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A B S T R A C T

The transition from fetal to newborn condition involves complex physiological adaptations for extrauterine
life. A crucial event in this process is the clamping of the umbilical cord, which can be categorized as immediate
or delayed. The type of clamping significantly influences the hemodynamics of the newborn. In this study,
we developed a simulator based on existing cardiovascular models to better understand this practice. The
simulator covers the period from late gestation to 24 h after birth and faithfully reproduces flow patterns
observed in real-life situations (as evaluated by clinical specialists), considering factors such as the timing
of cord clamping and the altitude of the birth location. It also reproduces blood pressure values reported in
clinical data. Under similar conditions, the simulation results indicate that delayed cord clamping leads to
increased oxygen concentration and improved blood volume compared to immediate cord clamping. Delayed
cord clamping also had a positive impact on sustained placental respiration. Furthermore, this study provides
further evidence that umbilical cord clamping should be based on physiological criteria rather than predefined
time intervals.
1. Introduction

The transition of a human being from the prenatal or fetal condition
to becoming a newborn is a complex process that involves the adapta-
tion of physiological functions to the new extra-uterine environment.
This transition involves several physiological processes, including the
closure of fetal shunts, expansion of the lungs, elimination of placental
circulation, among others [1,2]. Therefore, the umbilical cord plays a
crucial role in mediating the adaptation of the newborn to extrauterine
life.

1.1. Motivation for this study

The timing of Umbilical Cord Clamping (UCC) influences the physiol-
ogy of vital organs in normal newborns, premature infants, and patients
with congenital heart defects [3–7].

Generally, UCC has been divided into two main categories: Early
Cord Clamping (ECC) and Delayed Cord Clamping (DCC). Regard-
ing this matter, Fig. 1 offers an overview of how these categories
have been defined across different studies [8–32] and medical guide-
lines [5,33–36]. This review is not intended to be exhaustive, but rather
representative of the current perspective on UCC timing.

∗ Corresponding author.
E-mail address: ehsepulved@laas.fr (E.H. Sepúlveda-Oviedo).

As observed in Fig. 1, the definition of DCC varies widely across
studies. In some studies, DCC is defined at specific moments that are
depicted as blue points in Fig. 1 (e.g., see Refs. [11,12,17] in Fig. 1).
Other studies define DCC by fixed time intervals that are represented
as blue bars in Fig. 1 (e.g., see Refs. [10,20,30]). DCC has been
also defined as open intervals of time that are represented by blue
dot-right-arrows in Fig. 1 (e.g., see Refs. [8,29,33]).

Concerning ECC, some studies define it as the practice of conducting
UCC immediately following birth [11,17]. Meanwhile, other studies
define ECC as the UCC taking place within a specified open or closed
time interval (e.g., see Refs. [16,33,34] in Fig. 1). By venturing to
combine the definitions, UCC may be referred to as ECC if conducted
within the first 30 s following birth.

Fig. 1 clearly depicts a notable issue: there is no consensus on
defining ECC, and, even more ambiguous, on how to define DCC.
This fact has been consistently emphasized in various sources in the
literature [37–45].

Until 1960, the practice of delayed cord clamping to allow for
placental transfusion was prevalent and endorsed by renowned care-
givers throughout the history [46]. With the advancements in modern
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Fig. 1. An overview of the definitions for ECC and DCC.
Table 1
Contraindications for DCC in term newborns, derived from the review by Bruckner et
al. [45] and the meta-analysis by Liyanage et al. [48].

Category Contraindication for DCC

Infants
contraindication

Need for immediate neonatal resuscitation, monochorionic
twins, birth asphyxia secondary to hypoxic-ischemic events,
shoulder dystocia, twin–twin syndrome, fetal hydrops, heart
rate <60 beat per minute which is not getting faster.

Maternal
contraindications

Rhesus disease, cesarean delivery under general anesthesia,
massive uterine bleeding, collapse, cardiac arrest, amniotic
embolism, healthy newborns from HIV-positive mothers.

Uteroplacental
contraindications

Fetal hydrops, doubts about the integrity of the umbilical
cord, placental detachment, cord prolapse, vasa previa,
uterine rupture, amniotic embolism.

medicine, the practice of DCC was replaced by the efficiency and expe-
dience of ECC without a proper assessment of its safety [8,47]. Recent
studies tend to favor DCC as beneficial over early clamping, which
tends to cause harm [4,8,45,48]. For healthy term infants (the focus
of the model presented in this research), DCC increases hematocrit,
blood pressure, blood volume, and iron stores, decreases anemia, and
seems to result in increased myelin content and improved neurodevel-
opment compared with ECC [8,45]. In light of current evidence, during
the last decade most guidelines have been updated to recommend
performing DCC for healthy (term and preterm) infants [48], except
when ECC is necessary because of neonatal, maternal or uteroplacental
contraindications, as outlined in Table 1. Despite this, ECC in healthy
newborns remains a widespread practice [49,50] partly due to a mind-
set entrenched in a fifty-year tradition [47] and, in certain instances,
a lack of awareness of the latest evidence [50], among other complex
reasons [47].

It goes without saying that a fundamental goal of humanity is to
ensure the utmost well-being for newborns in a wise manner. There-
fore, in order to bring the known potential benefits of DCC for most
newborns, world-referenced health organizations such as AAP1 [34]
and ACOG2 [5] recommend delaying the UCC for at least 30–60 s,
whereas WHO3 for at least 60 s [33]. Other studies (and guidelines
from governing bodies) suggest that the neonate only may receive the

1 American Academy of Pediatrics.
2 American College of Obstetricians and Gynecologists.
3 World Health Organization.
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full benefits of DCC when performed at least at 120 s [23,24,29,31] or
at 180 s [8,18,19], or even longer [8,48]. These differences in expert
opinions give rise to the following still incomplete set of open questions:

(q1) Consider a healthcare team, a midwife or a clinician preparing
to perform DCC on a healthy term infant. They might opt to
conservatively adhere to the AAP’s recommendation of 30 s, the
WHO guideline of 60 s, or other evidence-based recommendations
with DCC at 2, 3, or 5 min. Are all these recommendations
relatively similar in terms of facilitating the newborn’s adaptation
process?

(q2) Given that ECC is conducted based on long-standing practice or
necessity. If the clinical scenario permits a short delay, can ECC
performed immediately after birth be equated to ECC conducted
30 s post-delivery?

Given the lack of a consistent definition for DCC (and ECC), nu-
merous studies in the literature converge to highlight the importance
of determining the optimal timing for UCC [37–45,51]. As explicitly
noted by Bruckner et al. [45], there are currently no studies examining
different durations of DCC in healthy term infants, even though the
optimal duration for cord clamping remains undetermined. This leads
us to pose the last open question.

(q3) Should the focus of research be on determining the optimal timing
for UCC?

