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THE MOMENT-SOS HIERARCHY: APPLICATIONS AND RELATED
TOPICS

JEAN B. LASSERRE

Abstract. The Moment-SOS hierarchy initially introduced in optimization in
2000, is based on the theory of the 𝑆-moment problem and its dual counterpart,
polynomials that are positive on 𝑆. It turns out that this methodology can
be also applied to solve problems with positivity constraints “ 𝑓 (x) ≥ 0 for
all x ∈ 𝑆" and/or linear constraints on Borel measures. Such problems can be
viewed as specific instances of the “Generalized Moment Problem" (GMP) whose
list of important applications in various domains od science and engineering
is almost endless. We describe this methodology in optimization and in two
other applications as well for illustration purpose. Finally we also introduce the
Christoffel function and reveal its links with the Moment-SOS hierarchy and
positive polynomials.

1. Introduction

The Moment-SOS hierarchy was initially designed to help solve polynomial
optimization problems (POP), that is, optimization problems in the form:
(1) P : 𝑓 ∗ = inf

x
{ 𝑓 (x) : x ∈ 𝑆 },

where 𝑓 is a polynomial and 𝑆 ⊂ R𝑑 is a basic semi-algebraic set, that is,
(2) 𝑆 := { x ∈ R𝑑 : 𝑔 𝑗(x) ≥ 0, 𝑗 = 1, . . . , 𝑚 },
for some polynomials 𝑔 𝑗 , 𝑗 = 1, . . . , 𝑚. Importantly, the description of P is entirely
algebraic via its polynomial data 𝑓 , 𝑔 𝑗 , 𝑗 = 1, . . . , 𝑚, which is a crucial feature.
(However semi-algebraic functions can also be tolerated to a certain extent.)

As P is a particular case of Non Linear Programming (NLP), what is so specific
about P in (1)? The answer depends on the meaning of 𝑓 ∗ in (1). If one is interested
in a local minimum only then the whole arsenal of efficient methods of NLP can
be used for solving P and its algebraic features are not really exploited.

On the other hand, if 𝑓 ∗ in (1) is understood as the global minimum of P then
the situation is totally different. Why? First, to eliminate any ambiguity on the
meaning of 𝑓 ∗, rewrite (1) as:
(3) P : 𝑓 ∗ = sup { _ : 𝑓 (x) − _ ≥ 0, ∀x ∈ 𝑆 } ,
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2 JEAN B. LASSERRE

because then indeed 𝑓 ∗ is necessarily the global minimum of P. In full generality
P is very difficult to solve as it is NP-hard. The reason is:

Given _ ∈ R, checking whether “ 𝑓 (x) − _ ≥ 0 for all x ∈ 𝑆" is difficult.
Indeed, by its very nature this positivity constraint is global and therefore cannot be
handled by standard NLP optimization algorithms which use only local information
around a current iterate x ∈ 𝑆. Therefore to compute 𝑓 ∗ in (3) one needs to handle
the positivity constraint “ 𝑓 (x) − _ ≥ 0 for all x ∈ 𝑆" in some efficient manner.
Fortunately, if the data are algebraic then:

(1) Powerful positivity certificates from Real Algebraic Geometry (Positivstel-
lensätze in german) are available.

(2) Some of these positivity certificates have an efficient practical implemen-
tation via Linear Programming (LP) or Semidefinite Programming (SDP).
In particular and crucially, testing whether a given polynomial is a sum of
squares (SOS) simply reduces to solving a single SDP (which can be done
in time polynomial in the input size of the polynomial, up to arbitrary fixed
precision1).

After the pioneers works of [123] and [92], [54, 55] and [106, 107] have been the
first to provide a systematic use of these two key ingredients in Optimization and
Control, with convergence guarantees. It is also worth mentioning another closely
related pioneer work, namely the celebrated SDP-relaxation of [32] which provides
a 0.878 approximation guarantee for MAXCUT, a famous problem in non-convex
combinatorial optimization (and probably the simplest one). In fact it is perhaps the
first famous example of such a successful application of the powerful SDP convex
optimization technique to provide guaranteed good approximations to a notoriously
difficult non-convex optimization problem. It turns out that this SDP relaxation is
precisely the first semidefinite relaxation in the Moment-SOS hierarchy (a.k.a.
Lasserre hierarchy) when applied to the MAXCUT problem. This spectacular
success story of SDP relaxations has been at the origin of a flourishing research
activity in combinatorial optimization and computational complexity. In particular,
the study of LP- and SDP-relaxations techniques in hardness of approximation
is at the core of a central topic in combinatorial optimization and computational
complexity, namely proving/disproving Khot’s famous Unique Games Conjecture2
(UGC) in Theoretical Computer Science (TCS).

Another (and equivalent) “definition" of the global optimum 𝑓 ∗ of P reads:

(4) 𝑓 ∗ = inf
𝜙∈ℳ(𝑆)+

{
∫
𝑆

𝑓 𝑑𝜙 : 𝜙(𝑆) = 1 } ,

where the “inf" is over the set ℳ(𝑆)+ of (positive) Borel measures 𝜙 on 𝑆. Indeed
as 𝑓 ≥ 𝑓 ∗ on 𝑆 and 𝜙 is a probability measure on 𝑆,∫

𝑆

𝑓 𝑑𝜙 ≥
∫
𝑆

𝑓 ∗ 𝑑𝜙 = 𝑓 ∗ ,

1In fact see [102] for an update and more details
2For this conjecture and its theoretical and practical implications, S. Khot was awarded the

prestigious Nevanlinna prize at the ICM 2014 in Seoul [41, 42] .
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so the infimum in (4) is not smaller than 𝑓 ∗. On the other hand, for an arbitrary
x ∈ 𝑆, its value 𝑓 (x) is also obtained via

∫
𝑆
𝑓 𝑑𝜙 with 𝜙 being the Dirac probability

measure 𝛿{x} at x ∈ 𝑆, and so the infimum in (4) is not larger than 𝑓 ∗. In particular,
if x∗ ∈ 𝑆 is a global minimizer of P then the Dirac measure 𝜙∗ := 𝛿{x∗ } at x∗ is an
optimal solution of (4).

In fact (3) is the LP dual of (4), with _ being the dual variable associated with
the constraint 𝜙(𝑆) = 1 in (4). In other words, standard LP duality between the two
conic programs (4) and (3) nicely captures a convex duality between the “𝑆-moment
problem" in real and functional analysis, and “polynomials positive on 𝑆" in real
algebraic geometry (more details later).

Moreover, Problem (4) is a very particular instance (and even the simplest
instance) of the more general Generalized Moment Problem (GMP) defined by:

(5) inf
𝜙 𝑗 ∈ℳ(𝑆 𝑗 )+

{
𝑝∑︁
𝑗=1

∫
𝑆 𝑗

𝑓 𝑗 𝑑𝜙 𝑗 :
𝑝∑︁
𝑗=1

𝑓𝑖 𝑗 𝑑𝜙 𝑗 ≥ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑠 },

for some given functions 𝑓 𝑗 , 𝑓𝑖 𝑗 : R𝑑 𝑗 → R, 𝑖 = 1, . . . , 𝑠, and sets 𝑆 𝑗 ⊂ R𝑑 𝑗 ,
𝑗 = 1, . . . , 𝑝. The GMP (5) is an infinite-dimensional LP with dual:

(6) sup
_1,...,_𝑠≥0

{
𝑠∑︁
𝑖=1

_𝑖 𝑏𝑖 : 𝑓 𝑗 −
𝑠∑︁
𝑖=1

_𝑖 𝑓𝑖 𝑗 ≥ 0 on 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑝}.

Therefore it should be of no surprise that the Moment-SOS hierarchy, initially
developed for global optimization, also applies to solving the GMP. This is par-
ticularly interesting as moments and positive polynomials are at the crossroad of
several area of mathematics [52] and the list of important applications of the GMP
is almost endless; see e.g. [52, 60], references therein, and see also Section 6 where
for illustration purpose we describe two particular applications.

Finally, since its birth in early 2000 and in view of its so many potential ap-
plications, the Moment SOS-hierarchy has gained attention from various research
communities with many different contributions ranging from :
(i): its basic application in many (and diverse) areas after modeling the problem as

an instance of the GMP. For illustration purpose two examples are described
in Section 6; see also [37, 47] and references therein.

(ii): its adaptation and extension to other domains, e.g. Operations Research [104],
and entanglement, violation of Bell inequalities in quantum information
where its non-commutative version (the Pironio-Navascues-Acin (NPA)
hierarchy described in [91]) is also attracting a lot of attention; see also
[16] and [105] and references therein.

(iii): its detailed analysis by the TCS research community for hardness of approx-
imation in combinatorial optimization (e.g. in relation with issues around
the Unique Game Conjecture). See e.g. [11], [114] and [9].

(iv): analysis of its rate of convergence with very interesting recent results on
specific sets; see e.g. [126, 125, 6] and references therein.

(v): development of algorithmic improvements to improve scalability of the stan-
dard Moment-SOS hierarchy. One direction is to take into account several
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types of sparsity and/or symmetries often present in large scale optimization
problems as explained in Section 3.8. Another is to promote alternatives
(e.g. first-order methods, second-order cone programming) to the costly
interior point algorithm for semidefinite programming; see e.g. [1, 144, 79].

Structure of the paper. For ease of exposition and clarity, the proof of most results
in the form of theorems and lemmas is not provided. However, at the end of each
section one has included a Notes & Sources subsection with pointers to articles for
detailed proofs, and sometimes a discussion and comments on the results.

After introducing some notation and definitions, in Section 3 one describes the
Moment-SOS hierarchy of lower bounds which converges to the global minimum in
polynomial optimization. In Section 4 one provides a brief description of an alterna-
tive, the Moment-LP hierarchy. Section 5 describes the (less known) Moment-SOS
hierarchy of upper bounds which also converges to the global minimum. Section
6 is devoted to other applications of the Moment-SOS hierarchy. For illustration
purpose one describes how to apply the Moment-SOS hierarchy in two such appli-
cations and provides a (non exhaustive) list of references to other ones in various
fields. Finally, Section 7 is devoted to the Christoffel function (a classical tool from
the theory of orthogonal polynomials and approximation) to reveal its links and
connections with optimization and the Moment-SOS hierarchy.

2. Notation, definitions and some preliminaries

2.1. Notation, definitions. LetR[x] denote the ring of polynomials in the variables
x = (𝑥1, . . . , 𝑥𝑑) and let R[x]𝑛 be the vector space of polynomials of degree at most
𝑛 (whose dimension is 𝑠(𝑑) :=

(
𝑑+𝑛
𝑑

)
). For every 𝑛 ∈ N, let N𝑑

𝑛 := {𝜶 ∈ N𝑑 :
|𝜶 | (= ∑

𝑖 𝛼𝑖) ≤ 𝑛}, and let v𝑛(x) = (x𝜶), 𝜶 ∈ N𝑑 , be the vector of monomials of
the canonical basis (x𝜶) of R[x]𝑛. Given a closed set X ⊆ R𝑛, let P(X ) ⊂ R[x]
(resp. P𝑛(X ) ⊂ R[x]𝑛) be the convex cone of polynomials (resp. polynomials of
degree at most 𝑛) that are nonnegative on X . A polynomial 𝑓 ∈ R[x]𝑛 is written

x ↦→ 𝑓 (x) =
∑︁
𝛼∈N𝑑

𝑓𝜶 x𝜶 = 〈f, v𝑛(x)〉 ,

with vector of coefficients f = ( 𝑓𝜶) ∈ R𝑠(𝑛) in the canonical basis of monomials
(x𝜶)𝜶∈N𝑑 . For real symmetric matrices, let 〈B,C〉 := trace (B C) while the notation
B � 0 stands for B is positive semidefinite (psd) whereas B � 0 stands for B is
positive definite (pd). Denote by S𝑛 the space of real 𝑛× 𝑛 symmetric matrices and
S𝑛
+ its subset of positive semidefinite matrices.
With a closed set 𝑆 ⊂ R𝑑 , denote by ℳ(𝑆) the space of finite signed Borel

measures on 𝑆, and ℳ(𝑆)+ ⊂ ℳ(𝑆) (resp. 𝒫(𝑆)) the convex cone of finite
nonnegative Borel measures (resp. probability measures) on 𝑆. The support
supp (`) of a Borel measure ` on R𝑑 is the smallest closed set Ω ⊂ R𝑑 such that
`(R𝑑 \Ω) = 0.
Riesz linear functional. Given a sequence 𝝓 = (𝜙𝜶)𝜶∈N𝑑 (in bold), its associated
Riesz linear functional is the linear mapping 𝜙 : R[x] → R (not in bold) defined
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by:

(7) 𝑓 (=
∑︁
𝜶

𝑓𝜶 x𝛼) ↦→ 𝜙( 𝑓 ) =
∑︁
𝜶∈N𝑑

𝑓𝜶 𝜙𝜶 = 〈f, 𝝓〉 ,

A sequence 𝝓 has a representing measure if its associated Riesz linear functional 𝜙
is a (positive) Borel measure on R𝑑 , in which case,

𝜙𝜶 =

∫
R𝑑

x𝜶 𝑑𝜙 , ∀𝜶 ∈ N𝑑 .

Given a sequence 𝝓 = (𝜙𝜶)𝜶∈N𝑑 and a polynomial 𝑔 ∈ R[x], x ↦→ 𝑔(x) =
∑

𝜸 𝑔𝜸 x𝜸,
define the new sequence 𝑔 · 𝝓 defined by

(𝑔 · 𝝓)𝜶 := 𝜙(x𝜶 𝑔) =
∑︁
𝜸∈N𝑑

𝑔𝜸 𝜙𝜶+𝜸 , ∀𝜶 ∈ N𝑑 ,

and therefore its associated Riesz linear functional, denoted by 𝑔 · 𝜙, satisfies
𝑔 · 𝜙( 𝑓 ) = 𝜙(𝑔 𝑓 ) , ∀ 𝑓 ∈ R[x] .

In particular, if 𝝓 has a representing measure 𝜙 and 𝑔 is nonnegative, then the Riesz
linear functional 𝑔 · 𝜙 is a representing measure, i.e.,

𝑔 · 𝜙( 𝑓 ) = 𝜙(𝑔 𝑓 ) =

∫
R𝑑
𝑓 𝑔 𝑑𝜙 , ∀ 𝑓 ∈ R[x] .

Moment matrix. The (degree-𝑛) moment matrix associated with a sequence 𝝓 =

(𝜙𝜶)𝜶∈N𝑑 (or, equivalently, with the Riesz linear functional 𝜙), is the real symmetric
matrix denoted M𝑛(𝝓) (or M𝑛(𝜙)) with rows and columns indexed byN𝑑

𝑛 , and whose
entry (𝜶, 𝜷) is just 𝜙𝜶+𝜷 , for every 𝜶, 𝜷 ∈ N𝑑

𝑛 . So M𝑛(𝝓) depends only on moments
𝜙𝜶 of degree at most 2𝑛. Alternatively, if one introduces the real symmetric matrices
(B1

𝜶) ⊂ S𝑠(𝑛) defined by

(8) v𝑛(x) v𝑛(x)𝑇 =
∑︁

𝜶∈N𝑑
2𝑛

B1
𝜶 x𝜶, ∀x ∈ R𝑑 ,

then M𝑛(𝝓) =
∑

𝜶∈N𝑑
2𝑛
𝜙𝜶 B1

𝜶. Moreover, if 𝝓 has a representing measure 𝜙 then
M𝑛(𝝓) � 0 because 〈f,M𝑛(𝝓) f〉 =

∫
𝑓 2𝑑𝜙 ≥ 0, for all 𝑓 ∈ R[x]𝑛.

A measure whose all moments are finite, is moment determinate if there is no
other measure with same moments.
Localizing matrix. With 𝝓 as above and 𝑔 ∈ R[x] (with 𝑔(x) =

∑
𝛾 𝑔𝛾x𝛾), the

localizing matrix associated with 𝝓 and 𝑔 is the moment matrix M𝑛(𝑔 ·𝝓) associated
with the sequence 𝑔 · 𝝓. That is, M𝑛(𝑔 · 𝝓) is the real symmetric matrix with rows
and columns indexed by N𝑑

𝑛 , and whose entry (𝜶, 𝜷) is just (𝑔 · 𝜙)𝜶+𝜷 , that is,
M𝑛(𝑔 · 𝝓)(𝜶, 𝜷) =

∑
𝛾 𝑔𝜸𝜙𝜶+𝜷+𝜸, for every 𝜶, 𝜷 ∈ N𝑑

𝑛 .
Alternatively, letting 𝑑𝑔 := ddeg(𝑔)/2e, and introducing the real symmetric

matrices B𝑔
𝜶 ∈ S𝑠(𝑛), 𝜶 ∈ N𝑑 , defined by

(9) 𝑔(x) v𝑛(x) v𝑛(x)𝑇 =
∑︁

𝜶∈N𝑑
2(𝑛+𝑑𝑔 )

B𝑔
𝜶 x𝜶, ∀x ∈ R𝑑 ,

one obtains M𝑛(𝑔 · 𝝓) =
∑

𝜶∈N𝑑
2(𝑛+𝑑𝑔 )

𝜙𝜶 B𝑔
𝜶.
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If 𝝓 has a representing measure 𝜙 whose support is contained in the set {x :
𝑔(x) ≥ 0} then M𝑛(𝑔 · 𝝓) � 0 for all 𝑛, because

〈f,M𝑛(𝑔 · 𝝓) f〉 = 𝑔 · 𝜙( 𝑓 2) = 𝜙( 𝑓 2𝑔) =

∫
𝑓 2 𝑔 𝑑𝜙 ≥ 0 , ∀ 𝑓 ∈ R[x]𝑛 .

2.2. SOS polynomials and quadratic modules. A polynomial 𝑓 ∈ R[x] is a
Sum-of-Squares (SOS) if there exist 𝑠 ∈ N, and 𝑓1, . . . , 𝑓𝑠 ∈ R[x], such that
𝑓 (x) =

∑𝑠
𝑘=1 𝑓𝑘(x)2, for all x ∈ R𝑑 . Denote by Σ[x] (resp. Σ[x]𝑛) the set of SOS

polynomials (resp. SOS polynomials of degree at most 2𝑛). Of course every SOS
polynomial is nonnegative. However the converse is not true.
Membership in Σ[x]𝑛. Checking whether a given polynomial 𝑓 is nonnegative on
R𝑑 is difficult whereas, and this is crucial for the Moment-SOS hierarchy, checking
whether 𝑓 is SOS is much easier and can be done efficiently. Indeed let 𝑓 ∈ R[x]2𝑛
(for 𝑓 to be SOS its degree must be even), x ↦→ 𝑓 (x) =

∑
𝛼∈N𝑑

2𝑛
𝑓𝜶 x𝛼. Then

𝑓 ∈ R[x]2𝑛 is SOS if and only if there exists a real symmetric matrix X𝑇 = X of
size 𝑠(𝑛) =

(
𝑑+𝑛
𝑑

)
, such that:

(10) X � 0; 𝑓𝜶 = 〈X,B1
𝜶〉, ∀𝜶 ∈ N𝑑

2𝑛,

where the matrices B1
𝜶 have been introduced in (8). It turns out that (10) defines

the feasible set of what is called a semidefinite program3 (in short, SDP).
Quadratic module. Introduce the constant polynomial x ↦→ 𝑔0(x) := 1 for all x ∈ R𝑑
(also denoted 𝑔0 = 1). With a family (𝑔1, . . . , 𝑔𝑚) ⊂ R[x] is associated the
quadratic module 𝑄(𝑔) (= 𝑄(𝑔1, . . . , 𝑔𝑚)) ⊂ R[x] defined by:

(11) 𝑄(𝑔) :=


𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 : 𝜎𝑗 ∈ Σ[x], 𝑗 = 0, . . . , 𝑚

 ,
and its degree-2𝑛 truncated version

(12) 𝑄𝑛(𝑔) :=


𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 : 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗

, 𝑗 = 0, . . . , 𝑚
 ,

where 𝑑 𝑗 := ddeg(𝑔 𝑗)/2e, 𝑗 = 0, . . . , 𝑚. Observe that 𝑄𝑛(𝑔) ⊂ R[x]2𝑛 because
indeed in (12), deg(𝜎𝑗 𝑔 𝑗) ≤ 2𝑛, for all 𝑗 = 0, . . . , 𝑚. Obviously both 𝑄(𝑔) and its
truncated version 𝑄𝑛(𝑔) are convex cones of R[x].

Definition 2.1. The quadratic module𝑄(𝑔) is said to be Archimedean if there exists
𝑀 > 0 such that the quadratic polynomial x ↦→ 𝑀 − ‖x‖2 belongs to 𝑄(𝑔) (i.e.,
belongs to 𝑄𝑛(𝑔) for some 𝑛).

If 𝑄(𝑔) is Archimedean then necessarily, the set

(13) 𝑆 := { x ∈ R𝑑 : 𝑔 𝑗(x) ≥ 0 , 𝑗 = 1, . . . , 𝑚 }
is compact but the reverse is not true. The Archimedean condition depends on the
representation of 𝑆 and can be seen as an algebraic certificate that 𝑆 is compact.

3A semidefinite program (SDP) is a convex and conic optimization problem which can be solved
(up to fixed arbitrary precision) in time polynomial in its input size; see e.g. [3] and also [102].
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Dual cone. The dual cone 𝑄∗
𝑛(𝑔) of 𝑄𝑛(𝑔) is the convex cone of R𝑠(2𝑛) defined by:

(14) 𝑄∗
𝑛(𝑔) = { 𝝓 ∈ R𝑠(2𝑛) : M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 } ,
where M𝑛(𝑔 𝑗 · 𝝓) is the localizing matrix associated with the polynomial 𝑔 𝑗 and
the sequence 𝝓, defined in Section 2.1.

For more details on the above notions of moment and localizing matrix, quadratic
module, as well as their use in potential applications, the interested reader is referred
to [76] and [60]. As we will see, both convex cones𝑄𝑛(𝑔) and𝑄∗

𝑛(𝑔) play a crucial
role in the Moment-SOS hierarchy of lower bounds.

2.3. Certificates of positivity (Positivstellensätze). Below we describe particular
certificates of positivity which are important because they provide a theoretical justi-
fication (or rationale) behind convergence of the so-called SDP- and LP-relaxations
for global optimization. In particular, the one below in (15) is at the core of the
Moment-SOS hierarchy of lower bounds.

Theorem 2.2 ([113]). Let 𝑆 ⊂ R𝑑 be as in (13) and assume that𝑄(𝑔) is Archimedean.
(i) If a polynomial 𝑓 ∈ R[x] is (strictly) positive on 𝑆 then 𝑓 ∈ 𝑄(𝑔), that is,

(15) 𝑓 =

𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 ,

for some SOS polynomials 𝜎𝑗 ∈ Σ[x], 𝑗 = 0, . . . , 𝑚 (and so 𝑓 ∈ 𝑄𝑛(𝑔) for some
2𝑛 ≥ deg( 𝑓 )).

