing times of operations are uncertain. Each processing time
pi,j of an operation Oi,j ∈ Oi, i ∈ J , belongs to the interval [p̄i,j , p̄i,j + p̂i,j ], where p̄i,j is
the nominal value and p̂i,j the maximum deviation of the processing time from its nominal
value.

The traditional robust optimization approach consists in protecting against the case
when all parameters can deviate at the same time, which makes the solution overly conser-
vative. Indeed, there is a very low probability that all parameters take their worst value all
together. To overcome this limitation, Bertsimas (2004) introduces an uncertainty budget



approach that allows a restriction on the number of deviations that can occur simulta-
neously to a given budget. In order to reach a trade-off between robustness and solution
quality, we exploit this approach to define the uncertainty set.

Let Γ be the budget of uncertainty, i.e., the maximum number of operations whose
processing time can deviate simultaneously. For each scenario ξ, the processing time of
operation Oi,j is given by:

pi,j(ξ) = p̄i,j + ξi,j p̂i,j (1)

where ξi,j is equal to 1 if the processing time of the operation deviates, 0 otherwise
We then define the uncertainty set UΓ as:

UΓ = {(ξi,j)i∈J ,1≤j≤ni |
∑
i∈J

ni∑
j=1

ξi,j ≤ Γ}. (2)

The robust multi-stage optimization, introduced by Ben-Tal (2004), considers that a
part of the decision variables must be instantiated before the uncertainty is revealed, while
the other variables can be adjusted to the uncertainty realization. In our problem, we
consider that the purpose is to find the sequence on the machines (first stage decisions),
allowing to define a start time for each operation and each scenario (second stage decisions),
minimizing the makespan in the worst-case scenario.

3 Solution methods

A robust problem can be solved using an extended formulation, which consists in dupli-
cating the set of constraints involving uncertain parameters (in the present case, operation
processing times) for all possible scenarios ξ ∈ UΓ . Usually formulated as a linear program-
ming problem, it is also possible to adopt a constraint programming approach (Juvin 2023).

However, according to the structure of our uncertainty set, the number of scenarios
increases exponentially with the number of operations, which quickly makes these models
intractable. Therefore, in this section we deal with the evaluation of a worst-case scenario.
This study then allows us to propose a compact formulation and decomposition methods
of the problem.

3.1 Worst-case evaluation

In this section, it is assumed that a first-stage solution σ is given. Considering an
uncertainty budget Γ , the worst-case evaluation is to identify a scenario, with at most
Γ operations whose duration deviates, and that leads to the largest possible makespan.
This problem can also be treated as the evaluation of a longest path in an directed acyclic
graph (DAG). Such a method is actually used by Bold (2021) in the context of a robust
resource-constrained project scheduling problem (RCPSP).

3.2 Compact model

As Bold (2021) for the robust RCPSP, we propose a compact formulation of the robust
JSSP, based on the dual of the worst-case evaluation subproblem. We introduce the vari-
ables Cγ

i,j , which represent the end date of operation Oi,j in the worst case, taking into
account at most γ deviations. The compact model is as follows:

minCmax (3)

s.t. Cmax ≥ CΓ
i,ni

∀i ∈ J (4)



Cγ
i,j ≥ Cγ

i,j−1 + p̄i,j ∀i ∈ J ,∀j ∈ {2, . . . , ni},∀γ ∈ {0, . . . Γ} (5)

Cγ
i,j ≥ Cγ−1

i,j−1 + p̄i,j + p̂i,j ∀i ∈ J ,∀j ∈ {2, . . . , ni},∀γ ∈ {1, . . . Γ} (6)

Cγ
i,j ≥ Cγ

i′,j′ + p̄i,j − yi,j,i′,j′ ·H ∀m ∈ M,∀(Oi,j , Oi,j′) ∈ I2
m,∀γ ∈ {0, . . . Γ} (7)

Cγ
i,j ≥ Cγ−1

i′,j′ + p̄i,j + p̂i,j − yi,j,i′,j′ ·H ∀m ∈ M,∀(Oi,j , Oi,j′) ∈ I2
m,∀γ ∈ {1, . . . Γ} (8)

Cγ
i′,j′ ≥ Cγ

i,j + p̂i,j − (1− yi,j,i′,j′) ·H ∀m ∈ M,∀(Oi,j , Oi,j′) ∈ I2
m,∀γ ∈ {0, . . . Γ} (9)