1.2. Background

A commonly used method for evaluating UCC is through controlled
clinical trials [38,39,52–56] or with animal subjects [57,58]. However,
conducting these studies with neonatal patients presents significant eth-
ical and clinical limitations. Consequently, in silico clinical trials based
on mathematical models that describe physiological systems [59–63],
specifically models of neonates’ physiology as presented in Refs. [64–
69], offer a safe alternative in the initial stages of studying medical
treatments [70]. However, it is important to clarify that the validity
of this approach depends on the quality of the models used and the
accuracy with which their parameters can be estimated.4

4 Traditionally, these parameters are obtained from clinical studies
involving humans and physiologically ‘‘similar’’ mammals [57,58].
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In the context of mathematical models of neonatal physiology,
Sá-Couto et al. [69] have presented a fetal hemodynamic simulator
designed for educational purposes. This simulator enables the study
of the transition from fetus to neonate and the effects of UCC. It
accurately represents various physiological changes, including the in-
crease in neonatal systemic resistance caused by UCC, alterations in
ntrathoracic pressure due to replacement of lung fluid with air in the
ronchoalveolar tract, and changes in lung resistance resulting from
ung expansion and closure of the ductus arteriosus. The simulation
odel is noteworthy for its simplicity and fidelity. However, it does
ot incorporate several important aspects, such as the timing of UCC
ccurrence, the cessation of placental circulation due to occlusion of
he vein and umbilical arteries during UCC, processes related to oxygen
ptake, transport, and consumption, the transition from placental to
ulmonary respiratory function at birth. The model also does not
ccount for the impact of altitude on neonatal adaptation, which is an
mportant factor, as studied by Niemeyer [71].

In the same context, one of the most comprehensive models of
he fetal-neonatal transition and the impact of immediate clamping
t birth (ECC) and clamping when placental flow has a significant
ecrease (DCC) is presented in Yigit et al. [67]. This model incorporates
everal aspects, including the transfer of respiratory function from the
ulmonary to the placenta, occlusion of the umbilical vein and arteries,
nd oxygen uptake, transport and consumption. It also distinguishes
arious structures such as the brain, liver, and intestines. However,
espite its broad scope, this model does not account for certain relevant
hysiological processes, such as the occurrence of UCC at different time
oints, the altitude at which birth takes place [71], the inertial effect
f blood in the ductus arteriosus [72], the inertia of blood between
ystemic arterial compartments [73], the variation in extrathoracic
ressure, and the resistance to blood flow entering the atria.

The main objective of this study is to perform an impartial assess-
ent of the direct impact of the moment of umbilical cord clamping

n the transition of full-term newborns to extrauterine life. To achieve
his, we have developed a computational model that simulates var-
ous components of the models proposed by Sá-Couto et al. [69]
nd Yigit et al. [67], incorporating new and relevant contributions.
he computational model we propose allows replication of significant
henomena associated with umbilical cord clamping in healthy full-
erm newborns. To the best of our knowledge, this marks the inaugural
ffort to systematically evaluate cord clamping practices, introducing
computational model capable of simultaneously assessing two fun-

amental factors that significantly influence adaptation to extrauterine
ife: the effect of the moment of clamping the umbilical cord and the effect
f the altitude at which the birth occurs. The simulator is based on a
umped parameter model (LPM) of the fetal cardiorespiratory system,
hich can accurately represent the transition from late gestation to

he neonatal period, encompassing the most significant changes from
etus to neonate. The simulator was developed in Modelica, which
s a state-of-the-art object-oriented language for modeling complex
ystems [74].

In summary, the simulation model proposed in this study enables
he representation of the following physiological processes: umbilical
ord clamping at any given time or altitude, the cessation of placen-
al circulation, and the influence of sanguine inertia. Furthermore,
his model can also be utilized to simulate cardiac pathologies, as
emonstrated in our previously published work [64].

This research is structured as follows: Section 2 presents the math-
matical model underlying the simulator. In Section 3, the simulator
esults are presented under different UCC scenarios. Section 4 discusses
he results presented in Section 3. Section 5 outlines the limitations of
he proposed approach. Section 6 outlines the next stages of this study.
inally, Section 7 presents the conclusions drawn from the results of
his study.
 h
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. Methods

.1. Description of the mathematical model of the fetus-neonate transition

Fig. 2 illustrates the overall structure of the model presented in
his study, which enables the representation of hemodynamic and
espiratory transitions from fetus to neonate. This study expands upon
he neonatal pathology simulator that was previously introduced in
ef. [64]. The expanded model incorporates the ductus arteriosus, fora-
en ovale and placental circulation. The the ductus arteriosus is repre-

sented by the path connecting pulmonary and intrathoracic arteries
through resistance 𝑅13 and inertia 𝐼1. The foramen ovale is represented
by the path connecting right and left atria through resistance 𝑅14 and
valve 𝑉5. The placental circulation is represented by the path connecting
intrathoracic veins and extrathoracic arteries through resistances 𝑅11
nd 𝑅12 and elastance 𝐸7. These elements have been integrated into

the model based on the fetal hemodynamic transition at birth model
proposed by Sá-Couto et al. [69].

Within this model, component ℎ1 calculates the partial pressure
of oxygen available based on the altitude above sea level. The time-
varying elastance elements, denoted as 𝐸𝑣1 to 𝐸𝑣4, represent the atria
and ventricles (see Ref. [64] for a detailed mathematical description of
these elements). Notice that the elements labeled as 𝑅2, 𝑅3, 𝑅7, 𝑅11, 𝑅12
correspond to vascular resistances, which undergo changes as a result
of UCC, whereas resistance 𝑅14 changes at birth. Components labeled as
𝑆1 and 𝑆2 correspond to pulmonary and placental respiratory functions,
respectively. All the remaining components of the model – namely,
elastances 𝐸1 to 𝐸7, resistances 𝑅1, 𝑅4 to 𝑅6, 𝑅8 to 𝑅10, and inertias
𝐼1 to 𝐼2 – have constant values. Most numerical values for the model’s
parameters were sourced from Refs. [69,73,75]. These studies compile
a comprehensive range of sources for these parameters, including em-
pirical measurements in both humans and animals, as well as physical
considerations related to human anatomy.

This simulator has the ability to compute not only the hemodynamic
variables described in [64] but also all the physiological transitions
triggered by birth and the UCC. The most representative advancements
of this model, compared to previous studies [64,66,67,69], are outlined
below:

• Uptake and supply of pulmonary [O2]. The model incorporates a
component to represent the uptake of oxygen from the environ-
ment across the alveolar-capillary membrane.

• Uptake and supply of placental [O2]. The model incorporates a com-
ponent that represents the transfer of oxygen across the placental
barrier.

• Transport and consumption of gasses. The model’s components,
including vascular resistances, cardiac valves, elastic compart-
ments, and inertia, incorporate a novel set of mathematical equa-
tions describing the transport and utilization of gasses.

• Cessation of blood flow from the placenta to the neonate after the
UCC. To model this effect, an equation for the change in vascular
resistances 𝑅11 and 𝑅12 is proposed.

• Transition from fetus to neonate at different heights above sea level.
This allows studying the effect of altitude on the neonate’s oxygen
saturation.

It is worth mentioning that each block in the model depicted in
Fig. 2 was implemented using the Modelica language (refer to [64] and
the related references). The top layer to connect the model components
was inspired by the Physiolibrary library in its version 2.3.1 [76–78].
Specifically, this simulator consists of 47 components, amounting to
1600 lines of programming code.5

5 The complete code of the simulator can be found in the GitHub repository
ttps://github.com/ehsepulvedao/PatientEvoPhysio.

https://github.com/ehsepulvedao/PatientEvoPhysio
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Fig. 2. Cardiovascular and respiratory model including birth and UCC.
2.2. Simulated physiological transitions

The model depicted in Fig. 2 enables the simulation of essential
physiological transitions that occur in newborns during the first 24 h
of extrauterine life, as elaborated in the subsequent discussion.