(ii) A sequence 𝝓 = (𝜙𝜶)𝜶∈N𝑑 ⊂ R has a representing Borel measure on 𝑆 if and
only if 𝜙( 𝑓 2 𝑔 𝑗) ≥ 0 for all 𝑓 ∈ R[x], and all 𝑗 = 0, . . . , 𝑚. Equivalently, if and
only if M𝑛(𝑔 𝑗 · 𝝓) � 0 for all 𝑗 = 0, . . . , 𝑚, and all 𝑛 ∈ N.

In fact Theorem 2.2 is a refinement of an earlier theorem by Schmüdgen two
years before.

Theorem 2.3 ([116]). Let the basic semi-algebraic set 𝑆 ⊂ R𝑑 in (13) be compact.
(i) If a polynomial 𝑓 ∈ R[x] is (strictly) positive on 𝑆 then

(16) 𝑓 =
∑︁

𝜶∈{0,1}𝑚
𝜎𝜶 𝑔

𝛼1
1 · · · 𝑔𝛼𝑚

𝑚 ,

for some SOS polynomials 𝜎𝜶 ∈ Σ[x], 𝜶 ∈ {0, 1}𝑚.
(ii) A sequence 𝝓 = (𝜙𝜶)𝜶∈N𝑑 ⊂ R has a representing Borel measure on 𝑆 if and

only if 𝜙( 𝑓 2 𝑔𝛼1
1 · · · 𝑔𝛼𝑚

𝑚 ) ≥ 0 for all 𝑓 ∈ R[x], and all 𝜶 ∈ {0, 1}𝑚. Equivalently,
if and only if M𝑛(𝑔𝛼1

1 · · · 𝑔𝛼𝑚
𝑚 · 𝝓) � 0 for all 𝜶 ∈ {0, 1}𝑚, and all 𝑛 ∈ N.

Observe that (15) is of the same flavor as (16) but much simpler as it involves
only 𝑚 + 1 SOS polynomials 𝜎𝑗 ∈ Σ[x] (as opposed to 2𝑚 SOS 𝜎𝜶 in (16)). On the
other hand, in Theorem 2.3 the only condition is that the set 𝑆 is compact whereas
in Theorem 2.2 one also requires that the quadratic module 𝑄(𝑔) is Archimedean
(an additional condition on the representation of 𝑆).

The reader may have noticed that Theorem 2.2 and Theorem 2.3 have two facets
(i) and (ii): The former is the algebraic facet (certificate of positivity) while the
latter with a real analysis flavor is related to the 𝑆-moment problem. Both facets
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are a nice illustration of the duality between moments and positive polynomials.

We next provide a Nichtnegativstellensatz (a theorem of nonnegativity) of the
author [61] which is instrumental in proving convergence of the hierarchy of upper
bounds in Section 5.

Theorem 2.4. Let 𝑆 ⊂ R𝑑 be a compact set (not necessarily basic semi-algebraic),
and let 𝜙 be a Borel measure with supp(𝜙) = 𝑆, and with moment sequence
𝝓 = (𝜙𝜶)𝜶∈N𝑑 . If 𝑓 ∈ R[x] then

(17) 𝑓 ≥ 0 on 𝑆 ⇔ M𝑛( 𝑓 · 𝝓) � 0 , ∀𝑛 ∈ N .

Theorem 2.4 states that to decide whether 𝑓 is nonnegative on 𝑆, one must check
whether countably many Linear Matrix Inequalities (LMI) M𝑛( 𝑓 · 𝝓) � 0, 𝑛 ∈ N,
hold. Each constraint M𝑛( 𝑓 · 𝝓) � 0 is indeed an LMI on the coefficients of the
polynomial 𝑓 because each entry of M𝑛( 𝑓 · 𝝓) is linear in the coefficients f of 𝑓 .
Therefore identifying 𝑓 ∈ R[x]𝑘 with its vector f ∈ R𝑠(𝑘) of coefficients, for each
𝑛 ∈ N, the convex cone Ω𝑛 ⊂ R[x]𝑘 defined by

Ω𝑛 := { f ∈ R𝑠(𝑘) : M𝑛( 𝑓 · 𝝓) � 0 } ,

is a spectrahedron that contains the convex cone P𝑘(𝑆) of polynomials of degree
at most 𝑘 that are nonnegative on 𝑆. In addition Ω𝑛+1 ⊂ Ω𝑛 for all 𝑛, so that the
sequence (Ω𝑛)𝑛∈N of outer approximations of P𝑘(𝑆) is monotone non increasing.
Moreover, it converges to P𝑘(𝑆), i.e.,

⋂
𝑛∈NΩ𝑛 = P𝑘(𝑆).

So in contrast to Theorem 2.2 and 2.3, Theorem 2.4 is valid for arbitrary compact
sets 𝑆 ⊂ R𝑑 and nonnegative (as opposed to positive) polynomials on 𝑆. On the
other hand, its practical use to over-approximate the convex cone P𝑘(𝑆) by Ω𝑛,
requires knowledge of moments 𝝓 = (𝜙𝜶)𝜶∈N𝑑 of a measure 𝜙 with supp(𝜙) = 𝑆.
This is only possible for specific sets and measures. Examples of such special sets
include the unit box, unit Euclidean ball, unit sphere, canonical simplex, discrete
cube {−1, 1}𝑑 , and their image by an affine transformation.
LP-based certificate. We next introduce another certificate of positivity which does
not use SOS. Given 𝑔1, . . . , 𝑔𝑚 ∈ R[x], introduce the notation g𝜶 ∈ R[x], and
(1 − g𝜶) ∈ R[x], with:

x ↦→ g𝜶(x) := 𝑔1(x)𝛼1 · · · 𝑔𝑚(x)𝛼𝑚 , ∀x ∈ R𝑑 ,
x ↦→ (1 − g)𝜶(x) := (1 − 𝑔1(x))𝛼1 · · · (1 − 𝑔𝑚(x))𝛼𝑚 , ∀x ∈ R𝑑 ,

and the convex cone L𝑛(𝑔) ⊂ R[x] defined by:

(18) L𝑛(𝑔) := {
∑︁

(𝜶,𝜷)∈N2𝑚
𝑛

𝑐𝜶𝜷 g𝜶 (1 − g)𝜷 : c = (𝑐𝜶𝜷) ≥ 0 } .

Theorem 2.5 ([48, 49, 133]). Let 𝑆 ⊂ R𝑑 as in (13) be compact and such that
(possibly after scaling) 0 ≤ 𝑔 𝑗(x) ≤ 1 for all x ∈ 𝑆, 𝑗 = 1, . . . , 𝑚. Assume also
that [1, 𝑔1, . . . , 𝑔𝑚] generates R[x].
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(i) If a polynomial 𝑓 ∈ R[x] is (strictly) positive on 𝑆 then 𝑓 ∈ L𝑛(𝑔) for some
𝑛, that is:

(19) 𝑓 =
∑︁

(𝜶,𝜷)∈N2𝑚

𝑐𝜶𝜷 g𝜶 (1 − g)𝜷 ,

for some nonnegative vector c = (𝑐𝜶𝜷)(𝜶,𝜷)∈N2𝑚
𝑛

.
(ii) A sequence 𝝓 = (𝜙𝜸)𝜸∈N𝑑 ⊂ R has a representing Borel measure on 𝑆 if and

only if 𝜙
(
g𝜶 (1 − g)𝜷

)
≥ 0 for all 𝜶, 𝜷 ∈ N𝑚.

Remark 2.6. Interestingly, as for Theorems 2.2-2.3, Theorem 2.5 has also two
facets. The algebraic facet (i) is concerned with representation of polynomials
that are positive on 𝑆, while facet (ii) is concerned with the 𝑆-moment problem
in real analysis. Hence Theorem 2.5 is another illustration of the duality between
polynomials positive on 𝑆 and the 𝑆-moment problem.
2.4. Practical implementation of Positivstellensätze via SDP or LP. In addition
to being interesting in their own right, Theorem 2.2(i) and (2.5)(i) have another
distinguishing feature. Both have a practical implementation that allows to perform
interesting computations. Indeed:

- Testing membership in 𝑄𝑛(𝑔) is just solving a single SDP, whereas
- testing membership in L𝑛(𝑔) is just solving a single Linear Program (LP).

Testing membership in𝑄𝑛(𝑔). is crucial for a practical and efficient implementation
of the Moment-SOS hierarchy. Fortunately it can be done via solving an SDP.
Namely, let 𝑓 ∈ R[x]𝑘 and recall that 𝑑 𝑗 = ddeg(𝑔 𝑗)/2e, 𝑗 = 0, . . . , 𝑚. Then
testing whether 𝑓 ∈ 𝑄𝑛(𝑔) (with necessarily 2𝑛 ≥ 𝑘) reduces to solving:

𝑓𝜶 =

𝑚∑︁
𝑗=0

〈X 𝑗 ,B
𝑔 𝑗

𝜶 〉 , ∀𝜶 ∈ N𝑑
2𝑛 ; X 𝑗 ∈ S𝑛−𝑑 𝑗 ;(20)

X 𝑗 � 0 , 𝑗 = 0, . . . , 𝑚 .(21)

where the real symmetric matrices B𝑔 𝑗

𝜶 ∈ S𝑠(𝑛−𝑑 𝑗 ) are defined in (9) (here with 𝑛−𝑑 𝑗

instead of 𝑛). Each real symmetric matrix X 𝑗 is a Gram matrix of a polynomial
𝜎𝑗 , 𝑗 = 0, . . . , 𝑚. Next, (20) are linear equality constraints on the unknown entries
of X 𝑗 , while (21) is a positive semidefinite constraint on (X 𝑗)𝑚𝑗=0 to ensure that
every 𝜎𝑗 is an SOS. (In (20), 𝑓𝜶 = 0 whenever 𝑘 < |𝜶 | ≤ 2𝑛 because 𝑓 ∈ R[x]𝑘 .)
Observe that multiplying (20) by x𝜶 and summing up yield

𝑓 (x) =
∑︁

𝜶∈N𝑑
2𝑛

𝑓𝜶 x𝜶 =

𝑚∑︁
𝑗=0

〈X 𝑗 ,
∑︁

𝜶∈B𝑑
2𝑛

B𝑔 𝑗

𝜶 x𝜶〉

=

𝑚∑︁
𝑗=0

〈X 𝑗 , v𝑛−𝑑 𝑗
(x)v𝑛−𝑑 𝑗

(x)𝑇 〉 𝑔 𝑗(x) [see (9)]

=

𝑚∑︁
𝑗=0

v𝑛−𝑑 𝑗
(x)𝑇 X 𝑗v𝑛−𝑑 𝑗

(x)︸                     ︷︷                     ︸
𝜎 𝑗 (x)

𝑔 𝑗(x) .

Hence checking whether (20)-(21) has a solution reduces to solving an SDP.
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Membership in L𝑛(𝑔). Obviously testing whether some polynomial 𝑓 ∈ R[x]𝑘 is in
L𝑛(𝑔), reduces to solving a linear programming problem (LP). Indeed, with 𝑛 such
that 𝑠 := (max 𝑗 deg(𝑔 𝑗))𝑛 ≥ 𝑘 , it amounts to find a nonnegative vector c = (𝑐𝜶,𝜷),
(𝜶, 𝜷) ∈ N2𝑚

𝑛 , such that

𝑓𝜸 =

 ∑︁
(𝜶,𝜷)∈N2𝑚

𝑛

𝑐𝜶𝜷

𝑚∏
𝑗=1
𝑔 𝑗(x)𝛼𝑗 (1 − 𝑔 𝑗(x))𝛽 𝑗


𝜸

, ∀𝜸 ∈ N𝑑
𝑠 ,

and with 𝑓𝜸 = 0 whenever |𝜸 | > 𝑘 . Clearly, the above constraints are linear in the
unknown coefficients 𝑐𝜶𝜷 ≥ 0, and so checking existence of such a vector c ≥ 0
reduced to solving a linear programming problem (LP).

2.5. Notes and sources. Most of the material is from [60, 63]. A good reference
for exhaustive results on positive polynomials and moment problems is [76, 85,
111, 117, 98, 44]; see also [15] for related material on convex algebraic geometry.

Section 2.3. Theorem 2.4 is from [61, 62]. Interestingly, it is also valid for
some non-compact sets like e.g. the positive orthant R𝑑+ or even the whole space
R𝑑 . For the former the measure 𝜙 can be chosen to be the exponential measure
𝑑𝜙 = exp(−∑

𝑖 𝑥𝑖)𝑑x while for the latter one may choose the gaussian measure
𝑑𝜙 = exp(−‖x‖2/2)𝑑x. In both cases one obtains a monotone sequence (𝛀𝑛)𝑛∈N
of outer-approximations which converges to R𝑑+ and R𝑑 respectively.

Section 2.4. It is worth mentioning that other certificates of positivity (via convex
cones of positive polynomials) have been also defined to overcome (or at least
mitigate) the computational burden associated with testing membership in𝑄𝑛(𝑔) in
(20)-(21) (via semidefinite programing). For instance, membership in correspond-
ing alternative convex cones can be checked by linear programming for DSOS
and second-order cone programing for SDSOS [1]; see also [81]. An alternative
described in Section 3.8 is to consider a sparse-version of Theorem 2.2 when P
exhibits some sparsity pattern. As we will see, it yields a sparsity-adapted version
of the Moment-SOS hierarchy which can handle non-convex POPs with more than
a thousand variables; see also [78].

3. The Moment-SOS Hierarchy in Optimization

Consider the polynomial optimization problem (POP) P in (1), and assume that
its associated feasible set 𝑆 ⊂ R𝑑 is compact.

3.1. The Moment-SOS hierarchy. The underlying principle behind the Moment-
SOS Hierarchy is quite simple and proceeds in two steps.
When viewing P in its equivalent formulation (3) (real algebraic glasses).
step 1:: One replaces the hard constraint “ 𝑓 − _ ≥ 0 on 𝑆" with the equivalent

constraint 𝑓 ∈ 𝑄(𝑔) (with𝑄(𝑔) being the quadratic module defined in (11)).
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Indeed

𝑓 ∗ = sup
_

{ _ : 𝑓 − _ ≥ 0 on 𝑆} = sup
_

{_ : 𝑓 − _ > 0 on 𝑆}

= sup
_

{_ : 𝑓 − _ ∈ 𝑄(𝑔)} ,(22)

where the second equality follows from Theorem 2.2(i) if the quadratic
module𝑄(𝑔) is Archimedean. However, (22) is still an infinite dimensional
problem.

Step 2:: Next, with 𝑛0 := max[ddeg( 𝑓 )/2e ,max 𝑗 ddeg(𝑔 𝑗)/2e], and 𝑛 ≥ 𝑛0, one
replaces (22) with the more restrictive constraint

𝜏∗𝑛 = sup
_

{ _ : 𝑓 − _ ∈ 𝑄𝑛(𝑔)} (𝑛 ≥ 𝑛0)(23)

= sup
_,𝜎 𝑗

{ _ : 𝑓 − _ =

𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 ; 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗

, ∀ 𝑗 } ,(24)

so that 𝑓 ∗ ≥ 𝜏∗𝑛 for all 𝑛 ≥ 𝑛0. A crucial feature of (24) is to be a finite-
dimensional convex optimization problem, and more precisely a semidefi-
nite program. Therefore (24) can be solved (up to arbitrary fixed precision)
in time polynomial in its input size.

So in solving (23) for increasing values of 𝑘 ∈ N, one obtains a monotone non
decreasing sequence (𝜏∗𝑛)𝑛≥𝑛0 of lower bounds on the global minimum of 𝑓 ∗ of P.
When viewing P in its equivalent formulation (4) (real analysis glasses). First
observe that since 𝑓 ∈ R[x],∫

𝑆

𝑓 𝑑𝜙 =
∑︁
𝜶∈N𝑑

𝑓𝜶

∫
𝑆

x𝜶 𝑑𝜙 =
∑︁
𝜶∈N𝑑

𝑓𝜶 𝜙𝜶 .

Therefore

𝑓 ∗ = inf
𝜙∈ℳ(𝑆)+

{
∫

𝑓 𝑑𝜙 : 𝜙(𝑆) = 1 }

=
inf

𝝓=(𝜙𝜶)𝜶∈N𝑑
{ 〈f, 𝝓〉 : 𝜙0 = 1 ;

𝝓 has a representing measure supported on 𝑆} .
Again one proceeds in two steps:
Step 1:: If𝑄(𝑔) is Archimedean then by invoking Theorem 2.2(ii), one may replace

the constraint “𝝓 has a representing measure supported on 𝑆" with the
equivalent constraint “M𝑛(𝑔 𝑗 · 𝝓) � 0 for all 𝑗 = 0, . . . , 𝑚, and all 𝑛 ∈ N".
However the optimization problem

(25) 𝑓 ∗ = inf
𝝓=(𝜙𝜶)

{ 〈f, 𝝓〉 : 𝜙0 = 1 ; M𝑛(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 , 𝑛 ∈ N }

is still infinite-dimensional.
Step 2:: Next, one then replaces (25) with its truncated versions

(26) 𝜏𝑛 = inf
𝝓=(𝜙𝜶)

{ 〈f, 𝝓〉 : 𝜙0 = 1 ; M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 } ,
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where 𝑛 ≥ 𝑛0 with 𝑛0 := max[ddeg( 𝑓 )/2e ,max 𝑗 ddeg(𝑔 𝑗)/2e]. For each
fixed 𝑛, (26) is a finite-dimensional semidefinite program.

Clearly, 𝜏𝑛 ≤ 𝜏𝑛+1 ≤ 𝑓 ∗ for all 𝑛 ≥ 𝑛0, and therefore in solving (26) for increasing
values of 𝑛 ∈ N, one obtains a monotone non decreasing sequence (𝜏𝑛)𝑛≥𝑛0 of lower
bounds on the global minimum of 𝑓 ∗ of P.

In fact the semidefinite program (24) is the dual of the semidefinite program
(26), and by weak duality in convex optimization,

(27) 𝜏∗𝑛 ≤ 𝜏𝑛 ≤ 𝑓 ∗ , ∀𝑛 ≥ 𝑛0 .

As it is clear from its formulation, (26) is a semidefinite relaxation of P as its
constraints are only necessary conditions for 𝝓 to have a representing measure 𝜙 on
𝑆. We call (26) a Moment-relaxation of P.

On the other hand, its dual (24) is a reinforcement (or strengthening) of P (viewed
as the maximization problem (3)) as one has replaced “ 𝑓 − _ ≥ 0 on 𝑆" with the
sufficient condition “ 𝑓 − _ ∈ 𝑄𝑛(𝑔)". We call (24) an SOS-reinforcement (or SOS-
strengthening) of P, whence the name “Moment-SOS hierarchy" for (26)-(24). In
both cases one obtains a lower bound 𝜏𝑛 (resp. 𝜏∗𝑛) on 𝑓 ∗.

When 𝜏𝑛 = 𝑓 ∗ (resp. 𝜏∗𝑛 = 𝑓 ∗) for some 𝑛, one says that the degree-𝑛 Moment-
relaxation (26) (resp. the degree-𝑛 SOS-reinforcement (24)) of P is exact. In
addition, if 𝜏𝑛 = 𝑓 ∗ and an optimal solution 𝝓∗ of (26) satisfies rank(M𝑛(𝝓∗)) = 1
then 𝝓∗ is nothing less than the vector of moments up to degree 2𝑛 of the Dirac
measure 𝛿{x∗ } at a global minimizer x∗ ∈ 𝑆. In particular the subvector 𝜙∗(𝑥𝑖)𝑖=1,...,𝑑
of first-order moments is just the vector x∗.
In summary, the ultimate goal of the moment-relaxation (26) is to obtain at some

step 𝑛, an optimal solution 𝝓∗ ∈ R𝑠(2𝑛) which is the vector of moments (up to
degree 2𝑛) of the Dirac measure 𝛿{x∗ } at a minimizer x∗ ∈ 𝑆.

When P has a unique global minimizer x∗ ∈ 𝑆, this happens generically; in case
of finely many global minimizers it will happen generically that at some step 𝑛, 𝝓∗

is be the vector of moments of a convex combination of Dirac measures at such
global minimizers; see Theorem 3.3 and Lemma 3.4 below.

Remark 3.1. (a) As just explained above, it is more appropriate to call (24) an
SOS-reinforcement of P instead of an SOS-relaxation of P as is sometimes written
in the literature. Of course, it is also the dual of the Moment-relaxation (26) of P.
(Relaxing in the primal is equivalent to reinforcing in the dual.)

(b) We call (3) (resp. (26)) a primal formulation (resp. a primal semidefinite
relaxation) of P because in solving P one is mainly interested in an optimal solution
x∗ ∈ 𝑆 (a global minimizer of P), and so the primary variable of interest is
x ∈ 𝑆 ⊂ R𝑑 . If x∗ ∈ 𝑆 is an optimal solution of P then 𝝓∗ = ((x∗)𝜶)𝜶∈N𝑑 is an
optimal solution of (25).

Then (23) is the dual of the semidefinite relaxation (26), and one will see that
indeed when 𝜏∗𝑛 = 𝑓 ∗ for some 𝑛 and (23) has an optimal solution 𝜎∗

𝑗
∈ Σ[x]𝑘−𝑑 𝑗

,
𝑗 = 0, . . . , 𝑚, then 𝜎∗

𝑗
(x∗) = _∗

𝑗
≥ 0 for all 𝑗 = 1, . . . , 𝑚, where the _∗

𝑗
are optimal

KKT-Lagrange multipliers associated with a global minimizer x∗ ∈ 𝑆.



THE MOMENT-SOS HIERARCHY: APPLICATIONS AND RELATED TOPICS 13

Computational considerations. The Moment-relaxation (26) is a semidefinite pro-
gram with

•
(
𝑑+2𝑛
𝑑

)
variables 𝜙𝜶.

• 𝑚 + 1 moment-localizing matrices of size
(
𝑑+𝑛−𝑑 𝑗

𝑑

)
, 𝑗 = 0, . . . , 𝑚,

while the SOS-strengthening (24) is a semidefinite program with
• 1 +∑𝑚

𝑗=0
(
𝑑+2𝑛−2𝑑 𝑗

𝑑

)
variables (_, (𝜎0)𝜶, · · · , (𝜎𝑚)𝜶)

• 𝑚 + 1 semidefinite constraints for matrices of size
(
𝑑+𝑛−𝑑 𝑗

𝑑

)
, 𝑗 = 0, . . . , 𝑚.

•
(
𝑑+2𝑛
𝑑

)
equality constraints.

For fixed dimension 𝑑, the size of matrices and the number of variables in the
primal and dual semidefinite programs are polynomial in 𝑑. Therefore in principle
they can be solved efficiently (up to arbitrary fixed precision) in time polynomial in
their input size4. However, in view of their non-modest size and the current status
of semidefinite solvers, such semidefinite programs can be solved only for POPs
of modest dimension 𝑑 and small degree-𝑛 relaxation. So in its canonical form
(26)-(24), the Moment-SOS hierarchy is limited to POPs of modest dimension.
However and fortunately:

• Practice reveals that finite convergence often occurs at low degree 𝑛.
• As is often the case for many POP of large dimension 𝑑, some sparsity

pattern and/or symmetries are present. It turns out that they can be exploited
to define appropriate Moment-relaxations (resp. SOS-strengthenings) of P
whose size is still compatible with current SDP-solvers; see Section 3.8 for
more details.