Cγ
i′,j′ ≥ Cγ−1

i,j + p̂i,j + p̂i,j − (1− yi,j,i′,j′) ·H ∀m ∈ M,∀(Oi,j , Oi,j′) ∈ I2
m,∀γ ∈ {1, . . . Γ}

(10)
C0

i,1 ≥ p̄i,1 ∀i ∈ J (11)

Cγ
i,1 ≥ p̄i,1 + p̂i,1 ∀i ∈ J , ∀γ ∈ {1, . . . Γ} (12)

3.3 Decomposition methods

We present a logic-based Benders decomposition method (Hooker 2000) as well as a
column and constraint generation method (Zeng 2013). These two iterative approaches
aim to decompose the problem into a master problem, and an adversarial subproblem, and
share the same pattern. The master problem is formulated with an extended model for the
robust job-shop problem (using MILP or CP) considering only a subset of scenarios and
the subproblem evaluates the worst-case scenario. At each iteration, information relating
to this worst-case scenario is added to the master problem.

For the Benders decomposition method, adding information about the violated scenarios
consists in adding cuts in the master problem. Note that only the MILP formulation of the
master is considered. The added cuts are as follows:

Cmax ≥ ψ∗
h · (1−NumberOfChangesh) (13)

where ψ∗
h is the worst-case makespan obtained by the adversarial subproblem at iteration

h and NumberOfChangesh is the number of changes, compared with the decisions made
at the first stage of iteration h, that could affect the value of makespan. If no influential
changes occur, then the makespan is at least equal to ψ∗

h; otherwise, the constraint is
inactive.

For the column and constraint generation procedure, adding information about the
violated scenario consists in generating the corresponding second-stage decision variables
and the associated constraints. This is simply adding the worst-case scenario to the set of
scenarios considered in the next iteration of the master:

Uk+1 = Uk ∪ {ξ∗k}. (14)

4 Numerical results

For computational experiments, we consider 58 classical instances of the job-shop prob-
lem from the literature, adapted to the robust context by randomly generating deviation
values. We test all the models by varying the uncertainty budget according to four ratios:
5,%, 10,%, 15,% and 20,%, i.e. a total of 232 experiments per method.

The results of Table 1 are presented in terms of the number of best solutions found
compared to the other methods ("best"), as well as the optimality gap ("gap (%)") obtained
by each method.

For the smallest instances (6×6), all the methods succeed in finding the optimal solution
(except one for the CCGMILP method). For 10-machine instances, the Benders method



|J | |M| # Compact Benders CCGMILP CCGCP

best gap (%) best gap (%) best gap (%) best gap (%)
6 6 4 4 0 4 0 3 0.5 4 0
10 5 20 17 13.8 16 34 7 8.45 15 3.5
10 10 72 28 20.64 43 45.15 5 27.85 9 24.49
15 5 20 12 43.75 6 57.3 6 57.4 20 1.05
15 10 20 1 44 7 58.3 6 58.45 10 33.8
15 15 20 0 40.8 6 60.25 6 60.1 11 42.4
20 5 24 2 61.63 4 70.54 4 70.58 24 3.88
20 10 20 0 50.8 1 67.5 2 67.45 18 31.85
20 15 12 0 – 1 65.75 0 65.67 11 47.25
30 10 20 0 – 0 79.65 0 79.25 20 18.3

Table 1. Number of best solutions found and average optimality gap for job-shop instances from
the literature, categorized according to the instance size.

obtains the largest number of best solutions, but with relatively high optimality gaps.
Finally, the CCGCP method obtains the highest number of best solutions for the largest
instances.

5 Conclusion

In this paper, we study the robust job-shop scheduling problem where operation pro-
cessing times are uncertain and modeled by an uncertainty budget. We consider a two-stage
decision process, where the sequences of operations must be decided before knowing the
realization of the uncertainty, in order to be feasible for all scenarios, but where the pro-
cessing dates of the operations can be adapted according to the observed durations. We
propose a compact formulation and two decomposition methods based on solving a relaxed
master problem and finding violated constraints at each iteration. For the largest instances,
decomposition methods, in particular the column and constraint generation method with
a master problem solved using constraint programming, yields better quality solutions.
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