2.2.1. Change in intrathoracic pressure
The bronchoalveolar tract of the fetus is filled with lung fluid, lead-

ing to lung distention and an intrathoracic pressure of approximately
0 mmHg [79]. Upon birth, the lung fluid is replaced by air, initiating
ventilation. This spontaneous ventilation process induces diaphragm
contraction, resulting in a reduction in intrathoracic pressure around
−3mmHg [80].

2.2.2. Start of lung respiration
Both the fetal and neonatal circulatory systems supply oxygen (O2)

to the metabolizing organs and return blood containing carbon dioxide
(CO2) to the gas exchange organs for replenishing oxygen and removing
CO2. At birth, the function of gas exchange is transferred from the pla-
centa to the lungs. This means that the intake of oxygen by the newborn
shifts from the systemic circulation to the pulmonary circulation [1].

In this model, pulmonary respiration, referred to as oxygen intake

([O2]𝑖𝑛), occurs in the pulmonary peripheral vessels (represented by

719 
component 𝑅2 in Fig. 2). Pulmonary respiration is calculated using the
following equation from Yigit et al. [67]:

[O2]𝑖𝑛 = 𝑟[O2]𝐼 − 𝑟
𝐻([O2]𝑖𝑛 + [O2]𝑃𝐴)

𝛾𝐾𝑇
+ 𝑟

(1 − 𝛾)𝐻([O2]𝑃𝐴)
𝛾𝐾𝑇

, (1)

Notice that Eq. (1) encompasses both the supply and uptake of O2.
The parameters of Eq. (1) are defined as follows:

𝑟 is the ventilation/perfusion rate defined by the following piece-
wise linear function:

𝑟 =

⎧

⎪

⎨

⎪

⎩

0.7
(

𝑡
𝜏𝑠

)

if 𝑡 < 𝜏𝑠,

0.7 otherwise,
(2)

where 𝑡 represents the duration of extrauterine life, and 𝜏𝑠 denotes
the time necessary for the full expansion of the lungs. The variable
𝑟 denotes the ventilation-perfusion ratio, which is modeled to
increase linearly until reaching a stationary value of 0.7 within
a time span of 𝜏𝑠. After this point, the value of 𝑟 remains constant
at 0.7. This value serves as a gradual approximation of the value
𝑟 = 0.63 ± 0.7, which was observed in Koch’s study after 24 h
of extrauterine life [81]. Nonetheless, the time for the complete
expansion of the lungs remains highly uncertain.
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𝐻([O2]) is the Hill Function defined as follows:

𝐻([O2]) = 𝑃50

(

[O2]
1.34 × [Hb] − [O2]

)
1
2.7

, (3)

where 𝑃50 represents the partial pressure of oxygen at 50% satu-
ration, and [Hb] denotes the concentration of hemoglobin (Hb) in
the blood.
[O2]𝐼 is the inspired oxygen concentration (also known as the
alveolar oxygen concentration), which is calculated according to
the following equation:

[𝑂𝐼 ] =
PAO2
𝐾𝑇

, (4)

Eq. (4) was modified from [82] by incorporating the term PAO2,
which represents the partial pressure of alveolar oxygen and is
influenced by atmospheric pressure.
[O2]𝑃𝐴 is the oxygen concentration in the pulmonary artery.
𝛾 is the respiratory efficiency (with values between 0 and 1).
𝐾 is the ideal gas constant.
𝑇 is the absolute temperature.

A more comprehensive explanation of gas exchange in the lung is
provided in [83].

2.2.3. Reduced pulmonary vascular resistance
The initiation of pulmonary ventilation enables pulmonary gas ex-

change by increasing the partial pressure of oxygen (PO2). This rise
in PO2 leads to a decrease in pulmonary vascular resistance [84].
Initially, this reduction is abrupt at the onset of pulmonary respiration.
However, after a short period, it gradually continues over the following
days to weeks [1]. The model developed in this study incorporates
Eq. (5), sourced from Sá-Couto et al. [69], to represent the decrease in
pulmonary vascular resistance as a function of the time elapsed since
birth.

𝑅𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑟0(1 − 0.74(1 − 𝑒−6𝑡)) if 0 ≤ 𝑡 ≤ 2ℎ,

𝑟0(0.26 − 9.5 × 10−4(𝑡 − 2)) if 2 ≤ 𝑡 ≤ 24ℎ,
(5)

where the index 𝑖 = 2, 3 of 𝑅𝑖 relates Eq. (5) with elements 𝑅2 and
𝑅3 of Fig. 2 which correspond, respectively, to the vascular resistance
of pulmonary veins and arteries. In Eq. (5), 𝑟0 is the initial pulmonary
vascular resistance, and 𝑡 is the time elapsed since birth in hours. Notice
that, during the first two hours of life, Eq. (5) defines an exponential
function that models the pulmonary vascular resistance. Subsequently,
from 2 h to 24 h of life, Eq. (5) models the gradual decrease of
pulmonary vascular resistance as a linear function.

2.2.4. Closure of the ductus arteriosus
Birth and the oxygenation of the blood initiate the closure of the

ductus arteriosus. This event is essential for the successful adaptation
to extrauterine life, as incomplete closure of the ductus arteriosus can
potentially compromise the neonatal circulatory system [1].

Although the exact timing of ductus arteriosus closure remains
uncertain [85], some studies suggest that functional closure occurs
approximately between 12 and 48 h after birth [2,69]. In the study of
Rasanen et al. [86], experimental values of changes in the diameter of
the ductus arteriosus during the first 24 h of extrauterine life in humans
are presented. The following equations, which were previously reported
in Sá-Couto et al. [69], are used in this work:

𝐷𝐴𝐷(𝑡) = 0.29 𝑒−0.43𝑡 + 0.30 𝑒−0.054𝑡, (6)

𝑅13(𝑡) =
𝐾𝑎

(𝐷𝐴𝐷(𝑡))4
. (7)

q. (6) estimates the diameter of the ductus arteriosus (denoted as
(𝑡)) as a function of time. Eq. (7) is derived from Poiseuille’s law
𝐴𝐷
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as presented in [87]) and calculates the resistance of the ductus arte-
iosus (represented by 𝑅13 in Fig. 2) based on the diameter estimated

in Eq. (6). The constant 𝐾𝑎 in Eq. (7) corresponds to the value of 0.0145,
mmHg s cm, which was chosen to calibrate the equation with the initial
value of the vascular resistance of the ductus arteriosus. The variable 𝑡
is the time elapsed since birth in hours.

2.2.5. Increased fetal systemic vascular resistance
The elimination of placental circulation begins at birth, resulting in

an increase in fetal systemic vascular resistance [2], with an approxi-
mate doubling of its value [88]. This increase is initially rapid, followed
by a more gradual rise [69], as represented by the following piecewise
linear function:

𝑅7(𝑡) =

⎧

⎪

⎨

⎪

⎩

0.0846 𝑡 + 3.45 so 𝑡𝑐𝑙 ≤ 𝑡 ≤ 12ℎ,

0.00420 𝑡 + 4.42 if 12ℎ ≤ 𝑡 ≤ 24ℎ.
(8)

Eq. (8) represents an adapted version of the original expression pre-
sented in Sá-Couto et al. [69] in which we have included the term 𝑡𝑐𝑙
in hours, thereby allowing for the clamping of the umbilical cord at any
given time. The variable 𝑡 is the time elapsed since birth added to the
time in which the umbilical cord was clamped in hours. In the model
depicted in Fig. 2, the increase of fetal systemic resistance occurs in
element 𝑅7, which represents the systemic peripheral vessels.