• Another possibility is to neglect the costly interior-point methods of SDP
solvers and solve the semidefinite programs (24) and (26) by first-order
methods; see e.g. [144], [80].

More details are provided in Section 3.8.

3.2. Convergence of the Moment-SOS Hierarchy. Observe that if 𝑆 ⊂ R𝑑 is
compact then 𝑆 is contained in the Euclidean ball of radius 𝑀 for some 𝑀 > 0, and
in many applications𝑀 is known. Therefore the quadratic constraint𝑀2−‖x‖2 ≥ 0
is redundant when x ∈ 𝑆.

For a practical implementation of the Moment-SOS hierarchy, it is always rec-
ommended to indeed add the redundant constraint 𝑔1(x) := 𝑀2 − ‖x‖2 ≥ 0 in
the definition (13) of 𝑆. Moreover, to avoid possible numerical ill-conditioning
if 𝑀 is large, it is even recommended to scale problem P in such a manner that
𝑆 ⊂ B1 := {x : ‖x‖ ≤ 1} so that 𝑔1(x) = 1 − ‖x‖2. Hence:

Assumption 3.2. 𝑆 ⊂ R𝑑 defined in (13) is compact with x ↦→ 𝑔1(x) = 1 − ‖x‖2

(so that 𝑆 ⊂ B1).

The reason to do that is because under Assumption 3.2, the quadratic module
𝑄(𝑔) in (11) is guaranteed to be Archimedean, a crucial property for convergence

4More precisions can be found in e.g. [102]
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of the Moment-SOS hierarchy. (In general proving that 𝑄(𝑔) is Archimedean may
not be trivial.)

Theorem 3.3. With 𝑆 ⊂ R𝑑 as in (13), let Assumption 3.2 hold and let 𝜏𝑛 (resp.
𝜏∗𝑛) be as in (26) (resp. (24)) for all 𝑛 ≥ 𝑛0. Then:

(a) 𝜏∗𝑛 = 𝜏𝑛 for all 𝑛 ≥ 𝑛0, and for every 𝑛 ≥ 𝑛0, the semidefinite relaxation (26)
has an optimal solution 𝝓𝑛 = (𝜙𝑛𝜶)𝜶∈N𝑑

2𝑛
. Moreover, both sequences (𝜏∗𝑛)𝑛≥𝑛0 and

(𝜏𝑛)𝑛≥𝑛0 are monotone non decreasing, and
(28) lim

𝑛→∞
𝜏∗𝑛 = lim

𝑛→∞
𝜏𝑛 = 𝑓 ∗ .

(b) With 𝝓𝑛 an optimal solution of (26), let 𝑣 := max 𝑗=1,...,𝑚ddeg(𝑔 𝑗)/2e. If
(29) rank M𝑡 (𝝓𝑛) = rank M𝑡−𝑣 (𝝓𝑛) (=: 𝑠) ,
for some 𝑣 ≤ 𝑡 ≤ 𝑛, then 𝜏∗𝑛 = 𝜏𝑛 = 𝑓 ∗ and from the vector 𝝓𝑛 one may extract
x∗(ℓ) ∈ 𝑆, ℓ = 1, . . . , 𝑠, where each x∗(ℓ) ∈ 𝑆 is a global minimizer of P, that is,
𝑓 (x∗(ℓ)) = 𝑓 ∗, ℓ = 1, . . . , 𝑠.

(c) If int(𝑆) ≠ ∅ then for every 𝑛 ≥ 𝑛0, the SOS-strengthening (24) of P has an
optimal solution (𝜏∗𝑛, 𝜎∗

0 , . . . , 𝜎
∗
𝑚).

Convergence of minimizers. Theorem 3.3 states that the sequence (𝜏𝑛)𝑛≥𝑛0 of op-
timal values converges to the global minimum 𝑓 ∗ of P as the degree 𝑛 increases
and moreover extraction of minimizers is also obtained if the degree-𝑛 moment-
relaxation is exact (𝜏𝑛 = 𝑓 ∗) and the flat extension condition (29) holds. But what
about the sequence of minimizers (𝝓𝑛)𝑛≥𝑛0 in case when the convergence is only
asymptotic (as opposed to finite)?

Lemma 3.4. Let the sequence (𝝓𝑛)𝑛≥𝑛0 with 𝝓𝑛 = (𝜙𝑛𝜶)𝜶∈N𝑑
2𝑛

, be as in Theorem
3.3(a). If x∗ ∈ 𝑆 is the unique global minimizer of P then
(30) lim

𝑛→∞
𝜙𝑛𝜶 (= lim

𝑛→∞
𝜙𝑛(x𝜶)) = (x∗)𝜶 , ∀𝜶 ∈ N𝑑 .

In particular lim𝑛→∞ 𝜙𝑛(𝑥𝑖) = 𝑥∗
𝑖

for every 𝑖 = 1, . . . , 𝑑.

So in case when P has a unique global minimizer and convergence of the Moment-
relaxation (26) is only asymptotic (as opposed to finite), Lemma 3.4 states that
the vector of degree-1 moments (𝜙𝑛(𝑥𝑖))𝑖=1,...,𝑑 converges to the unique global
minimizer x∗ ∈ 𝑆 as 𝑛 increases.

Notice that (30) is also interesting even if finite convergence takes place at some 𝑛
because one may already obtain a good approximation of x∗ ∈ 𝑆 from the degree-1
moments of 𝝓𝑡 for 𝑡 < 𝑛.
Equality constraints. Of course in (13) one may tolerate equality constraints 𝑔 𝑗(x) ≥
0 and 𝑔 𝑗+1(x) ≥ 0 with 𝑔 𝑗+1 = −𝑔 𝑗 , 𝑗 ∈ 𝐽, for some subset 𝐽 ⊂ {1, . . . , 𝑚}, in
which case we simply write 𝑔 𝑗(x) = 0, 𝑗 ∈ 𝐽 (and remove the constraint 𝑔 𝑗+1 ≥ 0).
The resulting modifications are as follows:

• In (24) the unknown SOS weight 𝜎𝑗 ∈ Σ[x]𝑘−𝑑 𝑗
is now a polynomial in

R[x]2(𝑛−𝑑 𝑗 ) and not an SOS anymore.
• In (26) the psd constraint M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓) � 0 now reads as the equality
constraints M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓) = 0 on the variables (𝜙𝜶).



THE MOMENT-SOS HIERARCHY: APPLICATIONS AND RELATED TOPICS 15

• Theorem 3.3(a)-(b) remains valid, whereas Theorem 3.3(c) needs some
adjustment since int(𝑆) = ∅. For instance, if the ideal 〈𝑔 𝑗〉 𝑗∈𝐽 ⊂ R[x]
generated by the polynomials 𝑔 𝑗’s associated with the equality constraints,
is real radical, then for 𝑛 sufficiently large, the SOS-strengthening (24) of
P has an optimal solution (𝜏∗𝑛, 𝜎∗

0 , . . . , 𝜎
∗
𝑚).

Pseudo-boolean case. An important case is when 𝑆 ⊂ {−1, 1}𝑑 (or equivalently,
{0, 1}𝑑 after a simple linear transformation), that is, 𝐽 = {1, . . . , 𝑑} and
(31) 𝑆 = { x ∈ R𝑑 : 𝑥2

𝑗 − 1 = 0 , 𝑗 ∈ 𝐽 ; 𝑔 𝑗(x) ≥ 0 , 𝑗 ∉ 𝐽 } ,
of which the celebrated Maxcut problem is a particular case (no inequality con-
straint). Then the ideal 〈𝑥2

𝑗
− 1〉 𝑗∈𝐽 = 〈𝑥2

1 − 1, . . . , 𝑥2
𝑑
− 1〉 is indeed real radical

and Theorem 3.3 applies. Of course in this case it follows that 𝜏𝑛 = 𝑓 ∗ whenever
𝑛 ≥ 𝑑 +max 𝑗 𝑑 𝑗 , and therefore the semidefinite relaxation (26) is not interesting as
it contains 2𝑑 variables 𝜙𝜶. But the interest of Theorem 3.3 is that (29) may take
place for 𝑛 � 𝑑. For instance in most random instances of Maxcut problems with
𝑑 = 11, one observes 𝑓 ∗ = 𝜏2 (and even 𝑓 ∗ = 𝜏1 in several cases).

3.3. A global optimality-condition for polynomial optimization. Theorem 3.3(a)
guarantees that asymptotically as 𝑛 increases, one recovers the global optimum 𝑓 ∗,
and moreover by Theorem 3.3(b), finite convergence takes place whenever the
so-called flatness condition (29) holds at some degree 𝑛. In the latter case we
can say more. Indeed and remarkably, one is able to provide a global optimality-
condition for non-convex POPs, of the same flavor as the celebrated KKT-optimality
conditions for convex optimization, and under the same second-order sufficiency
condition.

One first recalls the well-known standard first-order necessary and second-order
sufficient KKT-optimality conditions in non-linear programming (NLP).
First-order necessary KKT-optimality conditions. With 𝑆 as in (13), let x∗ ∈ 𝑆

be a local minimizer of P, and let 𝐼(x∗) := { 𝑗 ∈ {1, . . . , 𝑚} : 𝑔 𝑗(x∗) = 0 } be
the set of active constraints at x ∈ 𝑆. With S𝑑−1 := {x ∈ R𝑑 : ‖x‖ = 1}, let
(x∗)⊥ := { u ∈ S𝑑−1 : 〈u,∇𝑔 𝑗(x∗)〉 = 0, ∀ 𝑗 ∈ 𝐼(x∗) }.

If the gradients∇𝑔 𝑗(x∗), 𝑗 ∈ 𝐼(x∗), are linearly independent, there exists 𝝀∗ ∈ R𝑚+
such that

(32) ∇ 𝑓 (x∗) −
𝑚∑︁
𝑗=1
_∗𝑗 ∇𝑔 𝑗(x∗) = 0 ; _∗𝑗 𝑔 𝑗(x

∗) = 0 , 𝑗 = 1, . . . , 𝑚 .

Moreover, strict complementarity holds if _∗
𝑗
> 0 whenever 𝑔 𝑗(x∗) = 0. Next,

observe that if in addition 𝑓 and −𝑔 𝑗 are convex, then the Lagrangian

x ↦→ 𝐿(x) := 𝑓 (x) − 𝑓 ∗ −
𝑚∑︁
𝑗=1
_∗𝑗 𝑔 𝑗(x) , ∀x ∈ R𝑑 ,

is convex, nonnegative, and satisfies ∇𝐿(x∗) = 0. Hence x∗ is also a global
minimizer of 𝐿 on the whole space R𝑑 , and 𝐿(x) ≥ 𝐿(x∗) = 0 for all x ∈ R𝑑 . This
is a very strong property of the convex case.
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Second-order sufficient KKT-optimality condition holds at a local minimizer x∗ ∈ 𝑆
of P. if (i) (32) and strict complementarity hold at (x∗, 𝝀∗), and (ii) in addition,

(33) 〈u ,∇2 𝑓 (x∗) −
𝑚∑︁
𝑗=1
_∗𝑗 ∇2𝑔 𝑗(x∗) 〉 > 0 , ∀u ∈ (x∗)⊥ .

If (32), strict complementarity and (33) hold at a global minimizer x∗ ∈ 𝑆 of P,
then one obtains a remarkable certificate of global optimality.
Theorem 3.5 (Certificate of global optimality). With 𝑆 as in (13), let x∗ ∈ 𝑆 be a
global minimizer of P, and assume that:

(i) The gradients ∇𝑔 𝑗(x∗), 𝑗 ∈ 𝐼(x∗), are linearly independent (so that (32) holds
for some 𝝀∗ ∈ R𝑚+ ) and strict complementarity holds at (x∗, 𝝀∗).

(ii) Second-order sufficient condition (33) holds at (x∗, 𝝀∗).
Then there exists 𝑛 ∈ N such that the SOS-strengthening (24) is exact, i.e.:

𝑓 (x) − 𝑓 ∗ =

𝑚∑︁
𝑗=0
𝜎∗
𝑗 (x) 𝑔 𝑗(x) , ∀x ∈ R𝑑 ;(34)

𝜎∗
𝑗 (x

∗) 𝑔 𝑗(x∗) = 0 , 𝑗 = 0, . . . , 𝑚 ,(35)

for some SOS polynomials 𝜎∗
𝑗
∈ Σ[x]𝑛−𝑑 𝑗

. Moreover, let �̂� = (_̂ 𝑗) ∈ R𝑚+ with
_̂ 𝑗 := 𝜎∗

𝑗
(x∗), 𝑗 = 1, . . . , 𝑚. Then the couple (x∗, �̂�) ∈ 𝑆 × R𝑚+ satisfies (32) and

(33).
As an immediate consequence of Theorem 3.5, finite convergence of the Moment-

SOS hierarchy takes place at degree-𝑛, that is 𝜏∗𝑛 = 𝜏𝑛 = 𝑓 ∗.
Remark 3.6. We claim that Theorem 3.5 which provides an algebraic certificate of
global optimality, is the perfect analogue for non-convex polynomial optimization
of the KKT-optimality conditions for convex optimization. Indeed if 𝑓 and −𝑔 𝑗 are
all convex, then any local optimizer x∗ ∈ 𝑆 is a global minimizer and then (32)
implies

x ↦→ 𝐿(x) = 𝑓 (x) − 𝑓 ∗ −
𝑚∑︁
𝑗=1
_∗𝑗 𝑔 𝑗(x) ≥ 0 , ∀x ∈ R𝑑 ;(36)

𝐿(x∗) = 0 .(37)
But this of course is valid because 𝑓 and −𝑔 𝑗 are convex, a very specific case. In
general a global minimizer x∗ ∈ 𝑆 is not a global minimizer of the Lagrangian 𝐿
on R𝑑 .

On the other hand Theorem 3.5 states that if x∗ ∈ 𝑆 is a global minimizer then
under the standard second-order sufficient KKT-optimality condition in NLP, x∗ is
also a global minimizer of the extended Lagrangian �̂� := 𝑓 − 𝑓 ∗ −∑𝑚

𝑗=1 𝜎
∗
𝑗
𝑔 𝑗 over

the whole space R𝑑 . Indeed,

�̂�(x) = 𝑓 (x) − 𝑓 ∗ −
𝑚∑︁
𝑗=1
𝜎∗
𝑗 (x) 𝑔 𝑗(x) = 𝜎∗

0 (x) (≥ 0) , ∀x ∈ R𝑑 ;(38)

�̂�(x∗) = 0 .(39)
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So in (38) the extended Lagrangian �̂� looks like the standard Lagrangian 𝐿 in (36)
except that the scalar weight _∗

𝑗
is now replaced with the SOS polynomial weight

𝜎∗
𝑗
. Moreover, the scalar _̂ 𝑗 = 𝜎∗

𝑗
(x∗) is a standard Lagrange-KKT multiplier

associated with the constraint 𝑔 𝑗 ≥ 0 (like _∗
𝑗

in (36)).
Interestingly, if the constraint 𝑔 𝑗 ≥ 0 is not active at x∗ ∈ 𝑆 (i.e., 𝑔 𝑗(x∗) > 0),

then _̂ 𝑗 = 𝜎∗
𝑗
(x∗) = 0 but in general the SOS polynomial 𝜎∗

𝑗
is not the trivial

polynomial equal to zero. In fact, suppose that the constraint 𝑔 𝑗 ≥ 0 is important
even if it is not active at a global minimizer x∗, meaning that if one removes that
constraint in the definition (13) of 𝑆, then the new global minimum of the modified
problem P is strictly smaller than 𝑓 ∗. Then quite remarkably, 𝜎∗

𝑗
≠ 0. In other

words, a non-trivial SOS multiplier 𝜎∗
𝑗

in Putinar’s certificate of global optimality
(34) identifies 𝑔 𝑗 ≥ 0 as an important constraint, even if it is not active at global
minimizers.

3.4. Genericity. In view of the remarkable form of Theorem 3.5, one may wonder
how “generic" are the results of Theorem 3.5. It turns out that Theorem 3.5 holds
generically in a rigorous sense. More precisely:

Let 𝑚 ∈ N and 𝑟 𝑗 ∈ N, 𝑗 = 0, . . . , 𝑚, be fixed, and consider the family of POPs
whose (possibly empty) feasible set 𝑆 ⊂ R𝑑 is as in (13) for some polynomials
𝑔 𝑗 ∈ R[x]𝑟 𝑗 , and its criterion is some polynomial 𝑓 ∈ R[x]𝑟0 .

Recall that 𝑠(𝑡) :=
(
𝑑+𝑡
𝑡

)
. So a vector 𝜽 ∈ R𝑎 with 𝑎 :=

∑𝑚
𝑗=0 𝑠(𝑟 𝑗) completely

specifies an instance P(𝜽) of such a problem P. The next result is due to [96].

Theorem 3.7. There exists an integer 𝐿 and finitely many real polynomials 𝜑1, . . . , 𝜑𝐿 ∈
R[𝜽] in the coefficients 𝜽 of the polynomials 𝑓 , 𝑔1, . . . , 𝑔𝑚, such that if 𝜑ℓ(𝜽) ≠ 0
for all ℓ = 1, . . . , 𝐿, then (32), strict complementarity and second-order sufficient
KKT-optimality condition (33) hold at any global minimizer of problem P(𝜽).

As a result, there exists 𝑛 ∈ N such that (34) and (35) hold at every global
minimizer x∗ ∈ 𝑆 of P(𝜽), i.e., finite convergence of the Moment-SOS hierarchy is
generic.

3.5. The convex case. In this section we consider the particular case when P is a
convex program5, that is when the polynomials 𝑓 and −𝑔 𝑗 are all convex, and so
the set 𝑆 in (13) is convex. This class of problems is very important as they are
considered “easy" or at least “easier" than non-convex problems. Indeed as any
local optimum of P is a global optimum, then P can be solved by several powerful
local optimization algorithms.

So as the Moment-SOS hierarchy is able to solve difficult non-convex problems
P, a natural question is : How does the Moment-SOS hierarchy behaves when P is
a convex program?

The reason why such a question is relevant is because if the Moment-SOS
hierarchy would not be efficient in solving a convex problem then one might raise
reasonable doubts on its efficiency in solving even more difficult problems!

5The set 𝑆 in (13) may be convex even if the −𝑔 𝑗 ’s are not convex (e.g. they can be quasi-convex).
Convex programming usually refers to the case where 𝑓 and the −𝑔 𝑗 ’ are all convex.
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SOS-convex programs. Let us first consider the class of SOS-convex polynomials.

Definition 3.8. A polynomial 𝑓 ∈ R[x] is SOS-convex if its Hessian ∇2 𝑓 is an
SOS-matrix polynomial, that is, ∇2 𝑓 = 𝐿 𝐿𝑇 for some real matrix-polynomial
𝐿 ∈ R[x]𝑑×𝑠 (for some integer 𝑠). In particular, every SOS-convex polynomial is
convex and all quadratic convex polynomials are SOS-convex.

One has the following characterizations of SOS-convexity.

Theorem 3.9. Let 𝑓 ∈ R[x]. The following four propositions are equivalent:
(i) 𝑓 is SOS-convex.
(ii) ∇2 𝑓 is SOS.
(iii) (x, y) ↦→ 𝑓 (x)/2 + 𝑓 (y)/2 − 𝑓 ((x + y)/2) is SOS.
(iv) (x, y) ↦→ 𝑓 (x) − 𝑓 (y) − 〈∇ 𝑓 (y), (x − y〉 is SOS.

Notice that 𝑓 and −𝑔 𝑗 being convex, then necessarily their degree is either one
or even. Importantly, SOS-convexity can be checked numerically by solving a
semidefinite program (e.g. following Theorem 3.9(iii) and Section 2.2). The next
result states that the Moment-SOS hierarchy somehow “recognizes" easy SOS-
convex problems.

Theorem 3.10. Let 𝑆 be as in (13) and let Slater’s condition hold (i.e., the exists
x0 ∈ 𝑆 such that 𝑔 𝑗(x0) > 0 for all 𝑗). If 𝑓 and −𝑔 𝑗 are all SOS-convex then with
𝑛′ := max[deg( 𝑓 )/2,max 𝑗 [deg(𝑔 𝑗)/2]]

(40) 𝑓 − 𝑓 ∗ = 𝜎∗
0 +

𝑚∑︁
𝑗=1
_∗𝑗 𝑔 𝑗

for some scalars _∗
𝑗
≥ 0 and some 𝜎∗

0 ∈ Σ[x]𝑛′. In addition,

(41) 𝑓 ∗ = min
𝝓

{𝜙( 𝑓 ) : 𝜙(1) = 1 ; M𝑛′(𝝓) � 0 ; 𝜙(𝑔 𝑗) ≥ 0 , 𝑗 = 1, . . . , 𝑚 } .

Moreover, 𝜙∗(𝑥𝑖) = 𝑥∗𝑖 , for all 𝑖 = 1, . . . , 𝑑, where 𝝓∗ is an optimal solution of (41),
and x∗ ∈ 𝑆 is a local (hence global) minimizer of P.

It is also rather straightforward to check that in (40), 𝝀∗ = (_∗
𝑗
)1≤ 𝑗≤𝑚 are

Lagrange-KKT multipliers at an optimal solution x∗ ∈ 𝑆 of P.
Next, observe that the semidefinite Moment-relaxation (41) is a particular case

of (26) where the constraints M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 are replaced with the simpler

M0(𝑔 𝑗 · 𝝓) � 0 (i.e. the scalar linear inequality constraint 𝜙(𝑔 𝑗) ≥ 0).
However, if one does not know that 𝑓 and −𝑔 𝑗 are SOS-convex and one solves

(26) as for a general POP, then one still obtains 𝑓 ∗ = 𝜏𝑛0 , that is, the first Moment-
relaxation of the hierarchy is exact. In other words, the Moment-SOS hierarchy has
recognized that P was a convex (easy) problem.

The reason why the Moment-relaxation (26) can be replaced with the simpler
(41) is because linear functionals 𝜙 ∈ R[x]∗2𝑛 such that M𝑛(𝝓) � 0 have a nice
property when acting on SOS-convex polynomials.
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Lemma 3.11 (Jensen’s inequality for linear functionals). Let 𝜙 ∈ R[x]∗2𝑛 be such
that M𝑛(𝝓) � 0, 𝜙(1) = 1, and let x∗ := (𝜙(𝑥1), . . . , 𝜙(𝑥𝑑)) ∈ R𝑑 . Then

(42) 𝜙( 𝑓 ) ≥ 𝑓 (x∗) , for every SOS-convex polynomial 𝑓 ∈ R[x]2𝑛 .

So let 𝝓∗ be an optimal solution of

𝜏′𝑛 = min
𝝓

{𝜙( 𝑓 ) : 𝜙(1) = 1 ; M𝑛′(𝝓) � 0 ; 𝜙(𝑔 𝑗) ≥ 0 , 𝑗 = 1, . . . , 𝑚 } .

