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A hybrid dynamical system approach to the impulsive control of
spacecraft rendezvous

Alexandre Seuret 1, Rafael Vazquez 1 and Luca Zaccarian2

Abstract

This paper introduces a hybrid dynamical system methodology for managing impulsive control in spacecraft rendezvous
and proximity operations under the Hill-Clohessy-Wiltshire model. We address the control design problem by isolating the
out-of-plane from the in-plane dynamics and present a feedback control law for each of them. This law is based on a Lyapunov
function tailored to each of the dynamics, capable of addressing thruster saturation and also a minimum impulse bit. These
Lyapunov functions were found by reformulating the system’s dynamics into coordinates that more intuitively represent their
physical behavior. The effectiveness of our control laws is then shown through numerical simulation.

I. INTRODUCTION

From the increasing complexity of space missions, emerged the needs of servicing satellites effectively. Operations such
as inspection, repair, refueling, and monitoring are essential, requiring a spacecraft, known as the chaser, to execute precise
maneuvers near a target spacecraft. These maneuvers, known as rendezvous and proximity operations, are critical in guiding
a spacecraft to a pre-determined proximity to the target to perform mission-specific tasks. The demand for autonomous
guidance and control in these tasks is more pressing than ever, motivated by key space activities like asteroid mining [1],
collision avoidance [2], on-orbit assembly [3], debris removal [4], and resupplying missions [5]. Originating from the Apollo
program’s lunar orbital rendezvous concept [6], which was essential for reducing payload mass and the feasibility of the
mission, the techniques have considerably developed. Proximity operations have since become commonplace, such as in the
frequent rendezvous missions to the International Space Station, and continue to be integral in the advancement of low Earth
orbit operations and beyond. The most basic rendezvous model is described by the Clohessy-Wiltshire (HCW) equations [7],
which were in fact developed for the Apollo program and consider the target in a circular Keplerian orbit and the chaser in
close proximity.

In the past, many works have addressed the design of feedback laws for the rendezvous problem by using a Model
Predictive Control (MPC) strategy, see e.g. [8], [9], [10], [11]. MPC can contribute important properties such as optimality
and constraint handling, however at a considerable computational cost that may not be possible e.g. onboard low-cost
satellites such as Cubesats; in addition it is not a trivial task to provide guarantees on stability and feasibility with MPC,
or to handle minimum impulse bits. On the other hand, despite the potential of hybrid systems theory [12] for ensuring
stability, simplifying calculations, and improving efficiency, it has rarely been applied to the rendezvous problem, with
limited exceptions such as [13] (and references therein). Our approach diverges from these instances by utilizing a simpler
simulation model but incorporating saturations into our analysis, and avoiding the need for an optimization process in the
control law computation.

This paper considers the terminal rendezvous stage with a focus on designing efficient impulsive maneuvers. Traditional
planning for such missions simplifies the process by approximating actual maneuvers with instantaneous velocity changes, a
widely accepted practice that justifies the impulsive approach we use in this paper. Within a hybrid systems framework [12],
we separate the out-of-plane and in-plane dynamics and propose a feedback control law based on a specific Lyapunov
functions for each of the dynamics that is able to both thruster saturation and minimum impulse bit. These Lyapunov
functions are found by expressing the dynamics in more natural coordinates that capture their physical behaviour. Finally,
our control law’s performance is validated through simulations.

The structure of the manuscript is as follows: Section II introduces the HCW model used in our approach. Section III
outlines the hybrid stabilization for the out-of-plane dynamics whereas Section IV similarly deals with the stabilization of
the in-plane dynamics. The different stabilizers are combined in a unique feedback law whose properties are established
in Section V. Next, Section VI provides simulations results, and the paper is closed in Section VII with some concluding
remarks. Due to space limitation, the proofs have been removed but can be found in [14].

II. PROBLEM STATEMENT

There are numerous mathematical models for spacecraft rendezvous. if the target is orbiting in a circular Keplerian
orbit and the approaching vehicle (chaser) is close to the target, then the linear Hill-Clohessy-Wiltshire (HCW) equations,
introduced in [15] and [7], describe with adequate precision the relative position of the spacecraft.
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Fig. 1. Local-Vertical, Local-Horizontal (LVLH) frame.