2.2.6. Completion of placental respiration
The placenta serves as the organ responsible for gas exchange in

the fetus. During placental gas exchange, maternal blood flows through
the intervillous space, carrying oxygen-rich blood. This flow enables
the diffusion of oxygen molecules across the placental barrier and into
the fetal systemic circulation [89]. The fetus remains connected to the
placenta via the umbilical cord, which comprises one umbilical vein
and two umbilical arteries. The umbilical vein transports oxygenated
and nutrient-rich blood from the placenta to the fetus, while the um-
bilical arteries carry nutrient-poor, deoxygenated blood from the fetus
to the placenta [89]. A more comprehensive explanation of placental
respiration is provided in the supplementary material [83]. In the
proposed model of this study, the diffusion of oxygen molecules or the
oxygen concentration entering the fetal systemic circulation from the
placenta is called ([O2]𝑖𝑛) and occurs within the umbilical vein (labeled
𝑅12 in Fig. 2). The following equation describing [O2]𝑖𝑛 is taken from
Yigit et al. [67]:

[O2]𝑖𝑛 = 𝑟[O2]𝑈 − 𝑟𝐻−1
𝑀

(

𝐻([O2]𝑖𝑛 + [O2]𝑃𝐿𝐴𝐶 )
𝛾

+
(1 − 𝛾) + [O2]𝑃𝐿𝐴𝐶

𝛾

)

.

(9)

The terms of Eq. (9) are defined as follows:

𝑟 is the ventilation/perfusion rate defined by the following equa-
tion:

𝑟 =
600 ml∕min

𝑄𝑝𝑙𝑎𝑐
, (10)

𝑄𝑝𝑙𝑎𝑐 refers to fetal placental flow. The influx of placental [O2]
into the fetus is regulated by Eq. (10) (adapted from Yigit et al.
[67]). This equation illustrates the association between fetal pla-
cental flow and maternal blood flow to the placenta, typically
ranging from 600 to 700 mL/min [89].
[O2]𝑈 is the concentration of uterine oxygen.
𝐻−1

𝑀 represents the inverse of the maternal Hill function. A de-
tailed description of this function can be found in the supple-
mentary material [83]. The maternal Hill function is defined as
follows:

𝐻−1
𝑀 =

(1.34 ∗ [Hb])
(

𝐻([O2])
𝑃50

)2.7

1 +
(

𝐻([O2])
)2.7

(11)
𝑃50
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where 𝑃50 represents the partial pressure of oxygen at 50% of
saturation, [Hb] denotes the concentration of Hb in the blood, and
𝐻([O2]) represents the fetal Hill function defined by Eq. (3).
[O2]𝑃𝐿𝐴𝐶 refers to the concentration of oxygen (O2) in the pla-
centa.
𝛾 is the respiratory efficiency, which assumes values between 0
and 1.

.2.7. Elimination of placental circulation by the UCC
The occurrence of UCC in a newborn results in interruption of

lood flow to and from the placenta. This abrupt cessation of blood
low within the umbilical cord, as observed in some reported cases
f Early Cord Clamping (ECC), could have serious implications for

the newborn. Additionally, elimination of the placental circulation
leads to a significant increase in the resistance of the umbilical vein
and umbilical arteries, making their resistance value extremely high.
Consequently, the flow of blood to and from the placenta is impeded.
To express the increase in vascular resistance, we propose the following
equation:

𝑅1𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑟𝑖 if 𝑡 ≤ 𝑡𝑐 ,
𝑟𝑖𝑒𝑘𝑡 if 𝑡𝑐 < 𝑡 ≤ 𝜏𝑜 + 𝑡𝑐 ,
𝑟𝑓 else 𝜏𝑜 + 𝑡𝑐 < 𝑡,

(12)

here index 𝑗 = 1, 2 of 𝑅1𝑗 relates Eq. (12) with components 𝑅11
representing umbilical arteries) and 𝑅12 (representing the umbilical
ein) in Fig. 2. In Eq. (12), 𝑘 = 𝑙𝑛(𝑟𝑓∕𝑟𝑖) × 𝜏𝑜. 𝑡 is the simulation
ime in seconds from the moment of clamping the umbilical cord. 𝑡𝑐
epresents the time in seconds at which UCC is performed. 𝜏𝑜 represents
he short time in seconds it takes for complete occlusion of both
mbilical arteries and the umbilical vein after umbilical cord clamping
ased on time (ECC or DCC). In Eq. (12), the values of 𝑟𝑖 and 𝑟𝑓
orrespond, respectively, to the initial and final values of the umbilical
eins and arteries. From a computational point of view, setting 𝑟𝑓 to ∞

is impossible. Therefore, we have set the value of 𝑟𝑓 to be eight orders
of magnitude greater than that of 𝑟𝑖.

2.3. Transition from fetus to neonate at different heights

The transition from fetus to neonate is regulated by the availability
of oxygen in the environment, leading to differences in birth outcomes
between high altitude and sea level births [71]. Studies have shown
that a decrease in the partial pressure of oxygen PO2 in alveolar air is
associated with an increase in pulmonary vascular resistance [90]. A
study of 200 neonatal births 200 m above sea level in [90] concluded
that the evaluation of pre- and postductal oxygen saturation SO2 at
different altitudes is necessary to accurately evaluate neonatal well-
being. Other studies, such as [91,92], have shown that a fetal weight
loss of 17%–21% can be attributed to low fetal arterial oxygen satura-
tion. Furthermore, chronic hypoxia resulting from high-altitude living,
as highlighted in [93], can not only retard fetal growth but also increase
perinatal mortality.

To evaluate the effects of altitude on the cardiovascular and respi-
ratory transition, the following two equations have been integrated to
the model:

𝑃𝑎𝑡𝑚 = 𝑃0𝑒
(−𝑚𝑔∕𝐾𝑇 )ℎ (13)

PAO2 = (𝑃𝑎𝑡𝑚 − PH2O)FiO2. (14)

Eq. (13) (taken from [94]) defines the atmospheric or barometric
pressure, denoted as 𝑃𝑎𝑡𝑚. The parameters of Eq. (13) are defined as
follows: 𝑃0 represents the pressure at sea level, 𝑚 denotes the mass of a
molecule, 𝑔 signifies gravity, 𝐾 represents the gas constant, 𝑇 indicates
room temperature, and ℎ represents the altitude in meters above sea
level.
 e
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Eq. (14) (taken from [95]) defines the partial pressure of alveolar
oxygen,6 which is denoted as PAO2. In this equation, PH2O refers to the
partial pressure of water (47 mmHg), and FiO2 represents the fraction
of inspired oxygen. It is worth noting that PAO2 is computed in the
lement labeled as ℎ1 in the model shown in Fig. 2.