Of course 𝜏′𝑛 ≤ 𝑓 ∗, as 𝜏′𝑛 is the optimal value of a relaxation of P. As 𝑓 and −𝑔 𝑗
are SOS-convex, and with x∗ := (𝜙∗(𝑥1), . . . , 𝜙∗(𝑥𝑑)) ∈ R𝑑 ,

𝜏′𝑛 = 𝜙∗( 𝑓 ) ≥ 𝑓 (x∗) ; 0 ≤ 𝜙∗(𝑔 𝑗) ≤ 𝑔 𝑗(x∗) , 𝑗 = 1, . . . , 𝑚 ,

which implies x∗ ∈ 𝑆 and 𝑓 (x∗) ≤ 𝜏′𝑛 ≤ 𝑓 ∗, so that x∗ is a global minimizer of P.
General convex POPs. In the more general case of convex POP one also obtains
finite convergence under some strict convexity assumption at every global minimizer
x∗ ∈ 𝑆.

Theorem 3.12. With 𝑆 ⊂ R𝑑 as in (13), assume that𝑄(𝑔) is Archimedean, Slater’s
condition holds, and 𝑓 and −𝑔 𝑗 are convex, 𝑗 = 1, . . . , 𝑚. If ∇2 𝑓 (x∗) � 0 at
every global minimizer x∗ ∈ 𝑆 (assumed to be finitely many) then finite convergence
takes place, that is, the Moment-relaxation (26) of P is exact at some degree 𝑛.
Moreover, the SOS-strengthening (24) of P is also exact, and both (26) and (24)
have an optimal solution 𝝓𝑛 and (_∗, 𝜎∗

0 , . . . , 𝜎
∗
𝑚), respectively.

So again without specifying that P is convex, the Moment-SOS hierarchy will
converge in finitely many steps. However in contrast to Theorem 3.9, in Theorem
3.12 one does not specify at which step 𝑛 finite convergence takes place.

3.6. General versus ad-hoc. One would like to emphasize that Theorem 3.5 is
a quite general global-optimality condition that holds generically for POPs, hence
with non-convex criterion and non-convex (and possibly disconnected) feasible
sets 𝑆, and even with mixed-integer variables. The only requirement is to be able
to translate all constraints of the problem into polynomial inequality and equality
constraints.

Usually generality is at the price of reduced efficiency and usual algorithmic
practice of optimization suggests to use ad-hoc algorithms, i.e., algorithms tailored
to the type of problem one has to solve. Indeed for instance if 𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ 𝐼, for
some 𝐼, it is not a good idea to model this constraint with the equality constraints
𝑥2
𝑖
− 𝑥𝑖 = 0, 𝑖 ∈ 𝐼, and then use standard firs-order or second-order methods to

obtain a (only local) optimum. One typically uses branch & bound (or branch &
cut) methods.

Remarkably, the Moment-SOS hierarchy does not suffer from its generality in
just describing any POP by a set of polynomial inequality and equality constraints.
(Of course some descriptions may be more interesting than others.) Indeed for in-
stance, for SOS-convex programs and in particular convex quadratically constrained
quadratic programs (convex QCQP), Theorem 3.9 ensures that finite convergence
takes places at first step of the hierarchy, without the need of specifying that the
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POP is SOS-convex. Similarly, if 𝑓 and −𝑔 𝑗 are all convex, and ∇2 𝑓 (x) � 0 at all
global minimizers x ∈ 𝑆, then finite convergence also takes place.

Of course again, we do not claim that the Moment-SOS hierarchy is the most effi-
cient algorithm to solve such convex problems, and indeed other efficient algorithms
exist. But this remark is to simply emphasize that somehow the Moment-SOS hi-
erarchy recognizes easy problems (as one usually considers convex programs to
be easier to solve) as finite convergence takes place quickly. On the other hand,
the Moment-SOS hierarchy has also been recognized by the Theoretical Computer
Science research community as a meta-algorithm which provides the best lower
bounds for many combinatorial optimization problems, and in particular problems
with {0, 1} (or {−1, 1}) variables like Maxcut and its variants, which are notori-
ously difficult NP-hard problems. It is now considered as an important tool for
proving/disproving the celebrated Khot’s Unique Games conjecture.

3.7. Rates of convergence. In this section one provides rates of convergence for the
Moment-SOS hierarchy of lower bounds on general compact basic semi-algebraic
sets. Those rates have been refined for specific sets like the unit sphere S𝑑−1,
the unit ball B𝑑 = {x ∈ R𝑑 : ‖x‖2 ≤ 1}, the box [−1, 1]𝑑 , and the simplex
Δ𝑑 = {x ∈ R𝑑+ : 1 − e𝑇 x ≥ 0}.

Table 3.7 below is taken from [125]. The first column is related to the set 𝑆 ⊂ R𝑑
and “Archimedean" means that the quadratic module 𝑄(𝑔) in (11) associated with
𝑆, is Archimedean (an algebraic certificate of its compactness used in Putinar’s
Positivstellensatz). The third column “Certificate" specifies if in the Moment-
SOS hierarchy one uses Putinar’s certificate (Theorem 2.2) or the more costly
Schmüdgen’s certificate (Theorem 2.3) for the semidefinite relaxation (24). In the
notation𝑂(1/𝑛𝑐), 𝑛 is the order (or degree) of the semidefinite relaxations (24)-(26),
and 𝑐 is some positive constant. The rate 𝑂(1/𝑛𝑐) means that 𝑓 ∗ − 𝜏𝑛 ≤ 𝑀 /𝑛𝑐 for
some constant 𝑀 > 0, where 𝑓 ∗ is the global minimum and 𝜏𝑛 (≤ 𝑓 ∗) is as in (26).
Finally, for optimization of trigonometric polynomials (and so for POPs on the box

Table 3.1. Rates of convergence for the hierarchy of lower bounds [125]

𝑆 Error 𝑓 ∗ − 𝜏𝑛 Certificate Reference

Archimedean 𝑂(1/𝑛𝑐) Putinar [10]
Compact 𝑂(1/𝑛𝑐) Schmüdgen [118]
S𝑑−1 𝑂(1/𝑛2) Putinar [28]
B𝑑 𝑂(1/𝑛2) Putinar [125]

[−1, 1]𝑑 𝑂(1/𝑛2) Schmügen [77]
Δ𝑑 𝑂(1/𝑛2) Schmügen [125]

[0, 1]𝑑 as well) and under some condition on global minimizers (isolated and with
positive definite Hessian), an exponential rate of convergence has been provided in
[6]. This shows that beyond general results like those in Table 3.7, there is hope
for even faster rates convergence, at the price of some additional conditions on the
minimizers and/or the set 𝑆.
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3.8. Handling sparsity. As already mentioned, in its canonical form (24)-(26),
the Moment-SOS hierarchy is limited to problems P of modest dimension, even
though for fixed dimension 𝑑 the size-parameters of each moment-relaxation (26)
are polynomial in the degree 𝑛. This is because (26) being a semidefinite program,
efficient algorithms based on interior-point methods are still very time-consuming.
Fortunately, practice reveals that moment-relaxations (26) of low degree 𝑛 already
provide tight lower bounds on 𝑓 ∗, and are sometimes exact. In addition, large-scale
problems P usually exhibit some sparsity pattern and/or symmetries. For instance,
as is typically for applications in large dimension 𝑑, (i) each constraint 𝑔 𝑗 ≥ 0 in (13)
sees only some small subset of variables {𝑥𝑖 : 𝑖 ∈ 𝐼𝑘 } with 𝐼𝑘 ⊂ {1, . . . , 𝑑}, and (ii)
the criterion 𝑓 of P is very often a sum

∑
𝑘 𝑓𝑘 of (low degree) polynomials 𝑓𝑘 , where

each polynomial 𝑓𝑘 only sees variables {𝑥𝑖 : 𝑖 ∈ 𝐼𝑘 }. This type of sparsity is called
correlative-sparsity. Also another type of sparsity called term-sparsity occurs when
all polynomials 𝑓 and 𝑔 𝑗 in the description (13) of P contains a few monomials
only. It turns out that correlative- and term-sparsity can be exploited so as to yield
a new sparsity-adapted Moment-SOS hierarchy of semidefinite relaxations of P.
These two types of sparsity can even be combined for further efficiency; see e.g.
[138] and [78].

For sake of completeness, one next briefly describes how correlative sparsity
allows to define an appropriate sparsity-adapted Moment-SOS hierarchy that can
handle large-scale POP.

Assumption 3.13. With P as in (1) with 𝑆 ⊂ R𝑑 as in (13):

• 𝐼0 := {1, . . . , 𝑑} = ∪𝑝

𝑘=1𝐼𝑘 (with possible overlaps)
• R[x; 𝐼𝑘] is the ring of polynomials in the variables {𝑥𝑖 : 𝑖 ∈ 𝐼𝑘 }.
• 𝑓 =

∑𝑝

𝑘=1 𝑓𝑘 with 𝑓𝑘 ∈ R[x; 𝐼𝑘], 𝑘 = 1, . . . , 𝑝.
• For each 𝑗 = 1, . . . , 𝑚, 𝑔 𝑗 ∈ R[x; 𝐼𝑘] for some 𝑘 ∈ {1, . . . , 𝑝}, and so let
𝐽𝑘 := { 𝑗 : 𝑔 𝑗 ∈ R[x; 𝐼𝑘] }, 𝑘 = 1, . . . , 𝑝.

Of course, as one next sees, Assumption 3.13 is interesting when the cardinal
#𝐼𝑘 of 𝐼𝑘 is small for every 𝑘 = 1, . . . , 𝑝.

Observe that if 𝑔 ∈ R[x; 𝐼𝑘] then in the expansion 𝑔(x) =
∑

𝜶∈N𝑑 𝑔𝜶 x𝜶, 𝛼𝑖 = 0
if 𝑖 ∉ 𝐼𝑘 , whenever 𝑔𝜶 ≠ 0. So let

N(𝑘) := { 𝜶 ∈ N𝑑 : 𝛼𝑖 = 0 , ∀𝑖 ∉ 𝐼𝑘 } , 𝑘 = 1, . . . , 𝑝 ;
N(𝑘)

𝑛 := { 𝜶 ∈ N(𝑘) :
∑︁
𝑖

𝛼𝑖 ≤ 𝑛 } 𝑘 = 1, . . . , 𝑝.

Next, given 𝝓 = (𝜙𝜶)𝜶∈N𝑑 , define M𝑛(𝝓; 𝐼𝑘) to be the submatrix of M𝑛(𝝓) whose
rows and columns are associated with monomials (x𝜶), 𝜶 ∈ N(𝑘)

𝑛 . Similarly, when
𝑗 ∈ 𝐽𝑘 , the localizing matrix M𝑛(𝑔 𝑗 · 𝝓; 𝐼𝑘) is the submatrix of M𝑛(𝑔 𝑗 · 𝝓) whose
rows and columns are associated with monomials (x𝜶), 𝜶 ∈ N(𝑘)

𝑛−𝑑 𝑗
.
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When Assumption 3.13 holds, it is quite natural to define moment-relaxations

(43)
𝜏

sparse
𝑛 = inf

𝝓=(𝜙𝜶)
{

𝑝∑︁
𝑘=1

𝜙( 𝑓𝑘) : 𝜙0 = 1 ;

M𝑛(𝝓; 𝐼𝑘) � 0 , 𝑘 = 1, . . . , 𝑝 ;
M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓; 𝐼𝑘) � 0 , ∀ 𝑗 ∈ 𝐽𝑘 ; 𝑘 = 1, . . . , 𝑝 } .
The reason why (43) is appealing is because the size of the matrix M𝑛(𝝓; 𝐼𝑘) is
𝑠𝑘(𝑛) :=

(#𝐼𝑘+𝑛
𝑛

)
while that of M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓) is 𝑠(𝑛 − 𝑑 𝑗). Therefore if #𝐼𝑘 � 𝑑,
then 𝑠𝑘(𝑛) � 𝑠(𝑛) and 𝑠𝑘(𝑛 − 𝑑 𝑗) � 𝑠(𝑛 − 𝑑 𝑗). So for a semidefinite solver it
is always definitely better to have several (and even possibly a lot) of small size
matrices rather than a single large size matrix constrained to be psd.

It is quite straightforward to obtain that 𝜏sparse
𝑛 ≤ 𝑓 ∗ for all 𝑛 ≥ 𝑛0. Indeed

𝜏
sparse
𝑛 ≤ 𝜏𝑛 ≤ 𝑓 ∗ (with 𝜏𝑛 being the optimal value of the degree-𝑛 moment

relaxation (26)). Moreover the sequence (𝜏sparse
𝑛 )𝑛≥𝑘0 is monotone non decreasing

and being bounded above, converges to some 𝛾 ≤ 𝑓 ∗.
Again assume (possibly after scaling) that the quadratic polynomial 1 − ‖x‖2 is

in the quadratic module𝑄1(𝑔), and therefore one may and will add the 𝑝 redundant
constraints
(44) 1 −

∑︁
𝑖∈𝐼𝑘

𝑥2
𝑖 ≥ 0 , 𝑘 = 1, . . . , 𝑝 ,

in the definition of 𝑆.

Theorem 3.14 ([58]). Let 𝑆 ⊂ R𝑑 be as in (13) with constraints (44) in its definition
(13), and consider the hierarchy of semidefinite relaxations (43) with optimal value
𝜏

sparse
𝑛 . Then 𝜏sparse

𝑛 ↑ 𝛾 ≤ 𝑓 ∗, as 𝑛 increases. Moreover, if for every 𝑘 = 2, . . . , 𝑝,

(45) 𝐼𝑘 ∩

𝑘−1⋃
𝑗=1
𝐼 𝑗

 ⊆ 𝐼ℓ ,

for some ℓ ∈ {1, . . . , 𝑘 − 1}, then 𝛾 = 𝑓 ∗.

The condition (45) is called the Running Intersection Property. It has the
following important property: Suppose that we are given 𝑝 probability measures
𝜙 𝑗 on R#𝐼 𝑗 , 𝑗 = 1, . . . , 𝑝, which are compatible, i.e., such that for all pairs (𝑖, 𝑗)
with 𝐼𝑖 ∩ 𝐼 𝑗 ≠ ∅,∫

x𝜶 𝑑𝜙𝑖(x ∈ 𝐼𝑖 ∩ 𝐼 𝑗) =

∫
x𝜶 𝑑𝜙 𝑗(x ∈ 𝐼𝑖 ∩ 𝐼 𝑗) , ∀𝜶 ∈ N#𝐼𝑖∩𝐼 𝑗 .

If (45) holds then there exists a probability measure 𝜙 on R𝑑 such that∫
x𝜶 𝑑𝜙 =

∫
x𝜶 𝑑𝜙 𝑗 , ∀𝜶 ∈ N#𝐼 𝑗 , 𝑗 = 1, . . . , 𝑝 .

That is, from local measures 𝜙 𝑗 onR#𝐼 𝑗 which are compatible, one may reconstruct a
global measure on R𝑑 whose marginal on R#𝐼 𝑗 is 𝜙 𝑗 , for all 𝑗 = 1, . . . , 𝑝. Therefore
the local information provided by the 𝜙 𝑗’s corresponds to a partial (but consistent)
knowledge of a global information that we do not necessarily need to know.
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On the dual side of positive polynomials we have the following sparse version of
Putinar’s Positivstellenstaz.

Theorem 3.15 (Sparse Positivstellensatz [58]). Let 𝑆 ⊂ R𝑑 be as in (13) with
constraints (44) in its definition (13) and let 𝑓 =

∑𝑝

𝑘=1 𝑓𝑘 with 𝑓𝑘 ∈ R[x; 𝐼𝑘],
𝑘 = 1, . . . , 𝑝. If (45) holds and 𝑓 > 0 on 𝑆 then

(46) 𝑓 (x) =

𝑝∑︁
𝑘=1

(
𝜎0,𝑘(x) +

∑︁
𝑗∈𝐽𝑘

𝜎𝑗 ,𝑘(x) 𝑔 𝑗(x)

)
, ∀x ∈ R𝑑 ,

for some SOS polynomials 𝜎0,𝑘 , 𝜎𝑗 ,𝑘 ∈ Σ[x, 𝐼𝑘], 𝑗 ∈ 𝐽𝑘 , 𝑘 = 1, . . . , 𝑝.

Theorem 3.15 provides a sparsity-adapted certificate of positivity à la Putinar
where the SOS weight 𝜎𝑗 associated with a constraint 𝑔 𝑗 ≥ 0, 𝑗 ∈ 𝐽𝑘 , “sees" only
the variables {𝑥𝑖 : 𝑖 ∈ 𝐼𝑘 }.

To cite a few examples, such sparsity-adapted semidefinite relaxations have been
implemented for solving the Optimal Power Flow (OPF) problem in management
of large-scale electricity networks [89, 88], in geometric perception [141], Robotics
[115], sensor network localization [94], as well as in [99].

3.9. Notes and sources. Section 3 is mainly based on [60, 63] where the reader
can find all proofs (or references to papers with proofs).
Section 3.1. The Moment-SOS hierarchy was first proposed in [54, 55].
Section 3.3-Section 3.4 Theorem 3.5 and Theorem 3.7 are due to [96]. In [95]
the author also shows that the Flatness condition (29) at an optimal solution of the
Moment-relaxation (26), also holds generically. A refinement of these results is
provided in [10]. Those results are important as they guarantee that the Moment-
SOS hierarchy as finite convergence, generically (in the sense of Theorem 3.7), and
that one may extract global minimizers from an optimal solution of the semidefinite
relaxation (26).
Section 3.5 and 3.6 are mainly taken from [63, Chapter 13]. See also [59, 43].
Section 3.7 is essentially based on [125].
Section 3.8. Correlative-sparsity was first proposed as a heuristic in [45, 135]
while its proof of convergence was provided in [58]. Term-sparsity was initially
described in [136] and further exploited in the TSSOS hierarchy in [137]. Finally,
the combination of correlative- and term-sparsity which yields the CS-TSSOS
hierarchy is described in [138]. The interested reader is referred to the book [78]
which, among other things, describes various forms of sparsity and associated
Moment-relaxations based on appropriate cones of positive polynomials.

Finally let us mention that a lower bound 𝜏𝑛 ≤ 𝑓 ∗, obtained by the Moment-
SOS hierarchy even at low degree 𝑛, can also be useful to “gauge" how far from
𝑓 ∗ is the value 𝑓 (x̂) of a feasible solution x̂ ∈ 𝑆 obtained by some numerical
(local) optimization algorithm. Indeed if 𝑓 (x̂) − 𝜏𝑛 is not too large, then somehow
𝜏𝑛 certifies that the local optimization algorithm has produced a good feasible
solution.
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4. The Moment-LP hierarchy

As seen in Section 3, the Moment-SOS hierarchy is based on the use of Putinar’s
certificate of positivity (15) and its convergence relies on Theorem 2.2. One next
provides a hierarchy of LP-relaxations whose associated sequence of optimal values
also converges to the global optimum from below. Similarly as for the Moment-
SOS hierarchy, the Moment-LP hierarchy is also based on a positivity certificate,
namely that in (19), and its convergence relies on Theorem 2.5.

Assumption 4.1. With 𝑆 ⊂ R𝑑 as in (13), assume that 𝑆 is compact, 0 ≤ 𝑔 𝑗 ≤ 1
on 𝑆, for every 𝑗 = 1, . . . , 𝑚, and the polynomials {1, 𝑔1, . . . , 𝑔𝑚} generate R[x].

As 𝑆 is compact one may always re-scale the 𝑔 𝑗’s (and possibly add redundant
constraints) to make the new definition of 𝑆 satisfy Assumption 4.1. For more
details the interested reader is referred to [60].

Next, with same notation g and 1 − g as in (19), and 𝑛 ∈ N, introduce the
following linear program (LP):

(47) 𝜌𝑛 = min
𝝓

{ 𝜙( 𝑓 ) : 𝜙(1) = 1 ; 𝜙(g𝜶 (1 − g)𝜷) ≥ 0 , (𝜶, 𝜷) ∈ N2𝑚
𝑛 } ,

where 𝝓 = (𝜙𝜸)𝜸∈N𝑑
𝑠𝑛

with 𝑠𝑛 := max
(𝜶,𝜷)∈N2𝑚

𝑛

deg(g𝜶(1 − g)𝜷).

By its very nature, (47) is a linear program and is a relaxation of P because
the constraints in (47) are only necessary conditions on 𝝓 to be moments of a
probability measure supported on 𝑆; see Theorem 2.5. The dual of (47) is the linear
program

(48) 𝜌∗𝑛 = max
𝑐𝜶𝜷≥0,_

{ _ : 𝑓 − _ =
∑︁

(𝜶,𝜷)∈N2𝑚
𝑛

𝑐𝜶𝜷 g𝜶 (1 − g)𝜷 } .

In similar manner as (24) was a SOS-strengthening of P in (3), the LP (48) is now an
LP-strengthening of P in (3). Of course, from duality for linear programs, 𝜌𝑛 = 𝜌∗𝑛
for all 𝑛.

Example 4.2. To better visualize how the LP (47) looks like, consider the toy
example where 𝑆 = [0, 1] = { 𝑥 : 𝑥 ≥ 0 ; (1 − 𝑥) ≥ 0 } ⊂ R. Then for 𝑛 = 2,
𝝓 = (𝜙 𝑗)0≤ 𝑗≤2, and

𝜙(1) = 𝜙0 ; 𝜙(𝑥) = 𝜙1; 𝜙(1 − 𝑥) = 𝜙0 − 𝜙1; 𝜙(𝑥2) = 𝜙2

𝜙(𝑥(1 − 𝑥)) = 𝜙1 − 𝜙2 ; 𝜙((1 − 𝑥)2) = 𝜙0 − 2𝜙1 + 𝜙2 ,

so that with 𝑓 ∈ R[𝑥]2, 𝑥 ↦→ 𝑓 (𝑥) =
∑2

𝑘=0 𝑓𝑘 𝑥
𝑘 ,

𝜌2 = min
𝝓

{
2∑︁

𝑘=0
𝜙𝑘 𝑓𝑘 : 𝜙0 = 1; 𝜙1 ≥ 0 ; 𝜙0 − 𝜙1 ≥ 0 ;

𝜙1 − 𝜙2 ≥ 0 ; 𝜙0 − 2𝜙1 + 𝜙2 ≥ 0 } .
Similarly,

𝜌∗2 = max
c≥0,_

{ _ : 𝑓 (𝑥) − _ = 𝑐00 + 𝑐10 𝑥 + 𝑐01(1 − 𝑥)
+𝑐20 𝑥

2 + 𝑐11𝑥(1 − 𝑥) + 𝑐02(1 − 𝑥)2 , ∀𝑥 ∈ R } ,
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or equivalently,
𝜌∗2 = max

c≥0,_
{ _ : 𝑓0 − _ = 𝑐00 + 𝑐01 ;

𝑓1 = 𝑐10 − 𝑐01 + 𝑐11 + 𝑐02 ; 𝑓2 = 𝑐20 − 𝑐11 + 𝑐02 } .
Equality constraints. are treated as for the Moment-SOS hierarchy. For instance,
in (47), a boolean constraint 𝑥2

𝑖
= 𝑥𝑖 of P, translates into the moment equality

constraints 𝜙(𝑥𝑘
𝑖
) = 𝜙(𝑥𝑖) for all 𝑘 ≤ 𝑛.