A. HCW model
The HCW model assumes that the target vehicle is passive and moving along a circular orbit. Using impulsive control,

it describes the relative motion of a chaser vehicle close to the target and can be formulated as the following equation.

r̈x − 3n2rx − 2nṙy = 0, (1a)
r̈y + 2nṙx = 0, (1b)

r̈z + n2rz = 0, (1c)

where
• r=(rx, ry, rz)∈R3 stands for the relative position between chaser and target in the target reference frame.
• To avoid any confusion, the time derivative of (rx, ry, rz) will be denoted as v = (vx, vy, vz), which stands for the

relative velocities between the chaser and the target in the target reference frame.
• n is the mean orbital angular speed of the target, which, in this case being the target’s orbit circular, coincides with its

instantaneous angular speed. The angular speed of the target through its orbit is n =
√

µ
R3 , where µ is the gravitation

parameter of the Earth, µ = 398600.4 km3/s2 and R is the radius. Thus for a typical orbit at, say, an altitude of 500
kilometers we would get n = 0.0011 rad/s.

Thus the full state is characterized by (r, v) ∈ R6. Equations (1) are expressed in a local target reference frame (LVLH),
which is a rotating frame centered at the target (see Figure 1). The coordinates lend themselves to a physical explanation:
rx is the radial distance (with a positive rx, the chaser is at a higher altitude than the target, with a negative rx it is at a
lower altitude); ry is the along-track distance (the phase with respect to the target’s orbit). Thus, rx = rz = 0 and ry ̸= 0
are equilibria, representing the chaser in the same orbit as the target but with some phase lag: delayed with respect to it or
ahead with respect to it. The rx − ry motion is coupled due to the laws of orbital mechanics.

Finally, rz is the relative vertical distance to the target’s orbit, describing how the plane of the chaser’s orbit is related to
the orbital plane of the target. Physically, the rz motion is decoupled from the other ones because orbital mechanics dictates
that orbital motions stay in a plane; under the HCW approximation, nothing that one can do in the rx−ry plane can change
this plane, thus rz remains decoupled, and vice-versa: changing the plane does not affect what happens in rx − ry . There is
no drift in rz as seen in the equations, since the chaser’s orbital plane remains the same if one does not act on this direction.

B. Propulsive model and constraints
In this paper, we consider that the control action is performed as impulses acting only on the velocities, that is, at specific

instants decided by the control law, the velocities experience the following discontinuous motion

v+x = vx + ux, (2a)

v+y = vy + uy, (2b)

v+z = vz + uz, (2c)



where we defined the control input u = (ux, uy, uz) ∈ R3.
Model (1),(2) shows that the dynamics of a spacecraft rendezvous are governed by open-loop continuous-time dynamics.

The only control action occurs at some time instants. It consists in an abrupt change of the velocity in all the directions
of the target reference frame. Regarding the possible values of thrust (namely of u), we assume that the control inputs are
bounded in absolute value. This means that there exists uM > 0 such that

|ux| ≤ uM, |uy| ≤ uM, |uz| ≤ uM, (3)

We assume that |u(·)| can take any value in the interval, i.e., it is assumed that thrusters valves can be opened partially
to produce the exact amount of force commanded by the control law. Thus, we define the symmetric saturation nonlinear
map sat, whose components are defined as follows

sati(ui) =

{
sign(ui)uM, if |ui| > uM,

ui, if 0 ≤ |ui| ≤ uM.
(4)

Remark 1: In practice, the thrusters may also be bounded from below, i.e. control inputs that are too small cannot be
produced by the thrusters. This issue will not be considered in this paper and is left as future work.

C. Control objectives
In view of the hybrid nature of the spacecraft rendezvous with mixed continuous and discrete dynamics, we propose here

to use the hybrid dynamical systems theory [16], [12], to propose nonlinear hybrid control laws for system (1)-(2) accounting
for the input constraints (4). The idea to deploy the Hybrid Dynamical Systems framework on spacecraft rendezvous is not
new since it has already been adopted in previous research [13], [17]. The main difference in this paper is that we will treat
the rendezvous problem directly using the HCW model. More precisely, we will present the following contributions:

• a hybrid control law for uz to stabilize the out-of-plane dynamics (the z direction);
• two independent hybrid control laws for ux and uy to stabilize the in-plane dynamics (the x, y plane);
• each control law aims at defining both the correct position to perform efficient actions by the thrusters and the appropriate

magnitude of the impulses;
• the control impulses ux, uy and uz are not necessarily synchronized, to allow for more flexibility and to potentially

reduce the number of impulses;
• the nonlinear control laws are equipped with a dwell-time dynamics to avoid fast consecutive use of the same input

ux, uy , or uz; this dwell-time property, among other things, avoids the Zeno phenomenon i.e., the occurrence of an
infinite number of impulses in a finite interval of time.