Furthermore, it is important to emphasize that Eqs. (13) and (14)
are interconnected with the neonate’s hemodynamic and respiratory
systems. These equations are specifically included to determine the
partial pressure of oxygen in the environment where the neonate
breathes.

3. Results

In this section, we will use the simulator to conduct a simulation
analysis of transitions at birth and the effect of UCC timing.

3.1. Simulation of transitions at birth and due to UCC

Fig. 3 illustrates the changes in systemic arterial pressure and vas-
cular resistance of the ductus arteriosus resulting from birth and UCC.
In Fig. 3(a), it can be observed that arterial blood pressure changes at
600 s after birth due to UCC.

The increase in systemic pressure is attributed to occlusion of the
umbilical vein and arteries, as well as increased fetal systemic resis-
tance. The reduction in pulmonary pressure shown in Fig. 3(a) is the
result of decreased pulmonary resistance during birth. Regarding the
ductus arteriosus (DA), Fig. 3(b) presents the change in its vascular
resistance, on a logarithmic scale, during the first 24 h of postnatal life.

Figs. 4 and 5 show the changes in systemic, pulmonary, and um-
bilical vascular resistance from birth and during UCC. In Fig. 4, on a
logarithmic scale, the changes in pulmonary vascular resistance (pe-
ripheral vessels and pulmonary vein) and systemic vascular resistance
(systemic peripheral vessels) are evident.

In Fig. 5, an example of the behavior of the umbilical arteries
and the umbilical vein, on a logarithmic scale, is observed. The final
resistance value of the umbilical arteries has been set as twice the
resistance value of the umbilical vein to signify that in the umbilical
cord, there are two umbilical arteries and one umbilical vein. The value
of 𝜏𝑜 has been set to 100 s for this Fig. 5 in order to illustrate the
xponential behavior of Eq. (12) proposed in this study.

In the simulator developed for this study, it is assumed that the
omponents representing vascular resistance, heart valves, and inertia
o not accumulate blood or consume oxygen. The metabolic consump-
ion rates of the other components have been derived from the book by
udolph [96].

.2. Analysis of UCC timing using simulation

One of the most debated aspects in the study of the timing of
CC is the placental transfusion and the volume of blood that the
rgans receive in the first moments of extrauterine life. Kakkilaya
t al. [97] state that performing UCC at birth leaves the neonate
ith a blood volume similar to that it had in utero, while delaying
CC facilitates the placental transfusion of additional blood to the
eonate, as evidenced by Refs. [26,38,41,98–101]. Guyton [88] notes
hat the neonate has around 300 ml of blood at birth, but if the neonate

is left attached to the cord a few minutes after birth, it can gain
approximately 75 ml of extra blood. After a few hours, this additional
volume is lost, but the increase in hematocrit (HCT) remains. HCT is a
measure of the volume of red blood cells (RBCs) as a percentage of total
blood volume [102]. Maintaining normal HCT volumes is extremely
important since a reduction in RBCs causes anemia [103].

6 The term related to carbon dioxide has been eliminated from this
quation.



E.H. Sepúlveda-Oviedo et al. Biocybernetics and Biomedical Engineering 44 (2024) 716–730 
Fig. 3. Changes in arterial pressures and ductus arteriosus by UCC and birth.
Fig. 4. Pulmonary and systemic vascular resistance.

Fig. 5. Umbilical vascular resistance.

Furthermore, a reduction in RBCs leads to a decrease in hemoglobin
(Hb) levels. Hb is a protein found in red blood cells that binds to oxygen
in the lungs and carries it through the bloodstream to the tissues of
the body [104]. In other words, the greater the number of red blood
cells, the more hemoglobin is present in the blood, thereby potentially
increasing the overall capacity for oxygen transport.

In the same way, another important factor to consider when making
decisions regarding the appropriate time of UCC is the oxygen satura-
tion of the newborn (SO2). Oxygen saturation is considered an indicator
of progress in neonatal adaptation [105]. Studies such as those pre-
sented in Refs. [106–108] demonstrate a significant difference in SO2
depending on the timing of UCC, with delayed cord clamping resulting
722 
in an increase in SO2 compared to immediate or early clamping of the
umbilical cord.

The altitude at which birth occurs also influences oxygen saturation,
and therefore the concentration of oxygen available in the environment
is another important factor when performing UCC. Niermeyer [71]
notes that the cardiopulmonary transition at high altitudes differs from
that at sea level due to the concentration of oxygen available.

Due to the reasons mentioned above, we will now take a preliminary
step in the analysis by simulating the clinical practice of UCC.

The purpose of this analysis is to enhance our understanding of the
effects of performing UCC at different time points and under varying
altitude conditions. To achieve this goal, we present three simulated
scenarios: (SC1) The effect of the time of the UCC on placental transfu-
sion and the blood volume supplied to the organs in the first moments
of extrauterine life; (SC2) The effect of time of the UCC on oxygen
saturation; and, (SC3) The effect of altitude on oxygen saturation at
birth.

(SC1) Effect of UCC timing on placental transfusion
Numerous studies have attributed various benefits to placental

transfusion in neonatal adaptation (see Refs. [13,37,38,41,88,109–
111]). However, it is important to note that several other studies have
pointed out some adverse effects associated with placental transfusion
(see [112,113]).

To perform the simulated analysis of placental transfusion, we use
the model in Fig. 2 to perform UCC at different times. Initially, UCC
was performed every 5 s for the first 5 min after birth, and then changed
to a frequency of once per minute until the 10th minute. The first
10 min of life were specifically chosen due to their critical role in
neonatal adaptation. The red curve with diamonds in Fig. 6 connects
the outcomes of these 65 experiments, with each dot representing a
single experiment. This curve represents the additional blood volume
obtained by the neonate through placental transfusion after UCC (Um-
bilical Cord Clamping). The volume ratio between placental and fetal
blood for a neonate weighing 3445 g at birth is derived from the study
conducted by Kakkilaya [97].

It is important to stress that the relative position of the infant and
placenta (i.e., the gravity) affects the hemodynamics of the neonate
[114] and the placental transfusion [115], depending on the timing of
UCC [116]. This factor is not included in the current model, which
assumes that the newborn is positioned in the perineal plane, resulting
in no net hydrostatic pressure.

Notice the magenta points in Fig. 6 that highlight seven specific time
instants (𝑡 = 0 s, 30 s, 60 s, 90 s, 120 s, 180 s and 300 s). According to the
review shown in Fig. 1, they are key points for defining UCC.
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Fig. 6. Neonate’s gain in blood volume from placental transfusion.
As shown in Fig. 6, the gain in blood volume of the newborn
ncreases depending on the timing of UCC. The green line represents
he upper limit for the simulated volume of placental blood that can be
ransferred to the neonate, measuring7 88.1mL. This value falls within
he average range of 69 to 152mL as reported by Farrar et al. [117].

By examining the first 5 min of extrauterine life, it becomes evident
hat the changes in transfused blood volume are significant. For in-
tance, when the cord is clamped at birth, it prevents the neonate from
eceiving 93.76% of the extra blood available in the placenta. Similarly,
erforming UCC at 30 s (as recommended by the AAP [34] and the
COG [5]) results in a gain loss of 67.41%, at 60 s (as recommended
y the WHO [33]) a loss of 49.4%, at 90 s a loss of 36.6%, at 120 s
loss of 27.3%, and finally, performing UCC at 3 min prevents the

eonate from receiving approximately 16% of the remaining placental
lood.