Theorem 4.3 ([60]). With 𝑆 as in (13), let Assumption 4.1 hold. Then as 𝑛 increases,
the sequences (𝜌𝑛)𝑛∈N and (𝜌∗𝑛)𝑛∈N are monotone non decreasing and converge to
the global minimum 𝑓 ∗ of P.

4.1. The case of a convex polytope. We now assume that 𝑆 ⊂ R𝑑 is a convex
polytope (with nonempty interior), i.e., for each 𝑗 = 1, . . . , 𝑚, 𝑔 𝑗 ∈ R[x]1 (𝑔 𝑗 is a
polynomial of degree 1). In this case Theorem 2.5 specializes .

Theorem 4.4 ([34]). Let 𝑆 ⊂ R𝑑 be as in (13) with nonempty interior and with
all 𝑔 𝑗 of degree 1, and assume that 𝑆 is compact (hence 𝑆 is a convex polytope).
If 𝑓 ∈ R[x] is positive on 𝑆 then there exists 𝑛 ∈ N and a nonnegative vector
c = (𝑐𝜶)𝜶∈N𝑚

𝑛
, such that:

(49) 𝑓 =
∑︁

𝜶∈N𝑚
𝑛

𝑐𝜶 g𝜶 .

So the obvious analogue of (47) for a convex polytope now reads:
(50) 𝜌𝑛 = min

𝝓
{ 𝜙( 𝑓 ) : 𝜙(1) = 1 ; 𝜙(g𝜶) ≥ 0 , 𝜶 ∈ N𝑚

𝑛 }

where 𝝓 = (𝜙𝜸)𝜸∈N𝑑
𝑠𝑛

with 𝑠𝑛 := max
𝜶∈N𝑚

𝑛

deg(g𝜶). The dual of (50) reads:

(51) 𝜌∗𝑛 = max
𝑐𝜶≥0,_

{ _ : 𝑓 − _ =
∑︁

𝜶∈N𝑚
𝑛

𝑐𝜶 g𝜶 } .

So an analogue of Theorem 4.3 reads:

Theorem 4.5. Let 𝑆 ⊂ R𝑑 be as in (13) with nonempty interior and with all 𝑔 𝑗
of degree 1, and assume that 𝑆 is compact (hence 𝑆 is a convex polytope). Let 𝜌𝑛
(resp. 𝜌∗𝑛) be as in (50) (resp. (51)). Then as 𝑛 increases, both sequences (𝜌𝑛)𝑛∈N
and (𝜌∗𝑛)𝑛∈N are monotone non-decreasing and converge to the global minimum 𝑓 ∗

of P.

On 0/1 discrete problems and RLT.. Consider discrete optimization problems P
min { 𝑓 (x) : x ∈ 𝑆 } for which the set of feasible solutions is of the form:
𝑆 = { x ∈ {0, 1}𝑑 : 𝑔 𝑗(x) ≥ 0 , 𝑗 = 1, . . . , 𝑚 }

= { x ∈ R𝑑 : 𝑔 𝑗(x) ≥ 0 , 𝑗 = 1, . . . , 𝑚 ; 𝑥2
𝑖 − 𝑥𝑖 = 0 , 𝑖 = 1, . . . , 𝑑 } .

This formulation includes many combinatorial optimization problems, including
the celebrated MAXCUT problems and its variants on {−1, 1}𝑑 (after a simple
linear transformation). The so-called RLT [121, 122] is a reformation-linearization
technique (already proposed in the nineties) to solve P when 𝑓 and the 𝑔 𝑗’s are all
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linear. In RLT one “lifts" P in a space of higher dimension: Namely, with 𝑡 ≤ 𝑑

fixed:

• One defines order-𝑡 bound-factors constraints

𝐴𝐽1,𝐽2(x) :=
∏
𝑖∈𝐽1

𝑥𝑖

∏
𝑗∈𝐽2

(1 − 𝑥 𝑗) ≥ 0 , ∀(𝐽1, 𝐽2) ,

where 𝐽1, 𝐽2 ⊆ {1, . . . , 𝑑}, 𝐽1 ∩ 𝐽2 = ∅ and |𝐽1 ∪ 𝐽2 | = 𝑡, and
• For every 𝑗 = 1, . . . , 𝑚, the additional constraint factor-based restrictions

𝐴𝐽1,𝐽2 𝑔 𝑗(x) ≥ 0 , ∀(𝐽1, 𝐽2) .

• Then in each such constraints, one replaces every occurence of the power
𝑥𝑘
𝑖

with 𝑥𝑖 , and one “linearizes" the resulting polynomial constraint, i.e.,
every occurence of the non-linear monomial

∏
𝑖∈𝐽 𝑥𝑖 is replaced with a

variable 𝑦𝐽 constrained to be nonnegative.

One ends up with a linear program in a space of higher dimension 𝑠(𝑡 + 1) which
is an LP-relaxation of P. In the RLT construction of this LP-relaxation (which
ignores constraints of the form g𝜶 ≥ 0), one recognizes a particular case of the
Moment-LP relaxation (47) of P in the presence of boolean constraints 𝑥2

𝑖
= 𝑥𝑖 , for

all 𝑖 = 1, . . . , 𝑑. So it is fair to say that RLT, the first systematic construction of a
“hierarchy" of LP-relaxations for 0/1 programs, was implicitly based on positivity
certificates of the flavor (19), i.e., à la Krivine-Vasilescu.

4.2. Contrasting the Moment-SOS hierarchy with the Moment-LP hierarchy.
At first glance one is tempted to favor the Moment-LP hierarchy because state-of-
the-art LP solvers are very efficient and can solve potentially very large (even huge)
scale LPs, whereas in its canonical form (26)-(24) the Moment-SOS hierarchy is
limited to POPs of modest dimension and small degree of relaxation 𝑛, unless
some sparsity and/or symmetries can be exploited. Unfortunately the Moment-LP
hierarchy has some serious drawbacks that also limit its application to problems of
modest dimension. Indeed, except for discrete and linear POPs, finite convergence
is impossible in general, even for convex problems!

However, for discrete problems with 0/1 variables, the Moment-LP hierarchy
can be combined with ad-hoc heuristics. For instance one may tray to solve such
0/1 problems with Branch & Bound methods where at each node of the search-tree,
a lower bound associated with the node is computed by solving an appropriate
Moment-LP relaxation of the discrete subproblem associated with the node in the
Branch & Bound strategy.
Finite convergence is not possible in general. For clarity and simplicity of exposi-
tion, we illustrate this claim in the case where 𝑆 is a convex polytope.

Proposition 4.6. Let 𝑆 ⊂ R𝑑 be a convex polytope and consider the LP-strengthening
(51) of P. If P has finitely many global minimizers and (51) is exact for some degree
𝑛, then necessarily every global minimizer x∗ is a vertex of 𝑆.
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Proof. Let 0 ≤ c∗ ≠ 0 be an optimal solution of the degree-𝑛 LP-relaxation (51),
and assume that (51) is exact, i.e., 𝜌∗𝑛 = 𝑓 ∗. Then

(52) 𝑓 (x) − 𝑓 ∗ =
∑︁

𝜶∈N𝑚
𝑛

𝑐∗𝜶 𝑔1(x)𝛼1 · · · 𝑔𝑚(x)𝛼𝑚 , ∀x ∈ R𝑑 .

In particular, at every global minimizer x∗ ∈ 𝑆,

(53) 0 = 𝑓 (x∗) − 𝑓 ∗ =
∑︁

𝜶∈N𝑚
𝑛

𝑐∗𝜶 𝑔1(x∗)𝛼1 · · · 𝑔𝑚(x∗)𝛼𝑚 , ∀x ∈ R𝑑 .

So assume that there exists a global minimizer x∗ ∈ 𝑆 which is not a vertex, and
let 𝐼(x∗) := { 𝑗 ∈ {1, . . . , 𝑚} : 𝑔 𝑗(x∗) = 0 } be the set of active constraints at
x∗ ∈ 𝑆. Observe that 𝐼(x∗) ≠ ∅ because otherwise we would have 𝑔 𝑗(x∗) > 0 for all
𝑗 = 1, . . . , 𝑚, which in turn by (53) implies c∗ = 0, in contradiction with c∗ ≠ 0. So
(53) already rules out the possibility of having a global minimizer in int(𝑆). Next,
from (53) one may infer
(54) 𝑐∗𝜶 > 0 ⇒ 𝛼 𝑗 > 0 for some 𝑗 ∈ 𝐼(x∗).
As x∗ is not a vertex and P has only finitely many global minimizers, the set
{ y ∈ 𝑆 : 𝐼(y) = 𝐼(x∗) } contains a point ŷ ∈ 𝑆 which is not a global minimizer, i.e.,
𝑓 (ŷ) > 𝑓 ∗. But then (52) combined with (54) yields the contradiction

0 =
∑︁

𝜶∈N𝑚
𝑛

𝑐∗𝜶 𝑔1(ŷ)𝛼1 · · · 𝑔𝑚(ŷ)𝛼𝑚 = 𝑓 (y) − 𝑓 ∗ > 0 .

�

So Proposition 4.6 implies that for all problems P (on convex polytopes) with
finitely many minimizers, a necessary condition for some degree-𝑛LP-strengthening
(51) to be exact is that every global minimizer is a vertex of 𝑆. In particular this
condition rules out most convex POPs on a polytope, with a nonlinear criterion 𝑓

as in general a local (hence global) minimizer is not a vertex of 𝑆. (However, if 𝑓
is linear, i.e., if P is a linear program, then (51) is exact with 𝑛 = 1.)

A similar conclusion is also valid for POPs on even more general basic semi-
algebraic sets 𝑆 and the LP-strengthening (48). Indeed, as in Proposition 4.6 and
for same reasons, if such a POP has finitely many minimizers, then a necessary
condition for (48) to be exact at some degree 𝑛, is that for every global minimizer
x∗ ∈ 𝑆, the set {y ∈ 𝑆 : 𝐼(y) = 𝐼(x∗)} contains only global minimizers of P. Such
a condition is very restrictive and rules out most problems P, in particular convex
problems!

4.3. Notes and sources. Section 4 is mainly taken from [57, 63, Chapter 9].
In [75] the Moment-SOS hierarchy for 0/1 variables is described with specific
notation proper to Graph theory and is embedded in the family of lift-and-project
hierarchies, with among them the Lovasz-Schrijver and Sherali-Adams hierarchies.
In particular the author shows that the Moment-SOS dominates the other lift-and-
project hierarchies.

If LP-hierarchies are not efficient when used alone to solve optimization prob-
lems, they still can be useful when associated with other techniques of discrete



28 JEAN B. LASSERRE

optimization; for instance as in [2] when used in conjunction with Branch-and-
Bound.

5. A Moment-SOS hierarchy of upper bounds

In this section one considers another (less known) Moment-SOS hierarchy which
provides a monotone non increasing sequence (^𝑛)𝑛∈N of upper bounds on the global
minimum 𝑓 ∗ of P defined in (3). For each “degree" 𝑛, the upper bound ^𝑛 ≥ 𝑓 ∗

is now computed by solving a very specific semidefinite program as its has only
a single variable. In fact its dual reduces to computing the smallest generalized
eigenvalue of a pair of moment-matrices.

5.1. A first multivariate formulation. Consider problem P in (3) with feasible set
𝑆 ⊂ R𝑑 as in (13), and let ` be a Borel (reference) measure on 𝑆 with supp(`) = 𝑆.
Assumption 5.1. (i) the set 𝑆 ⊂ R𝑑 is compact with nonempty interior.

(ii) The vector of moments 𝝁 = (`𝜶)𝜶∈N𝑑 is available in closed form, or can be
computed efficiently.

Of course in view of Assumption 5.1(ii), the set 𝑆 has to be rather specific
and indeed typical such sets are the unit box [−1, 1]𝑑 , the Euclidean unit ball
B(0, 1) = {x : ‖x‖ ≤ 1}, the unit sphere S𝑑−1 = {x : ‖x‖ = 1}, the canonical
simplex Δ𝑑 = { x ∈ R𝑑+ : e𝑇 x ≤ 1 }, the discrete hypercube {−1, 1}𝑑 , and their
image by an affine transformation. Even though such sets 𝑆 are rather specific, the
associated problems P cover many interesting NP-hard optimization problems.
Theorem 5.2. Let Assumption 5.1 hold, and with 𝑛 ∈ N fixed, consider the semi-
definite problems:

^𝑛 = inf
𝜎∈Σ[x]𝑛

{
∫

𝑓 𝜎 𝑑` :
∫

𝜎 𝑑` = 1 } , 𝑛 ∈ N ;(55)

^∗𝑛 = sup
_

{_ : _M𝑛(`) � M𝑛( 𝑓 · `) } , 𝑛 ∈ N .(56)

Then :
(57) ^𝑛 = ^∗𝑛 ; 𝑓 ∗ ≤ ^𝑛+1 ≤ ^𝑛 , ∀𝑛 ∈ N ; lim

𝑛→∞
^𝑛 = 𝑓 ∗ .

Crucial in the proof of convergence, which can be found in [61, Theorem 4.2],
is the Nichtnegativstellensatz Theorem 2.4. It turns out that (56) is just computing
the smallest generalized eigenvalue associated with the pair of symmetric matrices
(M𝑛( 𝑓 · `),M𝑛(`)) for which specialized softwares exist. If both matrices are ex-
pressed in a polynomial basis ofR[x]𝑛 formed by polynomials that are orthonormal
with respect to (w.r.t.) ` then M𝑛(`) becomes the identity matrix I, and 𝜏∗𝑛 is just
the smallest eigenvalue of M𝑛( 𝑓 · `).
Computational consideration. Filling up entries of both matrices M𝑛(`) and M𝑛( 𝑓 ·
`) is straightforward. So the main effort is about computing the generalized eigen-
value of the couple of (symmetric) matrices (M𝑛( 𝑓 · `),M𝑛(`)) which can be done
via standard softwares for eigenvalue computation. However, and even if they are
symmetric, computing ^𝑛 is quite challenging because of the size 𝑂(𝑛𝑑) of the
involved matrices as 𝑛 increases.
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Remark 5.3. A refinement of (55) is to consider polynomial densities𝜎 nonnegative
on 𝑆 (instead of SOS). That is, replace (55) with

(58) ˆ̂𝑛 = inf
𝜎∈𝑄𝑛(𝑔)

{
∫

𝑓 𝜎 𝑑` :
∫

𝜎 𝑑` = 1 } , 𝑛 ∈ N ,

where 𝑄𝑛(𝑔) is the degree-2𝑛 truncated quadratic module associated with the
generators 𝑔 that define 𝑆; see (12). For instance with 𝑆 being the unit box,

𝑄𝑛(𝑔) = { 𝜎0 +
𝑑∑︁
𝑗=1
𝜎𝑗 (1 − 𝑥2

𝑗) ; 𝜎0 ∈ Σ[x]𝑛 ; 𝜎𝑗 ∈ Σ[x]𝑛−1 , 𝑗 = 1, . . . , 𝑚 } .

Of course 𝑓 ∗ ≤ ˆ̂𝑛 ≤ ^𝑛 for all 𝑛 and therefore, in view of Theorem 5.2, ˆ̂𝑛 ↓ 𝑓 ∗ as
𝑛 increases.

5.2. An alternative univariate formulation. Let the (univariate) Borel measure
#` be the pushforward of ` on R by the mapping 𝑓 , that is:

(59) #`(𝐵) = `( 𝑓 −1(𝐵)) , ∀𝐵 ∈ B(R) ,

where B(R) is the usual Borel 𝜎-algebra generated by the open sets of R. By
construction of #`, supp(#`) = 𝑓 (𝑆), and therefore:

(60) 𝑓 ∗ = min
𝑧

{ 𝑧 : 𝑧 ∈ supp(#`) } .

Moreover the moments (#` 𝑗) 𝑗∈N of #` satisfy:

(61) #` 𝑗 =

∫
𝑓 (𝑆)

𝑧 𝑗 𝑑#`(𝑧) =

∫
𝑆

𝑓 (x) 𝑗 𝑑`(x) , ∀ 𝑗 ∈ N .

As all moments `𝜶 of ` are available, the #` 𝑗’s can be obtained exactly, for instance,
by expanding the polynomial 𝑓 𝑗 in the canonical basis (x𝜶),

𝑥 ↦→ 𝑓 (x) 𝑗 =
∑︁
𝜶∈N𝑑

\
( 𝑗)
𝜶 x𝜶 ; #` 𝑗 =

∑︁
𝜶

\
( 𝑗)
𝜶 `𝜶 .

However, notice that even though the above expansion is always possible, it can
become very tedious if 𝑗 is large, even for modest dimension 𝑑.

Theorem 5.4. Let #` be the measure on R in (59) (the pushforward of ` by 𝑓 ), and
let

𝜌𝑛 := inf
𝜎∈Σ[𝑧 ]𝑛

{
∫

𝑧 𝜎 𝑑#` :
∫

𝜎 𝑑#` = 1 } , 𝑛 ∈ N ;(62)

𝜌∗𝑛 := sup
_

{ _ : _M𝑛(#`) � M𝑛(𝑧 · #`) } , 𝑛 ∈ N .(63)

Then (𝜌𝑛)𝑛∈N is a monotone non increasing sequence such that 𝜌𝑛 ↓ 𝑓 ∗ as 𝑛
increases. In addition, and letting 𝑑 𝑓 = deg( 𝑓 ), one obtains 𝜌𝑛 ≥ ^𝑛𝑑 𝑓

for every
𝑛 ∈ N (where ^𝑛 is defined in (55)) because if 𝜎 ∈ Σ[𝑧]𝑛 is a feasible solution of
(62) then 𝜎 ◦ 𝑓 ∈ Σ[x]𝑛𝑑 𝑓

is a feasible solution of (55) with same value.
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A detailed proof can be found in [65]. There is a striking difference between
the hierarchies of upper bounds (^𝑛)𝑛∈N in (55) and (𝜌𝑛)𝑛∈N in (62). The latter
involves univariate moment and localizing matrices. Both matrices are Hankel
matrices of size 𝑂(𝑛) (in contrast to multivariate Hankel-type matrices of size
𝑂(𝑛𝑑) for computing ^𝑛). Therefore computing the generalized eigenvalue 𝜌𝑛 is
much easier than computing ^𝑛.

On the other hand, filling up all entries of the Hankel moment matrix M𝑛(#`) is
in principle easy but tedious. Indeed if 𝑓 𝑗 is expanded in the monomial basis then
its integration (61) w.r.t. ` is straightforward. However as already noted, such an
expansion can be quite costly if 𝑗 is not small (even for modest dimension 𝑑).
Rates of convergence. It is worth noticing that similarly as for the hierarchy of lower
bounds, 𝑂(1/𝑛2) rates of convergence have also been obtained for the hierarchy of
upper bounds (55)-(56) on the sets S−1, B(0, 1), [−1, 1]𝑑 , and Δ𝑑; see [125, Table
2, p. 2615].

5.3. Notes and Sources. Section 5 is essentially based on [61] and [62]; the
univariate formulation is from [65]. In a series of papers, de Klerk, Laurent and
collaborators have obtained rates of convergence ^𝑛 ↓ 𝑓 ∗ (multivariate) and 𝜌𝑛 ↓ 𝑓 ∗
(univariate) as 𝑛 grows, by playing with various reference measures ` on 𝑆 and a
clever choice of appropriate families of densities. The approach is also interesting
in its own right as it is a mix of various and sophisticated techniques, including
polynomial kernels and asymptotics for roots of some distinguished orthogonal
polynomials. Moreover it turns out that such techniques have been also useful
to obtain rates of convergence for the Moment-SOS hierarchy of lower bounds
on specific sets 𝑆; for more details the interested reader is referred to [125] and
references therein.

6. Some applications of the Moment-SOS hierarchy

In this section one briefly describes how the Moment-SOS hierarchy can be
applied to help solve several problems in various fields of Science and Engineering.
In brief, problems where the Moment-SOS hierarchy is a relevant tool, are problems
which have an equivalent formulation as an instance of the the so-called Generalized
Moment Problem (GMP in short) whose description is only through polynomials
and semi-algebraic sets (i.e., GMP with algebraic data). Indeed the list of potential
applications of the GMP is almost endless, with polynomial optimization being its
simplest instance.

As is to be expected from what one has seen for optimization, the GMP can
be formulated in a primal form (via moments) or a dual form (via polynomials).
Its primal form is an infinite-dimensional and linear (hence convex) optimization
problem on measure spaces, which reads:

(64)
GMP : inf

𝜙1,...,𝜙𝑠

{
𝑠∑︁
𝑗=1

∫
𝑓 𝑗 𝑑𝜙 𝑗 s.t.

𝑠∑︁
𝑗=1

∫
ℎ𝑘 𝑗 𝑑𝜙 𝑗 ≥ 𝑏𝑘 , 𝑘 ∈ Γ ;

supp(𝜙 𝑗) ⊂ 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑠 } ,
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where all functions 𝑓 𝑗 , ℎ𝑘 are polynomials, 𝜙 𝑗 are Borel measures whose supports
𝑆 𝑗 ⊂ R𝑟 𝑗 , 𝑗 = 1, . . . , 𝑠, are all basic semi-algebraic sets.

The reader will note that all constraints are linear constraints linking moments
of the involved measures 𝜙 𝑗 , 𝑗 = 1, . . . , 𝑠 (whence the name of generalized moment
problem). So the GMP is an infinite-dimensional LP on spaces of measures.

Of course GMP in (64) can be extended to more general functions and sets, but
for a practical application of the Moment-SOS hierarchy, one needs algebraic data
(polynomials and basic semi-algebraic sets). Notice also that formulation (4) of
a polynomial optimization problem is the simplest instance of the GMP in which
there is only one unknown measure 𝜙 and only one (equality) moment-constraint
𝜙(𝑆) =

∫
1𝑑𝜙 = 1.

The dual GMP∗ of (64) is also an infinite-dimensional LP, and when 𝑝 := #Γ <
∞, it reads

(65)
GMP∗ : sup

𝝀∈R𝑝
+

{
𝑝∑︁

𝑘=1
_𝑘 𝑏𝑘 :

s.t. 𝑓 𝑗(x) −
𝑝∑︁

𝑘=1
_𝑘 ℎ𝑘 𝑗(x) ≥ 0 , ∀x ∈ 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑠 } .

Moment equality-constraints are also tolerated in (64) in which case the associated
dual variable _𝑘 in (65) is not constraint to be nonnegative. As is the case in some
important applications, the set Γ is also tolerated to be (countably) infinite. Finally,
and not touched upon here, one may also tolerate as objective function of (64), a
convex function of finitely many moments of measures 𝜙 𝑗 (e.g. − log det(M𝑛(𝜙 𝑗))
of the moment matrix M𝑛(𝜙 𝑗)).