In the HCW model (1a)–(1b), one can identify two decoupled dynamics, referred to as in-plane (the (x, y) directions)
and out-of-plane dynamics (the z direction). We carry out the hybrid stabilizers by first focusing on the z (out-of-plane)
direction and then show how the ensuing ideas can be followed for stabilizing also the more challenging in-plane direction.

D. Hybrid Dynamical Systems framework
The chaser’s maneuver is represented as a sudden velocity change, given by u. As such, the governing dynamics are

considered a hybrid system, which integrates both continuous and discrete dynamical characteristics, permitting time-evolving
processes and instantaneous transitions. Following the definition of hybrid dynamical systems from [16],[12], such a system
can be formally defined as:

H = (C,D, F,G) :

{
ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D

(5a)

(5b)

where nx ∈ N is the state dimension, C ⊆ Rnx (D ⊆ Rnx ) is the flow (jump) set, F : C → Rnx is the flow map and
G : D → Rnx the jump map. Mathematically, H is given by

In the next section, we will use this framework to develop hybrid control laws for the spacecraft rendezvous problem.

III. STABILIZATION IN THE z DIRECTION

When focusing on the z direction, one can extract the following essential dynamics from the model (1c) and (2c):[
ṙz
v̇z

]
=

[
0 1

−n2 0

] [
rz
vz

]
when in free motion, (6)[

r+z
v+z

]
=

[
rz
vz

]
+

[
0
1

]
uz when firing the input uz. (7)

With this equation in mind, we design here a hybrid feedback controller not only deciding the selection of the input
uz but also the triggering condition for firing the input, thereby inducing a jump as in (7). The proposed hybrid feedback
controller comprises two internal states, one playing the role of a logic variable qz ∈ {−1, 1} and one of them being a timer
variable τz ∈ [0, 2] whose value is constrained to evolve in a forward invariant compact set, selected as [0, 2] by way of
suitable scaling.



By gathering the overall out-of-plane closed-loop state in a vector ξz :=
[
rz vz qz τz

]⊤
, and selecting uz = −vz , so

that suitable damping of the closed-loop velocity is obtained in (7), we may write the closed-loop hybrid dynamics as
[
ṙz
v̇z

]
=

[
0 1

−n2 0

] [
rz
vz

]
,

τ̇z = n
2π (1− dz(τz)),

q̇z = 0,

ξz ∈ Cz, (8a)


[
r+z
v+z

]
=

[
rz
vz

]
−

[
0
1

]
sat(vz),

τ+z = 0,
q+z = −q,

ξz ∈ Dz, (8b)

where one clearly sees that the timer τz is reset to zero at each firing of the input uz = − sat(vz) and that it keeps track of
each revolution of the oscillatory free (continuous) dynamics (6). In particular, after one revolution, unless it is reset before,
the timer reaches the value τz = 1. The dead-zone function, defined by dz(u) = u− sat1(u) with sat1 being the symmetric
saturation function with maximal amplitude 1, appearing in the flow dynamics of τz ensures that after τz ≥ 1, its speed is
suitably slowed down until it is completely stopped once τz = 2. This ensures that the set [0, 2] is forward invariant for τz ,
even though a consequence of this is that once τz ≥ 1 it does not anymore keep track of the revolutions of the continuous
dynamics. About the logic variable qz , note that it toggles between −1 and 1 at jumps. We may now define the the flow
and jump sets as given by

Cz=
{
ξz∈R3, rz(vz−nrz) ≤ 0 or qzvz ≤ 0 or τz ≤τMz

}
,

Dz=
{
ξz∈R3, rz(vz−nrz) ≥ 0 and qzvz ≥ 0 and τz≥τMz

}
, (9)

where τMz is in (0, 2]. The objective is to guarantee global asymptotic stability of the following set

Az := {ξz : rz = vz = 0, qz ∈ {−1, 1}, τz ∈ [0, 2]} (10)

for the hybrid closed loop, as clarified din the next statement.
Theorem 1: The set Az in (10) is globally asymptotically stable for the hybrid dynamics (8),(9).

Proof: The proof is based on the application of the La Salle invariance principle in [18, Thm 1] with the Lyapunov
function given by V (ξz) = n2r2z + v2z .