To compare the simulated behavior of placental transfusion with
linically observed values, Fig. 6 includes an observed curve from
arrar et al. [117]. They used the newborn’s weight8 for estimating
he volume of blood transferred from the placenta. The observed curve
as been adjusted to correspond to a final value of 80mL (at 255 s) to
acilitate comparison of trends and relative increases in blood volume
rom placental transfusion. The initial artifact indicated by the authors
as been removed. The time scale remains unchanged.

emark 1. From the simulation results condensed in Fig. 6, it is impor-
ant to notice the following facts: (i) the average placental transfusion
ate in the ECC interval is about 1mL∕s; (ii) by 3 min of life, the neonate
as received a significant amount of placental blood (74.43%); (iii), by
min nearly the maximum blood volume from the placenta (94.4%);

iv) by 10 min, the neonate has received practically the entire placental
lood volume (99%).

SC2) Effect of UCC timing on oxygen saturation
Several studies have been conducted to assess the impact of different

imings of UCC on oxygen saturation (SO2) levels (see [58,118,119]).
aharaj et al. [105] highlight that oxygen saturation is an essen-

ial metric measured in the delivery room, providing insight into the
eonate’s adaptation to extrauterine life.

7 It is important to stress that this value is by no means a precise figure.
ather, it is used here as a reference point to understand the relative increase

n blood volume from placental transfusion that can be expected when the
CC is delayed.
8 Notice that this method results in a record of plenty of artifacts due to
he baby’s movements and the ongoing neonatal care procedures. a
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To set the context for this scenario, we introduce the term
Physiological-Based Cord Clamping (PBCC), which can be described as
a clinical practice that prevents the loss of potential support from pla-
cental circulation that occurs in healthy term or late preterm newborns.
This loss typically occurs because these babies are often subjected to
ECC, as described in [120]. In general terms, PBCC involves clamping
the umbilical cord not when the newborn begins to breathe, but after
establishing aeration and pulmonary ventilation, as discussed in [121].
This clamping has shown promising results as a readily available means
to improve early infant outcomes by allowing adequately established
pulmonary circulation and resulting in a more stable circulatory tran-
sition [121]. PBCC has demonstrated improvements in cardiovascular
stability and reduced hypoxia [120]. Some studies have shown that
performing PBCC compared to ECC would result in a higher heart
rate (HR) in babies in need of resuscitation, without compromising
safety [120].

Now we are ready to evaluate UCC at five distinct points in time:
(i) early cord clamping (ECC) performed just at birth; (ii) ECC at
30 s; (iii) delayed cord clamping (DCC) performed at 60 s; (iv) DCC at
2 min; and, (v) physiological-based cord clamping (PBCC) with com-
plete establishment of pulmonary ventilation, aeration, and a nearly
complete net placental transfusion. To simulate an upper bound of
physiological-based cord clamping, we assume that achieving com-
plete lung expansion requires 24 h (it is defined by the parameter 𝜏𝑠
in Eq. (2)). Therefore, we also perform a hypothetical UCC at 24 h.9

Fig. 7 illustrates the oxygen saturation levels in the pulmonary
arteries for each clamping point. It is important to interpret the 90-min
interval on the time axis in Fig. 7 in a comparative manner, considering
that, in this extreme scenario, both complete lung expansion and UCC
take place at 24 h.

Consider the pink area between the magenta and the violet curves,
which represent the oxygen saturation levels with ECC at birth and DCC
at 30 s, respectively. This area illustrates the enhancement in neonatal
adaptation achieved by delaying UCC within the 30-s interval of ECC.
Since the rate of placental transfusion peaks within this interval (refer
to Fig. 6), conducting ECC close to the 30-s mark allows the newborn
to achieve the 95% saturation level earlier – by up to 3.2 min on this
comparative time scale – as compared to ECC at birth.

Now consider the light blue area between the violet curve and the
solid blue curve representing the oxygen saturation level for DCC at
120 s. This area indicates that delaying UCC beyond 30 s results in

9 This duration was determined by considering physiological studies and
lso by ensuring that the simulation itself achieves steady-state conditions.
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Fig. 7. Oxygen saturation levels of the pulmonary arteries for PBCC, DCC and ECC (see [122]).
further improvement in neonatal adaptation. Additionally, there is a
noticeably faster response in oxygen saturation when performing DCC
at 60 s (in line with WHO recommendation [33]) compared to ECC at
30 s (as advised by the AAP [34] and ACOG [5]).

Finally, consider the light green area between the solid blue curve
and the green curve representing the oxygen saturation level for PBCC.
This area clearly shows the advantage in neonatal adaptation that
can be achieved by ensuring that the neonate meets all stabilizing
conditions, including nearly complete placental transfusion, prior to
cord clamping.

Remarkably, within this comparative time scale, conducting PBCC
allows the neonate to reach the 95% saturation level 3.6 min earlier
than with DCC at 120 s, 6.8 min faster than with DCC at 30 s, and ten
minutes sooner than with ECC at birth.

Remark 2. The simulation results for this scenario suggest that
neonates who undergo DCC, and particularly those who undergo PBCC,
attain higher oxygen saturation levels in a shorter period of time.

Remark 2 aligns with the clinical study conducted by Ashish et al.
[123]. However, the establishment of pulmonary respiration does not
depend solely on the type of clamping performed on the newborn but
also on the birth altitude, as evaluated in the following scenario.

(SC3) Effect of altitude on available oxygen at birth
The variables of respiratory rate, heart rate, and oxygen satura-

tion are affected by birth at high altitudes [124,125]. During birth,
the pulmonary circulation undergoes a transition to a low resistance
state, enabling a high blood flow condition in neonates. Alongside this
change, alveolar ventilation is initiated through an increase in alveolar
PO2 [126].

Let us now revisit Eqs. (13) and (14). The latter demonstrates a
direct relationship between alveolar PO2 and atmospheric pressure
(𝑃𝑎𝑡𝑚) which, in accordance with Eq. (13), depends directly on the
height above sea level.

For this scenario, we conduct a simulated analysis of ECC and PBCC
at three different heights above sea level: Lhasa (China) at 3650 m,
Popayán (Colombia) at 1760 m, and Lisboa (Portugal) at sea level (0
m). The duration 𝜏𝑠 necessary for complete lung expansion, as defined
in Eq. (2), is established at 30 min to fit the clinically reported typical
oxygen saturation stabilization time of 10 min for newborns at low
724 
altitude. Fig. 8 shows the simulated oxygen saturation values obtained
when performing ECC and PBCC in the three cities.

Consider first the oxygen saturation values obtained with ECC,
depicted as the dark-colored sections at the bottom and within each bar
in Fig. 8. There is a noticeable delay in the stabilization of pulmonary
respiration at high altitudes, as observed in Lhasa, compared to ECC
at sea level. In high-altitude cities like Lhasa and Popayán, it can
take newborns more than 10 min to achieve an oxygen saturation
level above 95%. In contrast, in lower-altitude cities such as Lisboa,
oxygen saturation levels exceed 95% within 9 min. At the same time,
in Popayán, the saturation level is 71.5%, and in Lhasa, it is 63.6%,
thereby indicating a more critical situation.