As one next sees in two examples, in some applications the problem to solve is
already under the format of an instance of a GMP (or GMP∗), whereas in other
applications, some equivalent formulation the problem is an instance of the GMP.
Strategy of the Moment-SOS hierarchy. Roughly speaking, to apply the Moment-
SOS hierarchy to the GMP (64):

• One replaces the measures (𝜙 𝑗) 𝑗=1,...,𝑠 by degree-2𝑛 truncated pseudo-
moment vectors 𝝓 𝑗 = (𝜙 𝑗 ,𝜶), 𝜶 ∈ N𝑟 𝑗

2𝑛, 𝑗 = 1, . . . , 𝑠.
• One imposes semidefinite constraints on the moment and localizing matri-

ces associated with each 𝝓 𝑗 and each set 𝑆 𝑗 , which by Theorem 2.2(ii) are
necessary conditions for 𝝓 𝑗 to be moments of a measure on 𝑆 𝑗 .

Then as the moment constraints and the criterion are just linear on the pseudo-
moment vectors 𝝓 𝑗’s, for each fixed 𝑛 one ends up with a finite-dimensional semi-
definite relaxation which provides a lower bound on the optimal value of the GMP.
Similarly, to apply the Moment-SOS hierarchy to GMP∗ in (65):

• For each 𝑗 = 1, . . . , 𝑠, one replaces the positivity constraint

𝑓 𝑗 −
𝑝∑︁

𝑘=1
_𝑘 ℎ𝑘 𝑗 ≥ 0 on 𝑆 𝑗 ,
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with a Putinar certificate of positivity of degree 2𝑛; see Theorem 2.2(i).
For instance, if 𝑆 𝑗 = [−1, 1]𝑑 then the above positivity constraint reads:

𝑓 𝑗 −
𝑝∑︁

𝑘=1
_𝑘 ℎ𝑘 𝑗 =

𝑑∑︁
𝑗=0
𝜎𝑗 (1 − 𝑥2

𝑗) ; 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗
, 𝑗 = 0, . . . , 𝑑 .

Then as the criterion
∑

𝑘 _𝑘𝑏𝑘 is linear, one ends up with a finite-dimensional
semidefinite program, which is the dual of the one on pseudo-moment vectors. In
fact, a primal-dual semidefinite solver will solve both of them at the same time.

For sake of completeness, below are two illustrative applications of the above
strategy. In the first example in computational geometry and probability, the prob-
lem itself is described as a GMP while in the second example in optimal control
(OCP), an alternative and so-called “weak formulation" of the OCP is an instance
of the GMP.

6.1. Illustration in Probability and Computational Geometry. Let 𝑆 ⊂ R𝑑 be
compact set and suppose that 𝑆 ⊂ B := [−1, 1]𝑑 (possibly after scaling). The goal
is approximate the Lebesgue volume vol(𝑆) of 𝑆, as closely as desired. This is
known to be a very hard problem. In fact even if 𝑆 is convex, approximating its
volume is quite hard; see e.g. [24], the discussion in [39], and references therein.

Let _ be the Lebesgue measure on [−1, 1]𝑑 , so that its (infinite) vector of
moments 𝝀 = (_𝜶)𝜶∈N𝑑 is available in closed form. Let 1 ∈ R[x] be the constant
polynomial (equal to 1 for all x) and for two measures `, a on R𝑑 , the notation
a ≤ ` stands for a(𝐵) ≤ `(𝐵) for all 𝐵 ∈ B(R𝑑).

Proposition 6.1. vol(𝑆) = max
𝜙∈ℳ(𝑆)+,a∈ℳ(B)+

{ 𝜙(1) : 𝜙 + a = _ }, and 𝜙∗ := 1𝑆 _ is

the unique optimal solution.

Proof. As 𝜙 + a = _, 𝜙 ≤ _ and since supp(𝜙) ⊆ 𝑆, 𝜙(1) = 𝜙(𝑆) ≤ _(𝑆) = vol(𝑆).
Next, with 𝜙∗ := 1𝑆 _ ∈ ℳ(𝑆)+, and a∗ := ` − 𝜙∗ ∈ ℳ(B)+, one obtains 𝜙∗(1) =
_(𝑆) = vol(𝑆). �

The above formulation of vol(𝑆) as an optimization problem is not yet in the
format of an instance of the GMP (64). But notice that since B is compact,

𝜙 + a = _ ⇔ 𝜙𝜶 + a𝜶 = _𝜶 , ∀𝜶 ∈ N𝑑 ,

and therefore
(66) vol(𝑆) = max

𝜙∈ℳ(𝑆)+,a∈ℳ(B)+
{ 𝜙(1) : 𝜙𝜶 + a𝜶 = _𝜶 , ∀𝜶 ∈ N𝑑 } ,

which is an instance of the GMP (64) with Γ = N𝑑 (a countable set). We next see
how to implement the moment-SOS hierarchy. Let 𝑔0 = 1,

𝑆 = { x ∈ R𝑑 : 𝑔 𝑗(x) ≥ 0 , 𝑗 = 1, . . . , 𝑚 } ,
and recall that 𝑑 𝑗 = ddeg(𝑔 𝑗)/2e for all 𝑗 = 0, . . . , 𝑚. For each 𝑛 ∈ N, consider the
optimization problem

(67)
𝜏𝑛 = max

𝝓,𝝂
{ 𝜙0 : 𝜙𝜶 + a𝜶 = _𝜶 , ∀𝜶 ∈ N𝑑

2𝑛 ;

M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 ; M𝑛(𝝂) � 0 } .
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For each fixed 𝑛, (67) is a semidefinite program and an obvious relaxation of (66)
so that 𝜏𝑛 ≥ vol(𝑆) for all 𝑛.

Theorem 6.2 ([39]). The sequence of optimal values (𝜏𝑛)𝑛∈N is monotone non
increasing, bounded below, and lim𝑛→∞ 𝜏𝑛 = vol(𝑆) as 𝑛 grows.

So (67) indexed by 𝑛 ∈ N, provides a hierarchy of semidefinite relaxations of
(66) such that (𝜏𝑛)𝑛∈N converges (from above) to the desired value vol(𝑆) as 𝑛
increases. However in its basic form (67) its convergence is quite slow. To see why,
consider the dual of (67), which is the semidefinite program

(68)
𝜏∗𝑛 = min

𝑝∈R[x]2𝑛
{
∫

B
𝑝 𝑑_ : 𝑝 − 1 =

𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗

𝑝 ∈ Σ[x]𝑛; 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗
; 𝑗 = 0, . . . , 𝑚 } .

It turns out that if 𝑆 has nonempty interior then 𝜏𝑛 = 𝜏∗𝑛 for all 𝑛. Next observe that

𝑝 ∈ Σ[x]𝑛 and 𝑝 − 1 =

𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 ⇒ 𝑝 ≥ 1𝑆 , ∀x ∈ B ,

and since
∫
𝑝𝑑_ ↓ 1𝑆𝑑_ as 𝑛 grows, in the dual (68) one searches of a degree-2𝑛

SOS polynomial 𝑝 that tries to approximate from above, the indicator function of
𝑆 for all x ∈ B. As is well-known, for such polynomial approximations a typical
Gibbs phenomenon (oscillations) occurs at points of discontinuities, which makes
the convergence quite slow; see Figure 6.1.

Figure 6.1. 𝑆 = [−0.5, 0.5] ⊂ [0, 1]; polynomial approximation
(in red) of 1𝑆 on [0, 1] with Gibbs phenomenon

Fortunately one may significantly attenuate (or even remedy to) this problem.
Indeed as one knows in advance the (unique) optimal solution 𝜙∗ = 1𝑆_ of (66),
every available additional information on 𝜙∗ in terms of linear constraints on its
moments can be added to (66) without changing its optimal value and solution.
While such additional redundant constraints do not change (66), they have a dramatic
impact on the relaxations (67) and yield a quite significant acceleration of their
convergence. And it is indeed the case when one adds additional moment constraints
(satisfied by 𝜙∗) coming from Stokes’ theorem.
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Stokes constraints. Let us see how it works for the case where 𝑆 = {x : 𝑔(x) ≥ 0}
for some polynomial 𝑔 ∈ R[x] with compact sublevel set 𝑆. As 𝑔 vanishes on 𝜕𝑆,
by Stokes’s theorem,∫

𝑆

Div(x 𝑔(x) x𝜶) 𝑑x =

∫
𝜕𝑆

〈®𝑛x, x〉𝑔(x)x𝜶 𝑑𝜎(x) = 0 , ∀𝜶 ∈ N𝑑 ,

where ®𝑛x is the outward pointing normal at x ∈ 𝜕𝑆. Hence each 𝜶 ∈ N𝑑 provides
us with the moment constraint

𝜙∗(𝑠𝜶) := 𝜙∗(Div(x 𝑔(x)x𝜶) = 0 ,

on 𝜙∗, because x ↦→ 𝑠𝜶(x) := Div(x 𝑔(x) x𝜶) is a polynomial (of degree deg(𝑔) +
|𝜶 | + 1). Hence for every 𝑛 ∈ N, the additional moment constraints

(69) 𝜙(𝑠𝜶) = 0 , ∀𝜶 : |𝜶 | ≤ 2𝑛 − 1 − deg(𝑔) ,

can be included in the semidefinite relaxation (67). The effect on the dual (68) is
to change the initial constraint 𝑝 − 1 = 𝜎0 + 𝜎1 𝑔, to now

𝑝 + 𝑞 − 1 = 𝜎0 + 𝜎1 𝑔 ,

where 𝑞 :=
∑

|𝜶 | ≤2𝑛−deg(𝑔)−1 \𝜶 𝑠𝜶 for the dual variables (\𝜶) associated with (69).
Hence now 𝑝 is not required anymore to approximate 1𝑆 from above! For more
details on volume computation via the moment-SOS hierarchy, the interested reader
is referred to [39], [129], and [128]. In particular, this technique has also been
implemented in [129] for approximating the volume of certain non-convex sets
𝑆 ⊂ R100 where the description of 𝑆 exhibits some structured sparsity, as described
in Section 3.8.

Remark 6.3. One can consider (66) with a measure _ different from Lebesgue
measure on B. For example with _ being the Gaussian measure exp(−‖x‖2)𝑑x on
R𝑑 , or the exponential measure exp(−∑

𝑗 𝑥 𝑗)𝑑x on R𝑑+ , one may approximate the
value _(𝑆) for non-compact semi-algebraic sets, as closely as desired; see e.g. [64].

Application in probability. Suppose that 𝑋 is a R𝑑-valued random vector whose
distribution is only partially known through a few of its moments 𝒎 = (𝑚𝜶)𝜶∈Γ,
where Γ ⊂ N𝑑 is a finite set (typically the index set of moments up to order 3, 4).
Next, let 𝑆 ⊂ R𝑑 be a given compact basic semi-algebraic set with nonempty
interior. The goal is to provide the best upper bound on Prob(𝑋 ∈ 𝑆), under the
partial knowledge of 𝒎 = (𝑚𝜶)𝜶∈Γ, that is, compute:

(70) 𝜌 = max
`∈ℳ(R𝑑)+

{ `(𝑆) :
∫

x𝜶 𝑑` = 𝑚𝜶 , ∀𝜶 ∈ Γ } .

Observe that (70) is an instance of the GMP (64) but with non-polynomial data
because with ` ∈ ℳ(R𝑑)+, `(𝑆) = `(1𝑆) and 1𝑆 is not a polynomial. We need
consider that ` = 𝜙 + a with 𝜙 ∈ ℳ(𝑆)+ (in which case 𝜙(𝑆) = 𝜙(1) = 𝜙0), and so
for every 𝑛 ∈ N, consider the optimization problem,

(71)
𝜏𝑛 = max

𝝓,𝝂
{ 𝜙0 : 𝜙𝜶 + a𝜶 = 𝑚𝜶 , ∀𝜶 ∈ Γ ;

M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 ; M𝑛(𝝂) � 0 } ,
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which is a relaxation of (70) and a variant of (67) (in fact even easier because now
Γ is a finite set instead of the countable setN𝑑). For instance with Γ = N𝑑

2𝑡 for some
fixed 𝑡, the dual of (71) reads:

(72)
𝜏∗𝑛 = min

𝑝
{
∑︁
𝜶∈Γ

𝑝𝜶 𝑚𝜶 : 𝑝 − 1 =

𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗

𝑝 ∈ Σ[x]𝑡 ; 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗
; 𝑗 = 0, . . . , 𝑚 } ,

The difference with (68) is that now, even when 𝑛 changes one still searches for
a degree-2𝑡 polynomial 𝑝 ≥ 1𝑆 (where the degree 2𝑡 is fixed by the number of
moments in Γ). In this case we do not have a Gibbs phenomenon because the degree
of 𝑝 is fixed.

Next, let Φ := {` ∈ ℳ(R𝑑)+ :
∫

x𝜶 𝑑` = 𝑚𝜶 , ∀𝜶 ∈ Γ }. If there is some ` ∈ Φ

with a strictly positive density w.r.t. Lebesgue measure, and with all moments
finite, then each relaxation (72) is solvable and there is no duality gap, i.e., 𝜏𝑛 = 𝜏∗𝑛
and there is an optimal solution 𝑝∗ ∈ R[x]𝑡 for all 𝑛. Moreover 𝜏𝑛 ↓ 𝜏 ≥ 𝜌 as
𝑛→ ∞. Finally, the bound 𝜏may be sharp, i.e., 𝜏 = 𝜌 if at some step 𝑛, the moment
matrices of an optimal solution (𝝓, 𝝂) of (71) satisfy some “flatness" property; for
more details see e.g. [56] and [14].

6.2. Illustration in optimal control of dynamical systems. In this section one
briefly describes how to apply the Moment-SOS hierarchy to help solve optimal
control problems (OCP) with algebraic data, i.e., whose description is through
polynomials and basic semi-algebraic sets. Consider the optimal control problem:

(73)

OCP : 𝐽(x0, 0) := min
u

{
∫ 1

0
ℎ(x(𝑡), u(𝑡)) 𝑑𝑡 + 𝐻(x(1))

s.t. ¤x(𝑡) = 𝑓 (x(𝑡), u(𝑡)) , ∀𝑡 ∈ (0, 1)
x(𝑡) ∈ 𝑋 , u(𝑡) ∈ 𝑈 , ∀𝑡 ∈ (0, 1)
x(0) = x0 } ,

where ℎ, 𝐻, 𝑓 are polynomials and 𝑋 ⊂ R𝑑 and 𝑈 ⊂ R𝑚 are basic semi-algebraic
set, and x0 ∈ 𝑋 is the initial condition.

Eq. (73) describes a dynamical system whose evolution in the time interval [0, 1]
of its state x(𝑡) ∈ R𝑑 , 𝑡 ∈ [0, 1], is governed by a controlled ordinary differential
equation (o.d.e.) with vector field 𝑓 : R𝑑 × R𝑚 → R𝑑 , and control u(𝑡) ∈ 𝑈

for all 𝑡 ∈ (0, 1). The goal is to approximate an optimal (or close to optimal)
control trajectory 𝑡 ↦→ u∗(𝑡) ∈ R𝑚, 𝑡 ∈ [0, 1], which minimizes the functional∫ 1
0 ℎ(x(𝑡), u(𝑡))𝑑𝑡 + 𝐻(x(1)). We here do not discuss the appropriate function

spaces in which one has to search the state and control trajectories x(𝑡), u(𝑡), but
rather to show

- (i) how to model (73) as a particular instance of the GMP (64), and
- (ii) how to define an appropriate Moment-SOS hierarchy for solving (73).

It is important to emphasize that in contrast to POPs where one searches for a
point x∗ ∈ 𝑆 ⊂ R𝑑 , one now searches for maps (x∗, u∗) : [0, 1] → R𝑑 ×R𝑚, a much
more difficult problem which is already infinite-dimensional in its description.
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Strategy. As for (static) optimization problems (1) where in the Moment-SOS hier-
archy one searches for a probability measure (the Dirac measure 𝛿{x∗ } at a global
minimizer x∗ ∈ 𝑆), here one will also searches for a measure `, now supported on
an optimal state-control trajectory {(x∗(𝑡), u∗(𝑡))} from time 𝑡 = 0 up to time 𝑡 = 1.

By integrating polynomial test functions along feasible trajectories, the ordi-
nary differential equation that governs the dynamical system will provide linear
constraints on moments of ` and moments of a terminal measure a on 𝑋 at time
𝑡 = 1 (because the vector field 𝑓 in (73) is a polynomial). The state and control
constraints in (73) translate into support constraints on ` and a.
Modeling (73) as a GMP via occupation measures. The idea is to look at (73) via
its impact on the evaluation of test functions all along feasible trajectories. Let
{(x(𝑡), u(𝑡)) : 𝑡 ∈ [0, 1]} be an admissible trajectory, and let (x, 𝑡) ↦→ 𝑤(x, 𝑡) be an
arbitrary test function in 𝒞

1(𝑋 × [0, 1]): Then observe that

𝑤(x(1), 1) − 𝑤(x(0), 0) =

∫ 1

0
𝑑𝑤(x(𝑡), 𝑡)(74)

=

∫ 1

0

𝜕𝑤(x(𝑡), 𝑡)
𝜕𝑡

+ 〈∇x𝑤(x(𝑡), 𝑡), 𝑓 (x(𝑡), u(𝑡))〉 𝑑𝑡 .

Introduce the measures ` on 𝑋 ×𝑈 × [0, 1], and a0, a on 𝑋 × [0, 1]:

`(𝐴 × 𝐵 × 𝐶) =

∫
𝐶∩[0,1]

1𝐴∩𝑋 (x(𝑡)) 1𝐵∩𝑈 (u(𝑡)) 𝑑𝑡(75)

a(𝐴 × 𝐶) = 1(𝐴∩𝑋 )×(𝐶∩{1})(x, 𝑡)(76)
a0(𝐴 × 𝐶) = 1(𝐴∩𝑋 )×(𝐶∩{0})(x, 𝑡) ,(77)

for all Borel sets 𝐴 ∈ B(𝑋), 𝐵 ∈ B(𝑈), and 𝐶 ∈ B([0, 1]). The measure `

is called the occupation measure up to time 1 while a0 (resp. a) is called the
occupation measure at time 𝑡 = 0 (resp. at time 𝑡 = 1), all associated with the
trajectory {(x(𝑡), u(𝑡)) : 𝑡 ∈ [0, 1]}. Another equivalent characterization of ` is via
its disintegration

(78) 𝑑`(x, u, 𝑡) = 𝛿{(x(𝑡),u(𝑡))}(𝑑(x, u)) 1[0,1](𝑡) 𝑑𝑡 ,

into:
– its marginal 1[0,1](𝑡) 𝑑𝑡 on [0, 1], and
– its conditional probability 𝛿{(x(𝑡),u(𝑡))}(𝑑(x, u)) on 𝑋 × 𝑈, given 𝑡 ∈ [0, 1]

(which is the Dirac measure at the point (x(𝑡), u(𝑡)) ∈ 𝑋 ×𝑈).

Importantly, observe that the support of ` is the graph {(𝑡, x(𝑡), u(𝑡)) : 𝑡 ∈ [0, 1]}
of state-control trajectories (x(𝑡), u(𝑡)). Ideally one searches for the measure

𝑑`∗(x, u, 𝑡) = 𝛿{(x∗(𝑡),u∗(𝑡))}(𝑑(x, u)) 1[0,1](𝑡) 𝑑𝑡 ,

whose support is precisely the graph of optimal state-control trajectories (x∗(𝑡), u∗(𝑡)),
𝑡 ∈ [0, 1] (when the latter exist).
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One reason why one introduces occupation measures is that the time integral
(74) reads as the spatial integral

(79)
∫

𝑤 𝑑a −
∫

𝑤 𝑑a0 =

∫
𝜕𝑤

𝜕𝑡
(x, 𝑡) + 〈∇x𝑤(x, 𝑡), 𝑓 (x, u)〉 𝑑`(x, u, 𝑡) ,

where the variables (x, u, 𝑡) are now treated as independent variables. The respective
dependence of (x, u) on 𝑡 is implicit through the support of `.

Next, introduce the operator L : 𝒞1(𝑋 × [0, 1]) → 𝒞(𝑋 ×𝑈 × [0, 1]) :

𝑤 ↦→ L𝑤 :=
𝜕𝑤

𝜕𝑡
+ 〈∇x𝑤, 𝑓 〉 ,

and its adjoint L∗ : 𝒞(𝑋 ×𝑈 × [0, 1])∗ → 𝒞
1(𝑋 × [0, 1])∗ by:

` ↦→ L∗` := −𝜕`
𝜕𝑡

−
𝑑∑︁
𝑖=1

𝜕( 𝑓𝑖`)
𝜕𝑥𝑖

= −𝜕`
𝜕𝑡

− div( 𝑓 `) ,

where derivatives of measures are understood in a weak sense via their actions on
smooth test functions (and the change of signs comes from integration by parts).
Then (79) reads

〈𝑤, a〉 − 〈𝑤, a0〉 = 〈L𝑤, `〉 = 〈𝑤,L∗`〉 ,
and as it must be valid for all test functions 𝑤 in a dense subset D ⊂ 𝒞

1(𝑋 × [0, 1]),
one obtains the equation L∗` = a − a0, i.e.,

(80)
𝜕`

𝜕𝑡
+ div( 𝑓 `) + a = a0 .

Eq (80) is a linear transport equation (transporting a0 to a) which is classical in
fluid mechanics, statistical physics and PDEs. It is known under several names, as
equation of conservation of mass, advection equation or Liouville’s equation.

This observation yields to define the so-called measure-valued weak formulation
of OCP:

(81)

𝜌 = inf
`,a

∫
ℎ 𝑑` +

∫
𝐻 𝑑a

s.t.
∫

𝜕𝑤

𝜕𝑡
+ 〈∇x𝑤, 𝑓 〉 𝑑` =

∫
𝑤 𝑑a −

∫
𝑤 𝑑a0, ∀𝑤 ∈ D ;

` ∈ ℳ(𝑋 ×𝑈 × [0, 1])+ , a ∈ ℳ(𝑋)+ ,
introduced by [134].

Observe that if D is a countable set of polynomials then (81) is an instance of
the GMP in (64) and of course a relaxation of (73) so that 𝜌 ≤ 𝐽. The dual of (81)
reads

(82)
𝜌∗ = sup

𝑤 ∈𝒞1(𝑋×[0,1])

∫
𝑤 𝑑a0 (= 𝑤(x0, 0)) :

s.t. ℎ + L𝑤 ≥ 0 , ∀(x, u, 𝑡) ∈ 𝑋 ×𝑈 × [0, 1] ;
𝑤(x, 1) ≤ 𝐻(x) , ∀x ∈ 𝑋 } .

It turns out that under some convexity assumptions, 𝜌 = 𝐽(x0, 0), i.e., the measure-
valued weak formulation (81) is equivalent to the strong formulation (73). In the
dual (82) one approximates the optimal value function 𝐽 : 𝑋 × [0, 1] → R all
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along an optimal trajectory {(x∗(𝑡), 𝑡) : 𝑡 ∈ [0, 1]; x∗(0) = x0} (but not for all
(x, 𝑡) ∈ 𝑋 × [0, 1]). For more details see e.g. [68], [47], and references therein.