IV. STABILIZATION IN THE (x, y) PLANE

In this section, the objective is to follow a similar path to the one laid down in Section III for the z direction, to solve
the more challenging problem of stabilizing the coupled dynamics in the (x, y) plane. Combining these two controllers will
lead to an overall hybrid stabilizing control system.

To this end, we introduce the following dynamics, describing the hybrid evolution in the (x, y) plane, as a function of
the impulsive inputs ux and uy , [

ṙx
v̇x
ṙy
v̇y

]
=

[
0 1 0 0

3n2 0 0 2n
0 0 0 1
0 −2n 0 0

]
︸ ︷︷ ︸

=A0

[ rx
vx
ry
vy

]
, in free motion

 r+x
v+
x

r+y

v+
y

 =

[ rx
vx
ry
vy

]
+

[
0 0
1 0
0 0
0 1

]
︸ ︷︷ ︸
=B0

[
sat(ux)
sat(uy)

]
, when firing inputs

(11)

For obtaining an insightful representation of dynamics (11), introduce the coordinate transformation

ζ =

[ x
y
α
β

]
:=

[
−3 0 0 −2/n
0 1 0 0
0 −2/n 1 0

−6n 0 0 −3

]
︸ ︷︷ ︸

:=T

[ rx
vx
ry
vy

]
(12)

With these new coordinates, the dynamics (11) writes

ζ̇ = Aζ, in free motion

ζ+ = ζ +B

[
sat(ux)
sat(uy)

]
, when firing inputs

(13)

with A = TA0T
−1 and B = TB0, corresponding to

A =

[
0 1 0 0

−n2 0 0 0
0 0 0 1
0 0 0 0

]
, B =

[
0 −2/n
1 0

−2/n 0
0 −3

]



The structure of matrices A and B highlights that, along flowing solutions, the dynamics of the system is driven by two
independent subsystems, one being an oscillator (having states x, y) and a second one being a double integrator (having
states α, β). Across jumps, the structure of B introduces a coupling between both dynamics. Indeed, each impulsive action
through ux and uy affects both the oscillator and the double integrator. Indeed, ux affects y and α, while uy affects y and
β. To simplify the controller design, we exploit the structure of the system to provide a hierarchical control law to split the
action of the two control inputs. More specifically, first the control input uy is used to ensure finite-time convergence to
zero of β. Then, the control input ux is used to stabilize the remaining states [x y α]⊤, following the same type of control
laws as for the dynamics in the z direction, discussed in Section III. These two stabilizers are discussed in the next sections.

A. Finite-time stabilization of β
The proposed hybrid feedback controller for the dynamics of β comprises one internal state, being a timer variable

τβ ∈ [0, 2] whose value is constrained to evolve in a forward invariant compact set, selected as [0, 2] by way of a suitable
scaling, for simplified notation. By gathering the plant-controller state in a vector ξβ :=

[
β τβ

]⊤
, and selecting uy = −β/3,

we may write the closed loop hybrid dynamics as follows{
β̇ = 0;
τ̇β = n

2π (1− dz(τβ))
ξβ ∈ Cβ (14a){

β+ = β − 3 sat(β/3)
τ+β = 0,

ξβ ∈ Dβ . (14b)

Mimicking the solution in Section III, this hybrid dynamics includes a timer τβ , which is reset to zero at each firing of
the input uy = sat(3β) and obeys flow dynamics ensuring that τβ never leaves the compact set [0, 2]. For a given τMβ in
(0, 2], we may then define the flow and jump sets as follows

Cβ =
{
ξβ ∈ R2, τβ ≤ τMβ

}
, Dβ =

{
ξβ ∈ R2, τβ ≥ τMβ

}
, (15)

The objective is now to guarantee global finite-time stability of the following set

Aβ := {ξβ : β = 0, τβ ∈ [0, 2]} (16)

for the hybrid closed loop, as clarified in the next statement. We recall that finite-time stability comprises global asymptotic
stability and finite-time convergence.

Theorem 2: The set Aβ in (16) is finite-time stable for the hybrid dynamics (14),(15).
Proof: The proof is based on the Lyapunov function given by V (ξβ) = β2.

Remark 2: Note that the definition of the flow and jump sets Cβ and Dβ imposes periodic impulses. Such a periodic
behavior could have been modelled using a simple timer instead of this more involved solution. This choice is made to be
consistent with the other timers required for the two other hybrid controller.