Consider now the oxygen saturation levels achieved with PBCC,
depicted as the lighter-colored sections at the top and within each
bar in Fig. 8. Notice that at Lisboa’s altitude, the oxygen saturation
level surpasses 95% within just 7 min, whereas in the other two cities,
achieving similar levels requires up to 10 min.

Comparatively, we can notice that PBCC induces the onset of pul-
monary respiration within 7 min for births at sea level and within
10 min for births at higher altitudes. Conversely, ECC induces this
process in 9 min at sea level, although it can take considerably longer
at higher altitudes.

Remark 3. The simulation results for this scenario indicate that
allowing for the stabilizing conditions of PBCC notably improves the
onset of pulmonary respiration as compared to ECC. The benefit of
PBCC for neonatal adaptation is more decisive for newborns at high
altitude.

4. Discussion

This study introduces a simulator that can model changes in the
cardiovascular and respiratory systems of a newborn during birth and
as a consequence of UCC, as illustrated in Figs. 3(a), 3(b), 4, and 5.

Taking into account the accuracy of the model in representing
pressures, Table 2 presents the concordance between the simulated
blood pressure values for newborns and the clinically reported values.
The pressure measurements in Table 2 were taken from the ‘‘Pulmonary
Arteries’’ and ‘‘Intrathoracic Arteries’’ elements in Fig. 2 after 24 h
post-birth, following a clamping of the umbilical cord performed at
10 min (600 s). This is noteworthy, considering the number of model’s



E.H. Sepúlveda-Oviedo et al.

T
C
v

p
b

r
i

e
a

Biocybernetics and Biomedical Engineering 44 (2024) 716–730 
Fig. 8. Arterial oxygen saturation with ECC (at birth) and PBCC at different heights above sea level during the first 12 min of extrauterine life.
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able 2
omparison between blood pressures obtained by simulation and clinically reported
alues.
Pressures (mmHg) Reference value Simulated value Reference

Systolic arterial systemic 73.3 ± 7.5 63.1 [127]
Diastolic arterial systemic 49.6 ± 5.2 50.1 [127]
Systolic pulmonary systemic 43.83 ± 7.90 33 [128]
Diastolic pulmonary systemic 19.70 ± 8.51 22.4 [128]

parameters and the diversity of sources from which they were derived
(see Refs. [69,73]).

The first factor considered in this study is the placental transfusion.
In this regard, Fig. 6 shows that the fetus receives 94.43% (83.27mL) of
lacental blood after 5 min of extrauterine life. The simulated in utero
lood volume of the neonate is 241.15mL. These results align with the

clinical values reported in [117].
According to Fig. 1, clamping at birth and within 30 s are both

classified indistinctly as Early Cord Clamping (ECC). Nonetheless, there
is a notable 26.35% difference in the volume of blood transfused to
the neonate within this timeframe. It is also important to note that the
rate of blood transfusion during this critical period averages at 1mL∕s.
As demonstrated in Fig. 7, this significantly enhances and accelerates
neonatal adaptation.

When the UCC is performed in 30 s (according to the conserva-
tive interpretation of the AAP’s suggestion), the neonate receives only
32.58% of the available blood, while in the DCC at 5 min scenario,
the neonate receives 94.43% or more. The 61.85% difference in extra
blood can significantly improve and accelerate neonatal adaptation as
clearly shows Fig. 7.

As depicted in Fig. 6, the amount of blood transfused to the newborn
during the first minutes of life (within the first 5 min after birth) un-
dergoes a drastic change. Consequently, the conventional time-oriented
classification of ECC and DCC presented in Fig. 1 is completely inade-
quate for accurately assessing the effects of UCC. Therefore, conducting
esearch on physiology-based cord clamping PBCC is of paramount
mportance to guarantee optimal care for the newborn.

Placental transfusion has been attributed with various beneficial
ffects, including a reduction in the number of blood transfusions due to
nemia [13,38,41,109], improvement in blood pressure [109,110], de-
crease in intraventricular hemorrhage [13,111], reduction in late-onset sep-
sis and improvement in immune status due to transfusion of hematopoietic

progenitor cells [13,111]. Furthermore, as mentioned in [37], placental
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transfusion increases the circulating blood volume at birth, thereby
improving the hemodynamic status of premature newborns. It is also an
extremely effective method to improve arterial oxygen content, cardiac
output, and oxygen supply [129].

A second relevant factor evaluated in this study is the effect of
UCC timing on oxygen saturation. In this regard, Fig. 7 shows that
the time it takes for a newborn to reach adequate levels of oxygen
saturation is prolonged when the umbilical cord is clamped at birth.
The earlier umbilical cord clamping (UCC) is performed, the more time
the newborn requires to establish pulmonary respiration.

The third significant factor evaluated in this research is the effect
f altitude on available oxygen at birth. In this regard, Fig. 8 illustrates
he umbilical cord clamping performed at birth at three different alti-
udes. As depicted in the figure, achieving establishment of pulmonary
espiration and adequate levels of oxygen saturation within the first
0 min of extrauterine life is only feasible when the neonate is born in
location close to sea level.

Fig. 8 shows the simulated PBCC performed at three different
ltitudes. Notice that approximately 7 min after birth, the oxygen sat-
ration value starts to stabilize at sea level, while for Lhasa (at 3650 m
bove sea level) and Popayán (at 1760 m above sea level), stabilization
ccurs at 9 and 10 min, respectively. These findings are consistent
ith the results of the study of Valero et al. [124], which evaluates

he adaptation in 59 newborns at 3828 m above sea level, showing
hat respiratory and cardiac frequency, as well as oxygen saturation
initially low), start to stabilize at 10 min and reach equilibrium within
h.

It is worth emphasizing that individuals living in high altitudes
re physiologically adapted to these environments [130]. However,
ltitude of birth must be taken into account when performing the UCC
ince the closure of fetal shunts and vascular changes in general may
ake longer [71,124]. As highlighted in Remark 3, this simulation study
uggests that performing PBCC can notably enhance the establishment
f pulmonary respiration, thereby potentially preventing the neonate
rom experiencing the adverse effects of birth at high altitudes10

Concerns have long been expressed that clinical conditions like
ymptomatic polycythemia and hyperbilirubinemia are associated with
CC (this concern also applies to PBCC).

10 According to [131], birth at high altitudes can lead to pulmonary hyper-
tension and chronic hypoxia, while [132] states that the risk of pre-eclampsia
increases with altitude.
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Hyperbilirubinemia occurs due to elevated levels of bilirubin in
the blood. Bilirubin is a product of red blood cell breakdown, and
its accumulation in the body can lead to jaundice, characterized by
a yellowing of the skin and eyes. On the other hand, polycythemia
results from an abnormal increase in the number of red blood cells in
the blood.

However, as noted in several studies [133–138], there is not sub-
stantial evidence indicating an increased risk of hyperbilirubinemia or
symptomatic polycythemia due to delayed cord clamping. In a recent
study, Andersson and Mercer [8] examined systematic reviews and
meta-analyzes that ranged from 2007 to 2020. They found no current
evidence supporting this concern and, notably, no literature reporting
on symptomatic polycythemia. These findings further reduce the list of
potential contraindications for adopting clamping techniques that allow
for an increased transfer of blood to the newborn, such as DCC or PBCC.