Next, to implement the moment SOS hierarchy one first selects a countable set
of test functions D, namely the set of monomials

D := { (x𝜶 u𝜷 𝑡𝑘) : 𝜶 ∈ N𝑑 , 𝜷 ∈ N𝑚 , 𝑘 ∈ N } ,
which is dense in 𝒞

1(X × [0, 1]). Then for every 𝑛 ∈ N, let D𝑛 := {(x𝜶 u𝜷 𝑡𝑘) ∈
D : |𝜶 + 𝜷| + 𝑘 ≤ 2𝑛 }, and consider the optimization problem:

(83)

𝜌𝑛 = min
𝝁,𝝂

`(ℎ) + a(𝐻)

s.t. `(
𝜕𝑤

𝜕𝑡
+ 〈∇x𝑤, 𝑓 〉) = a(𝑤) − a0(𝑤) , ∀𝑤 ∈ D𝑛 ;

M𝑛(𝝁) , M𝑛(𝝂) � 0 ;
M𝑛−𝑑𝑔 (𝑔 · 𝝁) , M𝑛−𝑑𝑔 (𝑔 · 𝝂) � 0 , ∀𝑔 ∈ 𝐺 ;
M𝑛−1(𝑡(1 − 𝑡) · 𝝁) � 0 , M𝑛−𝑑\

(\ · 𝝁) � 0 , ∀\ ∈ Θ .

where 𝑋 = {x : 𝑔(x) ≥ 0 , 𝑔 ∈ 𝐺}, 𝑈 = {u : \(u) ≥ 0 , \ ∈ Θ}, 𝑑𝑔 = ddeg(𝑔)/2e,
𝑔 ∈ 𝐺, and 𝑑\ = ddeg(\)/2e, \ ∈ Θ.

So the sequence of optimal values (𝜌𝑛)𝑛∈N is monotone non decreasing and
under the convexity assumptions alluded to above, 𝜌𝑛 ↑ 𝐽(x0, 0) as 𝑛→ ∞.
Reconstruction of optimal trajectories from moments. So far, by solving the semi-
definite relaxations (83) one obtains a sequence (𝜌𝑛)𝑛∈N of lower bounds on the
optimal value 𝐽 of the initial OCP (73). But from the vector of pseudo-moments
(𝝁𝑛, 𝝂𝑛) optimal solution of (83) for some degree 𝑛, can one retrieve or approx-
imate optimal trajectories (x∗(𝑡), u∗(𝑡)) when they exist, or provide Y-suboptimal
trajectories otherwise?

Again and ideally, when 𝑛 is sufficiently large, one expects that (𝝁𝑛, 𝝂𝑛) approx-
imates quite well moments of the measures

𝑑`(x, u, 𝑡) = 𝛿{x∗(𝑡),u∗(𝑡))}(𝑑(x, u)) 1[0,1](𝑡) 𝑑𝑡 ,
and a supported respectively on the trajectories (x∗(𝑡), u∗(𝑡)) and on the point
(x∗(1), 1) ∈ 𝑋 × {1}. In Section 7.3 one describes an efficient strategy via the
Christoffel function, a tool from approximation theory and orthogonal polynomials,
particularly well suited to identify the support of a measure from the sole knowledge
of its moments.

6.3. Other applications. We here provide the reader with some references to other
applications of the Moment-SOS hierarchy. The purpose of this list which is not
exhaustive, is to convince the reader that indeed the Moment-SOS hierarchy is a
versatile tool, widely applicable as soon as the problem data are algebraic, and
provided that some sparsity and/or symmetries can be exploited when the problem
size demands.

• In control and stochastic control: [110], [36], [106, 109, 4, 108], [46], [29],
[33].

• For convex computation of region of attraction for dynamical systems,
see e.g. [37, Chapter 10], and for analysis and control of some types on
non-linear PDEs, see e.g. [87], [37, Chapter 11] and [47].
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• In tensor computation: [98], [101, 27, 97].
• In algorithmic game theory: [127], [53], [100].
• In management of energy networks, and in particular the for solving the

Optimal Power Flow Problem (OPF) problem for (large) electricity net-
works. The Moment-SOS hierarchy has been able to handle problems with
thousands variables by exploiting some inherent sparsity, in the spirit of
Section 3.8; see e.g. [89, 130, 88, 19, 35].

• In Computer Science, e.g., for coding, packing problems: [8], [7], [22],[51].
• In Computer Vision, Geometric perception and Pattern Recognition : [140,

143, 142, 112].
• In mathematical finance for portfolio optimization and option pricing see

[72], [31]. When the evolution in time is modeled by Ito’s stochastic
differential equations, a weak formulation of the problem via occupation
measures, is almost identical to that of OCPs with the only difference that
a second-order differential operator appears in the infinitesimal generator.
It is also the case for computing exit-time distribution (of a given set) in
stochastic models as described in e.g. [71].

• In Internet of Things (IoT): [119].
• In computer graphics and geometry processing. [83, 84].
• In signal processing. [82, 18].
• For optimal design in Statistics: [17].
• In physics for bounding ground-state energy of interacting particule sys-

tems: [50].
• In Chemistry for deriving bounds on stochastic chemical kinetic systems:

[23].
• In traffic networks for bounding travel time: [40].
• in Engineering: [20].
• In Machine Learning for certification of robustness for Neural Networks:

[74, 131].
• In Quantum Information (e.g., for several problems in entanglement the-

ory): see [26, 5, 105, 21, 120].
• In data analysis of citation networks: see e.g. [139].
• In radar and wireless communications: see [103].
• In medical applications of cancer treatment: see [90].
• In truss topology design: see [132].

6.4. Notes and Sources. Section 6.1 is based on [56] and [39] while Section 6.2 is
based on [68]. Infinite-dimensional LP formulations of optimal control problems
can be traced back to works of L.C. Young, A.F. Filippov R.V. Gamkrelidze, J.
Warga; see [30] for a historical survey. The novelty is the observation that such
problems (with algebraic data) can be approximated numerically by semidefinite
relaxations. In particular it should be noted that while state-constraints “x(𝑡) ∈ 𝑋
for all 𝑡", are usually considered a source of additional difficulties for classical
numerical methods, they pose no problem for the Moment-SOS hierarchy as they
simply appear in the support of the occupation measure.
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The Moment-SOS hierarchy approach to analysis and control of some Non-
Linear PDEs in [47] follows same principles as for solving OCPs. Namely on
considers a measure-valued weak formulation of the problem, similar as the one
in (81) for OCP’s, using test functions and occupation measures. Appropriate
conditions are required for the weak formulation to be equivalent to the initial
(strong) formulation. For instance for the Burgers equation, additional entropy
constraints (due to Kruzkhov) on the occupation measures are needed; see [87] and
[37, Chapter 11].

The reconstruction technique of state and control trajectories based on the
Christoffel function is detailed in [86]. In particular, this technique has been
used with success in [87] to recover solutions to Burgers PDE from moments of the
measure supported on their graph. A (remarkably accurate) approximation of such
moments have been obtained by solving semidefinite relaxations of the Moment-
SOS hierarchy applied to the weak measure-valued formulation of Burgers equation
(and in spirit similar to (83) for optimal control problems). The role and remarkable
properties of the Christoffel function to recover a function from the sole knowledge
of moments of the (degenerate) measure supported on its graph, is also treated in
more details in Section 7.

7. Positive polynomials and Christoffel function

In this section one introduces the Christoffel-Darboux (CD) kernel and the
Christoffel function (CF) which are classical tools from the fields of orthogonal
polynomials and approximation theory. In addition of being interesting in their
own right,

- they prove to be useful to understand and interpret the Moment-SOS hierarchy
of lower bounds,

- the CF also appears in a certain distinguished representation of polynomials
that are positive on a semi-algebraic set 𝑆 ⊂ R𝑑 as in (13), extensively used in the
Moment-SOS hierarchy. In particular, every SOS polynomial 𝑝 in the interior of
the convex cone Σ[x]𝑛 of degree-2𝑛 SOS polynomials, is the reciprocal of the CF
of some linear functional 𝜙 in R[x]∗2𝑛. If 𝑛 = 2 then 𝜙 has a clear interpretation in
terms of a Gaussian measure but in the general case, the link between 𝑝 and 𝜙 is
only partially understood and remains to be interpreted.

7.1. Christoffel-Darboux kernel and Christoffel Function. The CF is usually
defined for a measure ` with moments 𝝁 = (`𝜶)𝜶∈N𝑑 whose support 𝑆 ⊂ R𝑑
is compact and such that its moment matrix M𝑛(𝝁) (or equivalently, M𝑛(`)) is
positive definite for every degree 𝑛 ∈ N. However it can be also defined for a Riesz
linear functional 𝜙 ∈ R[x]∗ (with 𝝓 = (𝜙𝜶)𝜶∈N𝑑 ) such that M𝑛(𝝓) � 0 for every
𝑛 ∈ N, not necessarily coming from a measure `.

So after fixing some ordering of monomials in N𝑑 , and since M𝑛(𝝓) � 0 for
every 𝑛, let (𝑃𝜶)𝜶∈N𝑑 be a family of polynomials that are orthonormal w.r.t. 𝜙, that
is, such that

(84) 𝜙(𝑃𝜶 𝑃𝜷) = 𝛿𝜶=𝜷 , ∀𝜶, 𝜷 ∈ N𝑑 ,
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where 𝛿 ·=· is the usual Kronecker symbol (with value 1, if 𝜶 = 𝜷 and 0 otherwise).
For every 𝑛 ∈ N, the Christoffel-Darboux (CD) kernel 𝐾 𝜙

𝑛 : R𝑑 × R𝑑 → R is
then defined by:

(85) (x, y) ↦→ 𝐾
𝜙
𝑛 (x, y) :=

∑︁
𝜶∈N𝑑

𝑛

𝑃𝜶(x) 𝑃𝜶(y) , ∀x, y ∈ R𝑑 , 𝑛 ∈ N ,

and the Christoffel function (CF) Λ𝜙
𝑛 : R𝑑 → R+ is defined by

(86) x ↦→ Λ
𝜙
𝑛 (x) := 𝐾

𝜙
𝑛 (x, x)−1 , ∀x ∈ R𝑑 , 𝑛 ∈ N ,

i.e., the CF is the reciprocal of the “diagonal" of the CD kernel. Hence by con-
struction 1/Λ𝜙

𝑛 is an SOS polynomial of degree 2𝑛.

A reproducing property. Let 𝑝 ∈ R[x]𝑛 and as (𝑃𝜶)𝜶∈N𝑑
𝑛

form a basis of R[x]𝑛,
write

x ↦→ 𝑝(x) =
∑︁
𝜶∈N𝑑

𝑛

𝑝𝜶 𝑃𝜶(x) ∀x ∈ R𝑑 ,

for some vector of coefficients p = (𝑝𝜶)𝜶∈N𝑑
𝑛

in R𝑠(𝑛) (with 𝑠(𝑛) =
(
𝑛+𝑑
𝑑

)
).

With x ∈ R𝑑 fixed, y ↦→ 𝐾
𝜙
𝑛 (x, y) ∈ R[y]𝑛, and we have

𝜙(𝐾 𝜙
𝑛 (x, ·) 𝑝) = 𝜙

(
∑︁
𝜶∈N𝑑

𝑛

𝑃𝜶(x) 𝑃𝜶(y)) · (
∑︁
𝜷∈N𝑑

𝑛

𝑝𝜷 𝑃𝜷(y))


=

∑︁
𝜶∈N𝑑

𝑛

𝑝𝜶 𝑃𝜶(x) = 𝑝(x) , ∀𝑝 ∈ R[x]𝑛 ,(87)

where we have used that

𝜙(𝑝𝜷𝑃𝜷(y) 𝑃𝜶(x)𝑃𝜶(y)) = 𝑝𝜷 𝑃𝜶(x) 𝜙(𝑃𝜷 𝑃𝜶) = 𝑝𝜷 𝑃𝜶(x) 𝛿𝜷=𝜶 .

For this reason, if ` is a measure on 𝑆 ⊂ R𝑑 , and 𝐿2(`) is the Hilbert space of
square integrable functions w.r.t. `, with scalar product

〈 𝑓 , 𝑔〉 =

∫
𝑆

𝑓 𝑔 𝑑` , ∀ 𝑓 , 𝑔 ∈ 𝐿2(`) ,

then (R[x]𝑛, 〈·, ·〉) ⊂ 𝐿2(`) is called a Reproducing Kernel Hilbert Space (RKHS)
with kernel 𝐾`

𝑛 , because∫
𝑆

𝐾
`
𝑛 (x, y) 𝑝(y) 𝑑`(y) = 𝑝(x) , ∀𝑝 ∈ R[x]𝑛 .

Alternative formulations of the CF. Alternatively, the CF can be also be defined
by:

(88) Λ
𝜙
𝑛 (𝝃)−1 = v𝑛(𝝃)𝑇 M𝑛(𝝓)−1 v𝑛(𝝃) , ∀𝝃 ∈ R𝑑 ,

(the ABC theorem in [124]) and it also has the variational formulation:

(89) Λ
𝜙
𝑛 (𝝃) = min

𝑝∈R[x]𝑛
{ 𝜙(𝑝2) : 𝑝(𝝃) = 1 } , ∀𝝃 ∈ R𝑑 .
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In particular, observe that (89) can be rewritten

Λ
𝜙
𝑛 (𝝃) = min

p∈R𝑠(𝑛)
{ p𝑇 M𝑛(𝝓)p : 〈p, v𝑛(𝝃)〉 = 1 } , ∀𝝃 ∈ R𝑑 ,

which is a convex quadratic optimization problem which can be solved efficiently
even for large dimension 𝑑. After some algebra, the unique optimal solution
𝑝∗ ∈ R[x]𝑛 of (89) reads

x ↦→ 𝑝∗(x) =
𝐾

𝜙
𝑛 (𝝃, x)

𝐾
𝜙
𝑛 (𝝃, 𝝃)

, ∀x ∈ R𝑑 .

7.2. Some useful properties of the CF. A crucial property of the CFs (Λ`
𝑛 )𝑛∈N

associated with a measure ` on a compact set 𝑆 ⊂ R𝑑 , is to identify the support of
`. Indeed its decay with the degree 𝑛 exhibits the following interesting dichotomy:

• ∀𝝃 ∈ supp(`), Λ`
𝑛 (𝝃)−1 grows at most as a polynomial in 𝑛.

• ∀𝝃 ∉ supp(`), Λ`
𝑛 (𝝃)−1 grows at least as an exponential in 𝑛.

This property has been exploited in data analysis to provide a simple and easy-to-
use tool (with no tuning of parameters), e.g. to detect outliers, with similar (and
sometimes better) performance as state-of-the-art techniques; see [70, 69].

Next let ` have a density 𝑓 w.r.t. Lebesgue measure on 𝑆. Under some additional
regularity properties of ` and its support 𝑆,

(90) lim
𝑛→∞

𝑠(𝑛)Λ`
𝑛 (𝝃) = 𝑓 (𝝃)/`𝐸 (𝝃) ,

uniformly on compact subsets of int(𝑆), where `𝐸 is the density of a so-called
equilibrium measure of 𝑆.

Equilibrium measure. A Borel measure ` supported on a compact set 𝑆 ⊂ R𝑑 sat-
isfies the Bernstein-Markov property if there exists a sequence of positive numbers
(𝑀𝑛)𝑛∈N such that for all 𝑛 and 𝑝 ∈ R[x]𝑛,

(91) sup
x∈𝑆

|𝑝(x)| ≤ 𝑀𝑛 ·
(∫

𝑆

𝑝2 𝑑`

)1/2
, and lim

𝑛→∞
log(𝑀𝑛)/𝑛 = 0

(see e.g. [70, Section 4.3.3]). The Bernstein-Markov property allows qualitative
description for asymptotics of the Christoffel function as 𝑛 grows.

The notion of equilibrium measure associated to a given set, originates from
logarithmic potential theory (working inC in the univariate case) to minimize some
energy functional. For instance, the (Chebsyshev) measure 𝑑` := 𝑑𝑥/𝜋

√
1 − 𝑥2 is

the equilibrium measure of the interval [−1, 1]. Some generalizations have been
obtained in the multivariate case via pluripotential theory in C𝑑 . In particular if
𝑆 ⊂ R𝑑 ⊂ C𝑑 is compact then its equilibrium measure (let us denote it by _𝑆)
is equivalent to Lebesgue measure on compact subsets of int(𝑆). It has an even
explicit expression if 𝑆 is convex and symmetric about the origin; see e.g. [12] [13,
Theorem 1.1and Theorem 1.2]. Moreover if ` is a Borel measure on 𝑆 and (𝑆, `) has
the Bernstein-Markov property (91) then the sequence of measures a𝑛 =

`

𝑠(𝑛)Λ`
𝑛(x) ,
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𝑛 ∈ N, converges to _𝑆 for the weak-★ topology and therefore in particular:

(92) lim
𝑛→∞

∫
𝑆

x𝜶 𝑑a𝑛 = lim
𝑛→∞

∫
𝑆

x𝜶 𝑑`(x)
𝑠(𝑛)Λ`

𝑛 (x)
=

∫
𝑆

x𝜶 𝑑_𝑆 , ∀𝜶 ∈ N𝑑 .

(See e.g. [70, Theorem 4.4.4].) In addition, if the compact 𝑆 ⊂ R𝑑 is regular
then (𝑆, _𝑆) has the Bernstein-Markov property. For a brief account on equilibrium
mesures see [12, 13], the discussion in [70, Section 4-5, pp. 56–60] while for more
detailed expositions see some of the references therein.

7.3. The CF for interpolation and approximation. In this section one briefly
addresses the following issue which is interesting in its own right and is also central
in the recovery of an optimal (or Y-optimal) trajectory {x(𝑡) : 𝑡 ∈ [0, 1]} in optimal
control problems, from the sole knowledge of moments of the occupation measure
supported on the graph {(𝑡, x(𝑡)) : 𝑡 ∈ [0, 1]}; see Section 6.2.

So with 𝑋 ⊂ R, let ` be a measure on [0, 1] × 𝑋 , defined by

𝑑`(𝑡, 𝑥) = 𝛿{ 𝑓 (𝑡)}(𝑑𝑥) 1[0,1](𝑡) 𝑑𝑡 ,

for some unknown measurable function 𝑓 : [0, 1] → 𝑋 , i.e., ` is supported on the
graph {(𝑡, 𝑓 (𝑡)) : 𝑡 ∈ [0, 1]} of 𝑓 . The goal is to recover 𝑓 from the sole knowledge
of moments 𝝁 = (`𝑖 𝑗)(𝑖, 𝑗)∈N2 where :

`𝑖 𝑗 =

∫
𝑡𝑖𝑥 𝑗 𝑑`(𝑡, 𝑥) =

∫ 1

0
𝑡𝑖 𝑓 (𝑡) 𝑗 𝑑𝑡 , (𝑖, 𝑗) ∈ N2 .

We propose to use the Christoffel function Λ
`
𝑛 to recover 𝑓 from 𝝁 because as seen

before, Λ`
𝑛 is a good tool to identify the support of `, and in this case the support

is precisely the graph of the unknown function 𝑓 to recover. Here observe that `
is a degenerate measure on [0, 1] × 𝑋 , i.e. its support has Lebesgue measure zero
on [0, 1] × 𝑋 . Therefore its moment matrix M𝑛(`) can be ill-conditioned and even
singular if 𝑓 is a polynomial (because then the vector of coefficients of 𝑓 ∈ R[𝑡]
is in the kernel of M𝑛(`) when 𝑛 is sufficiently large). So one first “perturbates"
(or regularizes) M𝑛(`) to M𝑛(`) + YI with I the identity matrix and some small
regularization parameter Y > 0, and one defines a new perturbated Christoffel
function Λ̂

`
𝑛 by:

(93) (𝑡, 𝑥) ↦→ Λ̂
`
𝑛 (𝑡, 𝑥)−1 := v𝑛(𝑡, 𝑥)𝑇 (M𝑛(`) + YI)−1v𝑛(𝑡, 𝑥) , ∀(𝑡, 𝑥) ∈ R2 .

Then define the following 𝑛-approximant 𝑓𝑛 : [0, 1] → 𝑋 of 𝑓 by:

(94) 𝑡 ↦→ 𝑓𝑛(𝑡) := arg min
𝑥∈𝑋

Λ̂
`
𝑛 (𝑡, 𝑥)−1 , 𝑡 ∈ [0, 1] .

(In case of several minimizers in (94) then as a tie-breaker rule just take the
smallest one.) For every fixed 𝑡 ∈ [0, 1], computing 𝑓𝑛(𝑡) can be done efficiently
as 𝑥 ↦→ Λ̂

`
𝑛 (𝑡, 𝑥)−1 is a univariate SOS polynomial in 𝑥.

Next, as 𝑛 increases, pointwise convergence (except at points of discontinuity)
and 𝐿1-norm convergence to 𝑓 are proved in [86]. Observe that the 𝑓𝑛 approximant
(94) is not a polynomial and being semi-algebraic, it is able approximate quite well
some discontinuous functions with no Gibbs phenomenon.
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For instance in Figure 7.3 (left) one may observe a typical Gibbs phenomenon
(oscillations) when approximating the (discontinuous) step function 𝑡 ↦→ 𝑓 (𝑡) = 0
if 𝑡 ∈ [0, 1/2] and 𝑓 (𝑡) = 1 if 𝑡 ∈ (1/2, 1] (in red) by a polynomial 𝑝∗ ∈ R[𝑡]𝑛 (in
black) that minimizes the integral of the mean squared error, i.e.,

𝑝∗ = arg min
𝑝∈R[𝑡 ]𝑛

∫ 1

0
(𝑝 − 𝑓 )2 𝑑𝑡

(even with degree 𝑛 = 12). This 𝐿2-norm approximation of 𝑓 is a standard
application of the CD-kernel 𝐾a

𝑛 associated with the univariate measure a = 𝑓 (𝑡)𝑑𝑡
on [0, 1]. On the other hand, with Y > 0 very small and 𝑓𝑛 as in (94), the step
function is recovered almost exactly (in black) with no Gibbs phenomenon and with
small degree 𝑛 = 4. This is what one may call a non-standard application of the CD
kernel as one considers the degenerate bivariate measure ` on 𝑋 × [0, 1] instead of
the univariate measure a = 𝑓 (𝑡)𝑑𝑡 on [0, 1].

Similarly in Figure 7.3, two discontinuous Eckhoff functions from [25] in red are
also recovered (in black) with very good precision via 𝑓𝑛 in (94) with 𝑛 = 10, and
again with no Gibbs phenomenon; for more details the reader is referred to [86].