Remark 3: Even though the control input uy is triggered periodically, the finite convergence of β to the origin ensures
that the magnitude of the control law sat(β/3) will also be zero in finite time, and no control action will be applied.

B. Stabilization of x, y, α
Following the previous paragraph, a first layer of the control law suitably selects the control input uy to ensure finite-time

convergence to zero of the variable β, in addition to finite-time convergence to zero of uy itself. In this section, we will
exploit a suitable hybrid feedback selection of ux to stabilize the variables x, y and α to the origin. Once β and uy have
converged to zero, we may design a feedback controller based on a logic variable qα ∈ {−1, 1} and on a time variable
τα ∈ [0, 2], by focusing on the following reduced dynamics with plant states [x y α]⊤ and controllers states qα and τα
gathered in an overall vector ξα, 

[
ẋ
ẏ
α̇

]
=

[
0 1 0

−n2 0 0
0 0 0

][
x
y
α

]
q̇α = 0
τ̇α = n

2π (1− dz(τα))

ξα ∈ Cα, (17a)


[

x+

y+

α+

]
=

[
x
y
α

]
+

[
0
1

− 2
n

]
sat(ux)

q+α = −qα
τ+α = 0,

ξα ∈ Dα. (17b)



Following the control design of the dynamics in the z direction (see Section III, we use the following hybrid control law
for (17), consisting in the control input ux = nα

4 − y
2 , with

Cα =

ξα ∈ R3,
(y − n

2α− nx)x ≤ 0,
or qα(y − n

2α) ≤ 0,
or τα ≤ τMα

 ,

Dα =

ξα ∈ R3,
(y − n

2α− nx)x ≥ 0,
and qα(y − n

2α) ≥ 0,
and τα ≥ τMα .

 ,

(18)

for a given τMα in (0, 2].
This feedback system ensures global asymptotic stability of the following set

Aα :=
{
ξα ∈ R3 : ξα = 0, qα ∈ {−1, 1}, τα ∈ [0, 2]

}
, (19)

as clarified din the next statement.
Theorem 3: The set Aα in (19) is globally asymptotically stable for the hybrid dynamics (17),(18).

Proof: The proof is based on the application of the La Salle invariance principle [12, Chapter 8] with the quadratic
Lyapunov function Vα(ξα) = n2x2 + y2 + n2

4 α2.

V. COMBINED HYBRID FEEDBACK

In Sections III and IV we have designed three nested hybrid controllers, each of them inducing desirable properties of
the corresponding dynamics. Their hybrid combination is discussed here.

To combine the three controllers, let us first define the overall state ξ = [ξ⊤z ξ⊤β ξ⊤α ]⊤ for the closed-loop dynamics:

ξ = [rz vz τz qz β τβ x y α qα τα]
⊤. (20)

State ξ clearly evolves in the following set:

X = R2 × [0, 2]×Q× R× [0, 2]× R3 ×Q× [0, 2], (21)

where we denoted Q = {−1, 1}. Based on state ξ, we may define the following extended selections of the impulsive
feedback control law:

κz(ξ) =
[

0
0
uz

]
; κβ(ξ) =

[
0
uy

0

]
; κα(ξ) =

[
ux
0
0

]
, (22)

with uz = −vz , uy = −β/3 and ux = nα
4 − y

2 as per the selections in (8), (14), and (17). We may then just as well define
the three following jump maps and jump sets, each of them characterizing the corresponding stabilizer, whose properties
have been established in Theorems 1, 2 and 3:

gz(ξ) =

[
r

v + sat(κz(ξ))

]
, ξ ∈ Dz := {ξ : ξz ∈ Dz}

gβ(ξ) =

[
r

v + sat(κβ(ξ))

]
, ξ ∈ Dβ := {ξ : ξβ ∈ Dβ}

gα(ξ) =

[
r

v + sat(κα(ξ))

]
, ξ ∈ Dα := {ξ : ξα ∈ Dα}.

The overall control scheme is then the one prioritizing jumps, accounting for the three selections above. We may select
the jump set D ⊂ X and the flow set C ⊂ X as

D = Dz ∪ Dβ ∪ Dα, C = X \ D, (23)

where the over-line denotes the closure operation, so that the flow set is the closed complement of the jump set.
As for the jump map, following standard practices, we select it as a set-valued jump map G whose graph is the union of

the graphs of gz , gβ and gα defined above. More specifically, G contains all the possible update laws included in the three
pairs (Dz, gz), (Dβ , gβ), and (Dα, gα) so that, as an example, when ξ ∈ (Dz ∩Dβ) \ Dα, then G(ξ) = {gz(ξ)} ∪ {gβ(ξ)},
and similarly for the other cases.