. Limitations of the study

As mentioned throughout the study, the computational calculations
nd experiments were conducted under the assumption of a healthy
ull-term newborn birth. Therefore, the results may not be directly
pplicable under other scenarios. In general, medical guidelines have
volved towards delayed cord clamping (DCC) in healthy term new-
orns, as it has been demonstrated to have benefits in terms of blood
nd oxygen transfer to the baby, as consistent with the results presented
n this study. However, in specific medical situations, early cord clamp-
ng (ECC) may be necessary to address critical issues. For instance,
aking into account the contraindications for DCC in term newborns
resented in Table 1, or scenarios such as emergency cesarean section,
roblems with fetal blood flow, such as fetal bradycardia (low heart
ate), or the need for immediate resuscitation, where the newborn re-
uires prompt resuscitation, including ventilation or cardiopulmonary
esuscitation. In all such situations, early cord clamping can be crucial
n the adaptation of the newborn to extrauterine life. Finally, this study
oes not assume compensatory mechanisms that can modify the level
f oxygen saturation of individuals at different heights above sea level.
hese mechanisms will be explored in Future work.

. Future work

The continuation of this study will be divided into two parts. Firstly,
e will undertake new computational developments to extend and
nhance the model. Within these computational explorations, we will
valuate the use of advanced solvers in Functional Mock-up Units
FMU), different programming languages for integrating graphics and
nimations with high frame rates, eliminating the need for users to
nstall multiple tools to use the physiological simulator. We aim to inte-
rate the proposed model, an example called Fetus2neonate_transition,
nto the library called ‘‘PatientEvoPhysio’’, which is still under devel-
pment. This integration will not only facilitate research on umbilical
ord clamping, but also allow for the analysis of anomalies in the
ardiovascular and respiratory systems, as well as the effects of vari-
us clinical practices in adults, children, newborns, and fetuses. This
ollaborative effort is motivated by the ethical limitations associ-
ted with conducting critical experiments on living beings, making
hese tools an intriguing alternative. We welcome external code con-
ributions. In its final version, this model will become one of the
any scenarios available in the library, easily accessible from a Web

rowser without the need for additional installations. All updates
f this research will be regularly published in the GitHub (https:
/github.com/ehsepulvedao/PatientEvoPhysio) and Zenodo (https://
enodo.org/records/10054996) [139] repositories.

On the other hand, a significant effort will be made in collaboration
etween engineering and medical specialists to formally extend the
oundational physiology model presented in this study. Furthermore,

e are currently looking for solid collaborations with researchers and
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ther institutions that allow to evaluate the computational library (Pa-
ientEvoPhysio) used in this study, especially in terms of compatibility
ith other licensed compilers, such as Dymola. In addition, advanced

omputational studies, such as the one carried out in [140], will be
arried out for the BIG DATA medical analysis that allows extracting
idden information to complement the protocol described in this study.

In our ongoing efforts to enhance the functionality and efficiency
f web simulators in our project, we have identified a promising
irection for future development. Inspired by valuable feedback, we
re exploring the integration of OpenModelica’s Functional Mock-up
nterface (FMU) with the CVODE solver export. This approach has the
otential to significantly streamline the patient evoPhysio deployment
rocess of our library. Our objective is to investigate how the FMU
ith CVODE export, known for its robustness in handling complex
ifferential equations, can reduce the computational workload and
mprove the overall performance of our simulator. This exploration
s a part of our commitment to continually evolve our project by
ncorporating advanced methodologies and tools.

It should be noted that the model presented in this study is applica-
le to cases of healthy term newborn deliveries. However, although this
omputational model represents a significant initial advancement in the
nvestigation of the objective effects of the umbilical cord clamping,
ithout complications or interventions on living beings, we are aware
f multiple aspects that need to be incorporated to improve its level
f representation of the real condition of the newborn. For example,
n future work, aspects such as the relative position of the infant and
lacenta (i.e., the effects of gravity on placental blood flow) will be
valuated.

Similarly, the system will be linked to a discrete event system that
an monitor clinical evolution and make decisions based on states and
ransitions derived from metrics such as the APGAR score.11 Further-
ore, another set of clinical practices and systems will be evaluated

or inclusion in the model, including medication administration. Addi-
ionally, multiple scenarios with possible complications for unhealthy
ewborns will be evaluated using various types of umbilical cord
lamping. Finally, compensatory mechanisms of oxygen saturation in
ndividuals born at different heights above sea level will be explored.

. Conclusions

The contribution of this document lies in the development of sim-
lation models and the collection of quantitative data to analyze the
eonatal evolution after birth. It also explores the impact of clinical
nterventions like the moment of the UCC and heart disease scenarios
s presented in [64]. This research tool allows for evaluating a shift
rom time-based clamping to physiological-based clamping (PBCC) for
he first time using simulation. Furthermore, the simulator introduced
n this study facilitates investigations similar to the one proposed in
ef. [142], which focuses on assessing conditions such as the initiation
f ventilation and UCC to study the potential benefits of resuscitation
ith an intact cord.

By studying clinical practices through the use of simulation method-
logies, it is possible to perform various interventions on newborns
ithout causing them any harm [143]. Although these simulators
o not accurately represent physiological responses to different in-
erventions or birth conditions, they serve as a basis for a general
nderstanding of the phenomena occurring in newborns.

Based on the results of Fig. 6, it can be deduced that ECC brings
dverse effects on the hemodynamic and respiratory components of an
ndividual. In contrast, DCC has a significant beneficial impact on the
emodynamics of the newborn, mainly due to improved blood volume
nd sustained placental respiration. Delayed or physiologically based

11 The Apgar scale is employed for assessing the vitality and progression of
the newborn during various stages of the neonatal adaptation process [141].

https://github.com/ehsepulvedao/PatientEvoPhysio
https://github.com/ehsepulvedao/PatientEvoPhysio
https://github.com/ehsepulvedao/PatientEvoPhysio
https://zenodo.org/records/10054996
https://zenodo.org/records/10054996
https://zenodo.org/records/10054996
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cord clamping allows the placenta to supply the newborn with about a
blood supply, as shown in this research and reported in [144].

It is important to note that the results presented in this work justify
further in-depth research that can define and standardize physiological
criteria for neonates, determining the appropriate moment to perform
UCC based on these criteria rather than relying solely on time. This
s necessary due to the impact of various factors, such as birth al-
itude, which hinder the uniform standardization of clamping time.
ndividualized analysis of the newborn is required to identify the ideal
oment for UCC. The work presented in this study could serve as a

valuable addition to the formal discrete models of medical procedures,
as discussed in previous studies such as [143,145]. It is important to
clarify that while the results presented in this study are limited to a
scenario of healthy full-term newborns, they can make a meaningful
contribution to the discussion of the appropriate timing of UCC.

Based on the findings of this research, it can be concluded that an
extensive study is necessary to explore the benefits or adverse effects
of neonatal resuscitation with delayed clamping, which allows for the
maximum volume of blood to be obtained from placental transfusion.
This extended study should also consider factors such as humidity,
temperature, gravity,12 and other conditions that influence the partial
pressure of alveolar oxygen and the vasoconstriction of fetal shunts.

With the progress made in this study, it is expected that healthcare
professionals can conduct research to accelerate consensus processes
and the development of protocols and clinical guidelines that improve
newborn care.
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