Denoting by f(x) the juxtaposition of the flow maps in (8), (14) and (17), respectively, the overall closed loop writes:

ξ̇ = f(ξ), ξ ∈ C (24a)
ξ+ ∈ G(ξ), ξ ∈ D. (24b)

The following result states our result about stability properties of the following set for the closed-loop dynamics (24),

A = {ξ : rz = vz = 0, x = y = 0, α = β = 0}. (25)

Theorem 4: The set A is globally asymptotically stable for the overall closed-loop system (24).
Proof: The proof is based on a reduction argument from [19, Cor. 4.8] and is omitted here due to space limitation.
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Fig. 2. Simulation of system (8) with τMz = 0.01 (left) and τMz = 0.25 (right). The figure shows the evolution of the state variables rz , vz (top), the
magnitude of the control input (middle) and the instants of impulses (bottom).
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Fig. 3. Evolution in the original coordinates rx, vx/n with the transformed state 2β/3 from (12) (top plot), as well as the original coordinates ry , vy/n
together with the transformed state α (second plot). Magnitude of the control input (third plot) and instants of impulses (bottom plot).

VI. SIMULATION RESULTS

This section aims to illustrate the numerical application of the proposed saturated control laws with a symmetric saturation
level chosen as uM = 0.2m/s. Figure 2 presents two simulations for the closed-loop system (8) with two different values
of the dwell time parameter τMz . In both cases, the state variables (rz, vz) converge asymptotically to the origin. These
figures also demonstrate that our control triggers impulses when rz crosses zero, the most efficient situation for the control
action. When τz < 0.25 (a quarter of a rotation) an additional impulse is triggered to compensate for the saturation. Both
cases show a trade-off between the rate of convergence (faster with τMz = 0.01) and the cost of consumption (lower with
τMz = 0.25, i.e., only three impulses).

Figures 3 and 4 depict a simulation of the system (14), (17) (in-plane) with the dwell-time parameters τMα = 0.01 and
τMβ = 0.02, along with the initial condition [−60 0 1000 0]⊤. This simulation provides an overview of the entire dynamics
in the (x, y)-plane, which includes the closed-loop systems (14) (associated with state ξβ) and (17) (associated with state
ξα). The bottom plot in Figure 3 shows the periodic impulses (in red) generated by system (14). As mentioned earlier in
the paper, although the system regularly enters the jump set, no control action is required after a while, since the variable
β reaches zero after only one impulse (see the red impulse uy in the third plot).

The two graphs at the top of Figure 3 demonstrate that the trajectory of the closed-loop systems (14), (17) converges
asymptotically to the origin. Since the dwell time parameter τMα is less than 0.25, the control law allows for a series of
three successive impulses to compensate for the effects of saturation at the maximum amplitude uM and achieve a fast
convergence rate. As for the z axis, selecting larger values of τMα (larger than 0.25), it is possible to reduce the number of
impulses (consumption), but at the cost of deteriorating the convergence rate.

Finally, Figure 4 illustrates the trajectory of the closed-loop systems in the (rx, ry) plane (bottom). The seemingly simple
behavior of the resulting solution hides a non-trivial hybrid trajectory of variables (x, y) depicted in the top graph, which
experiences several jumps throughout the simulation.
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Fig. 4. Evolution of the state variables x, y/n (top) i.e. in the transformed coordinates ζ of (12), and the resulting trajectories of the original coordinates
(rx, ry) (bottom).

VII. CONCLUSION

This paper presented a hybrid dynamical system approach for the impulsive control in spacecraft rendezvous and proximity
operations, using the Hill-Clohessy-Wiltshire model. The control design problem was tackled by separating the out-of-plane
from the in-plane dynamics, with a distinct feedback control law developed for each one of them. These laws were grounded
on specially designed Lyapunov functions, accounting for thrusters saturation. Future work will include addressing minimum
impulse bit requirements, in addition to safety constraints and the use of these control laws in more complex rendezvous
scenarios, such as formation-flying (multiple spacecraft rendezvous), eccentric orbits (time-varying dynamics) and Halo orbit
rendezvous (highly nonlinear dynamics). In addition the performance our hybrid control design should be compared and
evaluated with other approaches (e.g. MPC) in a high-fidelity simulator.

ACKNOWLEDGMENT
The work of A. Seuret was supported by “European Union NextGenerationEU” and by the Spanish Agency for Research

(AEI) through the ATRAE grant ATR2023-145067. R. Vazquez was supported by grant TED2021-132099B-C33 funded by
MCIN/ AEI/ 10.13039 /501100011033 and by “European Union NextGenerationEU/PRTR”. Luca Zaccarian’s research was
carried out within the activities of the MUR and ASI SpaceItUp project.

REFERENCES

[1] A. M. Hein, R. Matheson, and D. Fries, “A techno-economic analysis of asteroid mining,” Acta Astronaut., vol. 168, pp. 104–115, 2020.
[2] K. Lee, C. Park, and Y. Eun, “Real-time collision avoidance maneuvers for spacecraft proximity operations via discrete-time Hamilton–Jacobi theory,”

Aerosp. Sci. Technol., vol. 77, pp. 688–695, 2018.
[3] C. Underwood, S. Pellegrino, V. J. Lappas, C. P. Bridges, and J. Baker, “Using cubesat/micro-satellite technology to demonstrate the autonomous

assembly of a reconfigurable space telescope (AAReST),” Acta Astronaut., vol. 114, pp. 112–122, 2015.
[4] T. Sasaki, Y. Nakajima, and T. Yamamoto, “Tradeoff study for approach trajectory of active debris removal satellites considering safety, fuel

consumption, and operation,” in JAXA Spec. Publ.: Proc. 8th Space Debris Workshop, p. 461, 2019.



[5] C. D’Souza, C. Hannak, P. Spehar, F. Clark, and M. Jackson, “Orion rendezvous, proximity operations and docking design and analysis,” in AIAA
Guid., Nav., Control Conf. Exhibit, p. 6683, 2007.

[6] M. J. Neufeld, “von Braun and the lunar-orbit rendezvous decision: finding a way to go to the moon,” Acta Astronaut., vol. 63, no. 1-4, pp. 540–550,
2008.

[7] W. H. Clohessy and R. S. Wiltshire, “Terminal guidance systems for satellite rendezvous,” J. Aerosp. Sci., vol. 27, no. 9, pp. 653–658, 1960.
[8] F. Gavilan, R. Vazquez, and E. F. Camacho, “Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation,”

Control Eng. Pract., vol. 20, no. 2, pp. 111–122, 2012.
[9] J. C. Sanchez, F. Gavilan, R. Vazquez, and C. Louembet, “A flatness-based predictive controller for six-degrees of freedom spacecraft rendezvous,”

Acta Astronaut., vol. 167, pp. 391–403, 2020.
[10] R. Vazquez, F. Gavilan, and E. Camacho, “Pulse-width predictive control for LTV systems with application to spacecraft rendezvous,” Control Eng.

Pract., vol. 60, pp. 199–210, 2017.
[11] J. Sanchez, F. Gavilan, and R. Vazquez, “Chance-constrained model predictive control for near rectilinear halo orbit spacecraft rendezvous,” Aerosp.

Sci. Technol., vol. 100, p. 105827, 2020.
[12] R. Goebel, R. Sanfelice, and A. Teel, Hybrid Dynamical Systems: modeling, stability, and robustness. Princeton University Press, 2012.
[13] M. Brentari, S. Urbina, D. Arzelier, C. Louembet, and L. Zaccarian, “A hybrid control framework for impulsive control of satellite rendezvous,” IEEE

Trans. Contr. Syst. Tech., pp. 1537–1551, 2018.
[14] A. Seuret, R. Vazquez, and L. Zaccarian, “A hybrid dynamical system approach to the impulsive control of spacecraft rendezvous,” 2024.

https://arxiv.org/abs/2403.03633.
[15] G. Hill, “Researches in lunar theory,” Am. J. Math., vol. 1, no. 3, pp. 5–26, 129–147, 245–260, 1878.
[16] R. Goebel, R. Sanfelice, and A. Teel, “Hybrid dynamical systems,” IEEE Control Syst., vol. 29, no. 2, pp. 28–93, 2009.
[17] M. Brentari, Hybrid Control For Aerospace Systems. PhD thesis, Università degli studi di Trento, 2019.
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