Figure 7.1. Left: Degree-12 polynomial approximation of step
function with Gibbs phenomenon and right: step function approx-
imated by 𝑓4 in (94). © Reprinted from [86]

Figure 7.2. Two Eckhoff functions [25] approximated by 𝑓10 in
(94). © Reprinted from [70]

Application to optimal control. As was already mentioned in Section 6.2, such a
technique of approximation can be used to recover the graph of functions supported
on trajectories {(x∗(𝑡), u∗(𝑡)) : 𝑡 ∈ [0, 1]}, optimal solutions of optimal control
problems (73) described in Section 6.2. Indeed when applying the Moment-SOS
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hierarchy to solve (73), at an optimal solution of (83) one obtains approximate
moments up to degree 2𝑛, of the measure

𝑑`∗(x, u, 𝑡) = 𝛿{(x∗(𝑡),u∗(𝑡))} 1[0,1](𝑡) 𝑑𝑡 ,

supported on the graph of the map (x∗, u∗) : [0, 1] → R𝑑 × R𝑚.
For instance, to recover the particular trajectory {𝑥∗

𝑖
(𝑡) : 𝑡 ∈ [0, 1]} for some

coordinate 𝑖 ∈ {1, . . . , 𝑑}:
– Extract the sub-matrix M(𝑥𝑖 ,𝑡)

𝑛 of M𝑛(`) obtained by restricting to rows and
columns indexed by monomials (𝑥𝑘

𝑖
𝑡 𝑗), (𝑘, 𝑗) ∈ N2

𝑛 (i.e., M(𝑥𝑖 ,𝑡)
𝑛 is the degree-𝑛

moment matrix of the marginal `𝑖 of ` on (𝑥𝑖 , 𝑡)), and
– compute the perturbed Christoffel function in (93) associated with `𝑖 , i.e.,

Λ̂
`𝑖
𝑛 (𝑥𝑖 , 𝑡)−1 = v𝑛(𝑥𝑖 , 𝑡)𝑇 (M(𝑥𝑖 ,𝑡)

𝑛 + Y I)−1v𝑛(𝑥𝑖 , 𝑡) ,

and then the 𝑓𝑛 approximant of the function 𝑥𝑖(𝑡) is obtained via (94).
The same procedure is repeated for all coordinates 𝑥∗

𝑖
(𝑡), 𝑖 ∈ {1, . . . , 𝑑}, of x∗(𝑡),

and all coordinates 𝑢∗
𝑗
(𝑡), 𝑗 ∈ {1, . . . , 𝑚}, of u∗(𝑡), independently.

7.4. Christoffel function and positive polynomials. One has first noticed that by
construction, the reciprocal of a Christoffel function is an SOS polynomial. Next,
with 𝑆 ⊂ R𝑑 as in (13), recall the convex cone

(95) 𝑄𝑛(𝑔) :=


𝑚∑︁
𝑗=0
𝜎𝑗 𝑔 𝑗 : 𝜎𝑗 ∈ Σ[x]𝑛−𝑑 𝑗

, 𝑗 = 0, . . . , 𝑚
 ,

which is degree-2𝑛 truncated version of the quadratic module 𝑄(𝑔) (with 𝑑 𝑗 =

ddeg(𝑔 𝑗)/2e and 𝑔0 = 1). For every polynomial 𝑝 =
∑

𝑗 𝜎𝑗𝑔 𝑗 ∈ 𝑄𝑛(𝑔), the SOS
weights 𝜎𝑗 provide 𝑝 with an algebraic certificate of its positivity on 𝑆.

Recall that the dual of 𝑄𝑛(𝑔) is the convex cone

(96) 𝑄∗
𝑛(𝑔) = { 𝝓 ∈ R𝑠(2𝑛) : M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 } ,

where M𝑛(𝑔 𝑗 ·𝝓) is the localizing matrix associated with the polynomial 𝑔 𝑗 and the
sequence 𝝓 (or equivalently the moment matrix associated with the sequence 𝑔 𝑗 ·𝝓),
defined in Section 2.1. One has seen that𝑄𝑛(𝑑) and its dual𝑄∗

𝑛(𝑔) are crucial in the
construction of the Moment-SOS hierarchy of lower bounds in Section 3. It turns
out that there is a nice one-to-one correspondence between the respective interiors
of 𝑄𝑛(𝑔) and 𝑄∗

𝑛(𝑔), stated in terms of Christoffel functions.

Theorem 7.1. If 𝑝 ∈ int(𝑄𝑛(𝑔)) then there exists 𝝓 ∈ int(𝑄∗
𝑛(𝑔)) such that

(97) 𝑝(x) =

𝑚∑︁
𝑗=0

Λ
𝑔 𝑗 ·𝝓
𝑛−𝑑 𝑗

(x)−1 𝑔 𝑗(x) , ∀x ∈ R𝑑 ,

or, equivalently:

(98) int(𝑄𝑛(𝑔)) = {
𝑚∑︁
𝑗=0

(Λ𝑔 𝑗 ·𝝓
𝑛−𝑑 𝑗

)−1𝑔 𝑗 : 𝝓 ∈ int(𝑄∗
𝑛(𝑔)) } .
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Theorem 7.1 is an interpretation in [66] of a duality result of [92]. Remarkably,
it states that every 𝑝 in the interior of 𝑄𝑛(𝑔) has a distinguished certificate of
its positivity on 𝑆, with very specific SOS weights 𝜎𝑗 = (Λ𝑔 𝑗 ·𝝓

𝑛−𝑑 𝑗
)−1 in its Putinar’s

representation (15). Indeed those weights are all coming from a unique element 𝝓 ∈
int(𝑄∗

𝑛(𝑔)) and its Christoffel functions associated with the Riesz linear functionals
𝑔 𝑗 · 𝝓, 𝑗 = 0, . . . , 𝑚. It also turns out that those weights have an extremal property:
Consider the optimization problem:

𝜌𝑛 = inf
𝝓∈R𝑠(2𝑛)

{
−

𝑚∑︁
𝑗=0

log det(M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓)) :(99)

𝜙(𝑝) = 1, M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , ∀ 𝑗 = 0, . . . , 𝑚

}
,

It is a convex optimization problem which has an explicit dual, namely

𝜌∗𝑛 = sup
Q 𝑗

{ 𝑚∑︁
𝑗=0

log det(Q 𝑗) : Q 𝑗 � 0 ,∀ 𝑗 = 0, . . . , 𝑚

(100)

𝑝(x)
𝑚∑︁
𝑗=0
𝑠(𝑛 − 𝑑 𝑗) =

𝑚∑︁
𝑗=0
𝑔 𝑗(x) · v𝑛−𝑑 𝑗

(x)𝑇 Q 𝑗v𝑛−𝑑 𝑗
(x),∀x ∈ R𝑑

}
,

where the supremum is taken over real symmetric matrices Q 𝑗 of respective size
𝑠(𝑛− 𝑑 𝑗), 𝑗 = 0, . . . , 𝑚. The criterion to maximize in (100) is minus the log-barrier
of the convex cone 𝑄𝑛(𝑔).

Theorem 7.2. With 𝑛 ∈ N fixed, Problems (99) and (100) have the same finite
optimal value 𝜌𝑛 = 𝜌∗𝑛 if and only if 𝑝 ∈ int(𝑄𝑛(𝑔)). Moreover, both have a
unique optimal solution 𝝓∗

2𝑛 ∈ R𝑠(2𝑛) and (Q∗
𝑗
) 𝑗=0,...,𝑚 respectively, which satisfy

Q∗
𝑗
= M𝑛−𝑑 𝑗

(𝑔 𝑗 · 𝝓∗
2𝑛)−1 for all 𝑗 = 0, . . . , 𝑚. And, as a consequence,

𝑝(x) =
1

𝑚∑︁
𝑗=0

𝑠(𝑛 − 𝑑 𝑗)

𝑚∑︁
𝑗=0
𝑔 𝑗(x) v𝑛−𝑑 𝑗

(x)𝑇 M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓∗

2𝑛)−1v𝑛−𝑑 𝑗
(x)

=
1

𝑚∑︁
𝑗=0

𝑠(𝑛 − 𝑑 𝑗)

𝑚∑︁
𝑗=0
𝑔 𝑗(x)Λ𝑔 𝑗 ·𝝓∗

2𝑛
𝑛−𝑑 𝑗

(x)−1 , ∀x ∈ R𝑑 .(101)

Notice that 𝝓 in (97) is just (
∑𝑚

𝑗=0 𝑠(𝑛 − 𝑑 𝑗)) 𝝓∗
2𝑛 with 𝝓∗

2𝑛 as in (101).

Of course, Theorem 7.1 immediately raises the following question: given 𝑝 ∈
int(𝑄𝑛(𝑔)) what is this linear functional 𝜙 ∈ R[x]∗2𝑛 with associated moment
sequence 𝝓 ∈ R𝑠(2𝑛) in Theorem 7.1? It turns out that there is a simple and
remarkable answer for special sets 𝑆 and the constant polynomial 𝑝 = 1.



THE MOMENT-SOS HIERARCHY: APPLICATIONS AND RELATED TOPICS 47

Relating the constant polynomial and the equilibrium measure. Let 𝑆 ⊂ R𝑑
in (13) be a compact set with nonempty interior, generated by a finite set �̃� =

{𝑔1, . . . , 𝑔𝑚} ⊂ R[x] of polynomials. Let 𝐺 ⊂ R[x] be a certain finite set of
polynomials formed with some products of polynomials in �̃�. For instance

• If 𝑆 ⊂ R𝑑 is the Euclidean unit ball then �̃� = {𝑔}, 𝐺 = {1, 𝑔}, with
x ↦→ 𝑔(x) = 1 − ‖x‖2. Then the equilibrium measure ` is proportional to
𝑑x/

√︁
1 − ‖x‖2.

• If 𝑆 is the unit box [−1, 1]𝑑 then �̃� = {𝑔1, . . . , 𝑔𝑑} with 𝑔 𝑗(x) = 1 − 𝑥2
𝑗
,

𝑗 = 1, . . . , 𝑑, and 𝐺 = { 𝑔𝜺 : 𝜺 ∈ {0, 1}𝑑 }, where

x ↦→ 𝑔Y(x) :=
𝑑∏
𝑗=1
𝑔 𝑗(x)Y 𝑗 , ∀x ∈ R𝑑 .

The equilibrium measure ` of 𝑆 is proportional to 𝑑x/∏𝑑
𝑗=1

√︃
1 − 𝑥2

𝑗
.

• If 𝑆 ⊂ R𝑑 is the canonical simplex then �̃� = {𝑔1, . . . , 𝑔𝑑+1}with 𝑔 𝑗(x) = 𝑥 𝑗 ,
𝑗 = 1, . . . , 𝑑, 𝑔𝑑+1(x) = 1 − ∑

𝑗 𝑥 𝑗 , and 𝐺 = { 𝑔𝜺 : 𝜺 ∈ {0, 1}𝑑+1 ; |𝜺 | ∈
2N }, where

x ↦→ 𝑔Y(x) :=
𝑑+1∏
𝑗=1
𝑔 𝑗(x)Y 𝑗 , ∀x ∈ R𝑑 .

The equilibrium measure ` of 𝑆 is proportional to 𝑑x/
√︃

(1 −∑
𝑗 𝑥 𝑗)

∏𝑑
𝑗=1 𝑥 𝑗 .

For every 𝑔 ∈ 𝐺 let 𝑡𝑔 := ddeg(𝑔)/2e. In addition, given 𝑛 ∈ N, let 𝐺𝑛 := {𝑔 ∈ 𝐺 :
deg(𝑔) ≤ 2𝑛} so that 𝐺𝑛 = 𝐺 as soon as 𝑛 ≥ d𝑑/2e.

Theorem 7.3 ([67, 73]). Let 𝑆 ⊂ R𝑑 be the Euclidean unit ball, the unit box, or the
simplex, and let ` be its equilibrium measure. Then for all integer 𝑛:

(102) 1 =
1∑

𝑔∈𝐺𝑛
𝑠(𝑡 − 𝑡𝑔)

∑︁
𝑔∈𝐺𝑛

𝑔(x)Λ𝑔 ·`
𝑛−𝑡𝑔 (x)−1 , ∀x ∈ R𝑑 .

So, remarkably, the constant polynomial 𝑝 = 1 ∈ int(𝑄𝑛(𝑔)) for all 𝑛, is strongly
related to the equilibrium measure ` of 𝑆. Its corresponding element 𝝓 ∈ int(𝑄∗

𝑛(𝑔))
in Theorem 7.1, is the moment vector 𝝁 ∈ R𝑠(2𝑛) of `.

In addition, for every 𝑛, the polynomials (𝑔/Λ𝑔 ·`
𝑛−𝑡𝑔 )𝑔∈𝐺𝑛

(all nonnegative on 𝑆)
provide 𝑆 with a polynomial partition of unity. We have called (102) a generalized
polynomial Pell’s equation solved by the Christoffel functions (Λ𝑔 ·`

𝑛−𝑡𝑔 )𝑔∈𝐺𝑛
(and the

polynomials 𝑔 ∈ 𝐺𝑛) because (102) is an exact multivariate generalization of the
polynomial Pell’s equation6

(103) 1 = 𝑇𝑛(𝑥)2 + (1 − 𝑥2)𝑈𝑛−1(𝑥)2 , ∀𝑥 ∈ R ,

6A triple (𝐹, 𝑔, 𝐻) of polynomials in Z[𝑥] satisfy (polynomial) Pell’s equation if 𝐹2 + 𝑔 𝐻2 = 1.
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satisfied by the univariate Chebyshev polynomials of first kind (𝑇𝑛)𝑛∈N and Cheby-
shev polynomials of second kind (𝑈𝑛)𝑛∈N. Indeed after normalization to othonor-
mal polynomials, and summing up (103) over 𝑛, one obtains

(104) 1 =
1

𝑠(𝑛) + 𝑠(𝑛 − 1)
(
Λ

`
𝑛 (𝑥)−1 + 𝑔(𝑥)Λ𝑔 ·`

𝑛−1(𝑥)−1) , ∀𝑥 ∈ R , 𝑛 ∈ N ,

where 𝑔(𝑥) = 1 − 𝑥2, and 𝑑`(𝑥) = 𝑑𝑥/𝜋
√

1 − 𝑥2 is the equilibrium measure of the
interval 𝑆 = [−1, 1]. The term “generalized" is justified because in (102) one
has sum-of-squares in R[x] and several generators 𝑔 ∈ 𝐺𝑛, instead of two single
squares in Z[𝑥] and a single generator 𝑔 in (103). But formally, (102) is exactly of
the same flavor as (104).

Remark 7.4. When 𝑆 = R𝑑 there is still a nice well-known and somehow related
fact. Let 𝑝 ∈ R[x]2 be a quadratic polynomial which is strictly positive on R𝑑 .
With v1(x) = (1, 𝑥1, . . . , 𝑥𝑑), 𝑝 is written as

x ↦→ 𝑝(x) := v1(x)𝑇 Q v1(x) , ∀x ∈ R𝑑 ,

for some (unique) Gram matrix Q � 0. It is well-known that Q−1 is the moment
matrix M1(`) of a Gaussian measure ` on R𝑑 , and therefore

𝑝(x) = Λ
`

1 (x)−1 , ∀x ∈ R𝑑 .

This is another particular case (but in a non-compact setting) where one is able
to identify the linear functional 𝝓 in Theorem 7.1 (with now 𝑄1(𝑔) = Σ[x]1 and
Σ1 [x]∗1 = { 𝝓 ∈ R2𝑑+1 : M1(𝝓) � 0 }. For instance, the scaled Hermite polynomials
of degree at most 1,

𝐻0(x) = (2𝜋)−𝑑/4 ; 𝐻 𝑗(x) = (2𝜋)−𝑑/4𝑥 𝑗 , 𝑗 = 1, . . . , 𝑑 ,

are orthonormal w.r.t. the Gaussian (product measure) 𝑑`(x) = exp(−∑
𝑗 𝑥

2
𝑗
/2) 𝑑x,

and

Λ
`

1 (x)−1 =

𝑑∑︁
𝑗=0

𝐻 𝑗(x)2 = (2𝜋)−𝑑/2(1 + ‖x‖2) .

7.5. Comparing Moment-SOS hierarchies of upper and lower bounds. To
compare the two Moment-SOS hierarchies of upper and lower bounds for solv-
ing the POP

P : 𝑓 ∗ = min { 𝑓 (x) : x ∈ 𝑆 } ,

one expresses them in the same language of polynomial densities w.r.t. a reference
finite Borel probability measure `whose support is exactly the set 𝑆 ⊂ R𝑑 (assumed
to be compact with nonempty interior). Let 𝒫(𝑆) be the space of probability
measures on 𝑆, and let (𝑃𝜶)𝜶∈N𝑑 be a family of polynomials that are orthonormal
w.r.t. `.



THE MOMENT-SOS HIERARCHY: APPLICATIONS AND RELATED TOPICS 49

Moment-SOS hierarchy of Lower bounds. With 𝜙 ∈ R[y]∗2𝑛 arbitrary, and from
the reproducing property (87) of 𝐾`

2𝑛, observe that

𝜙( 𝑓 ) = 𝜙

∫
𝑆

∑︁
𝜶∈N𝑑

2𝑛

𝑃𝜶(y)𝑃𝜶(x) 𝑓 (x) 𝑑`(x)


=

∑︁
𝜶∈N𝑑

2𝑛

𝜙(𝑃𝜶)
∫
𝑆

𝑃𝜶(x) 𝑓 (x) 𝑑`(x)

=

∫
𝑆

𝑓 (x) (
∑︁

𝜶∈N𝑑
2𝑛

𝜙(𝑃𝜶) 𝑃𝜶(x)) 𝑑`(x) =

∫
𝑆

𝑓 (x)𝜎𝜙(x) 𝑑`(x)

where the degree-2𝑛 polynomial

(105) x ↦→ 𝜎𝝓(x) :=
∑︁

𝜶∈N𝑑
2𝑛

𝜙(𝑃𝜶) 𝑃𝜶(x) ,

is a signed density w.r.t. `.
Next, recall that in the semidefinite relaxation (26) of the Moment-SOS hierarchy

of lower bounds on 𝑓 ∗, one searches for a linear functional 𝜙 ∈ R[x]∗2𝑛 which
satisfies

𝜙(1) = 1 ; M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , ∀ 𝑗 = 0, . . . , 𝑚 ,

and which minimizes 〈f, 𝝓〉 = 𝜙( 𝑓 ) =
∫
𝑆
𝑓 𝜎𝝓 𝑑`. Moreover, observe that

1 = 𝜙(1) =

∫
𝑆

𝜎𝜙 𝑑` ,

which means that 𝜎𝜙 is a signed probability density. Therefore one has proved:

Theorem 7.5. Let ` be a finite Borel measure whose support is 𝑆 in (13) and
consider the Moment-SOS hierarchy of semidefinite relaxations (26) for solving P.
Then with 𝑛 fixed, (26) reads

(106) min
𝝓∈R𝑠(2𝑛)

{
∫
𝑆

𝑓 𝜎𝜙 𝑑` : 𝜙(1) = 1 ; M𝑛−𝑑 𝑗
(𝑔 𝑗 · 𝝓) � 0 , 𝑗 = 0, . . . , 𝑚 } ,

where 𝜎𝜙 is the signed probability density w.r.t. ` in (105).

So, again, solving the semidefinite relaxation (26) in the Moment-SOS hierarchy
is searching for a polynomial signed probability density 𝜎𝜙 ∈ R[x]2𝑛 of the form
(105), and as already mentioned, when the relaxation (26) is exact, 𝜙∗ = 𝛿{y},
where y ∈ 𝑆 is a global minimizer of 𝑓 . Then the associated polynomial signed
probability density 𝜎𝜙∗ ∈ R[x]2𝑛 reads

x ↦→ 𝜎𝜙∗(x) =
∑︁

𝜶∈N𝑑
2𝑛

𝑃𝜶(y) 𝑃𝜶(x) = 𝐾
`

2𝑛(y, x) .

It is interesting to visualize in Figure 7.5 how 𝜎𝜙∗ looks like in the toy example
where 𝑆 = [−1, 1] and ` = 𝑑𝑥/2. Indeed 𝜎𝜙∗ has a peak at 𝑥 = 𝑦, and so mimics
the Dirac measure at 𝑦 (as long as moments up to degree 2𝑛 are concerned).
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Figure 7.3. 𝑆 = [−1, 1], ` = 𝑑𝑥/2; the signed density 𝑥 ↦→
𝜎𝜙∗(𝑥) = 𝐾`

2𝑛(𝑥, 𝑦) with 𝑦 = 0 (left), 𝑦 = 0.5 (middle) and 𝑦 = 1
(right). © Reprinted from [70]

y = 0 y = 0.5 y = 1

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0

50

100

−2

0

2

4

6

0

2

4

x

C
D

−
ke

rn
el

degree

5

10

15

Comparing with the Moment-SOS hierarchy of upper bounds. Let ` be the
same (reference) measure on 𝑆, as in Theorem 7.5. By construction, the (refined)
hierarchy of upper bounds (�̂�𝑛)𝑛∈N in (58) is searching for a positive probability
density 𝜎 ∈ 𝑄𝑛(𝑔). Hence x ↦→ 𝜎(x) =

∑
𝜶 𝜎𝜶 𝑃𝜶(x), with

1 =

∫
𝑆

𝜎 𝑑` =
∑︁
𝜶

𝜎𝜶

∫
𝑆

𝑃𝜶 𝑑` = 𝜎0 ,

as 𝑃0 = 1 (because ` is a probability measure), and

𝜎 ∈ 𝑄𝑛(𝑔) ⇒
∑︁

𝜶∈N𝑑
2𝑛

𝜎𝜶 𝑃𝜶 =

𝑚∑︁
𝑗=0
𝜓 𝑗 𝑔 𝑗 ; 𝜓 𝑗 ∈ Σ[x]𝑛−𝑑 𝑗

, 𝑗 = 0, . . . , 𝑚 .

As one may see, Table 7.5 exhibits a complete symmetry between the primal
and dual formulations of the respective Moment-SOS hierarchies of lower bounds
and upper bounds, when the involved polynomials are expressed in the orthonormal
basis (𝑃𝜶)𝜶∈N𝑑 .
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Lower bounds Upper bounds

Primal Primal

𝜏𝑛 = inf
𝝓

∫
𝑆

(
∑︁

𝜶∈N𝑑
2𝑛

𝜙(𝑃𝛼) 𝑃𝛼) 𝑓 𝑑` ˆ̂𝑛 = inf
𝝈,𝜓𝑗

∫
𝑆

(
∑︁

𝜶∈N𝑑
2𝑛

𝜎𝛼 𝑃𝛼) 𝑓 𝑑`

s.t. 𝜙0 (= 𝜙(1)) = 1; s.t. 𝜎0 = 1;

M𝑛(𝑔 𝑗 · 𝝓) � 0 , 0 ≤ 𝑗 ≤ 𝑚.
∑︁

𝜶∈N𝑑
2𝑛

𝜎𝛼 𝑃𝛼 =

𝑚∑︁
𝑗=0
𝜓 𝑗 𝑔 𝑗 .

𝜓 𝑗 ∈ Σ[x]𝑛−𝑑 𝑗
, 0 ≤ 𝑗 ≤ 𝑚

Dual Dual

𝜏∗𝑛 = sup
_,𝜓𝑗

_ : ˆ̂∗𝑛 = sup
_,𝝓

_ :

s.t. 𝑓 − _ =

𝑚∑︁
𝑗=0
𝜓 𝑗 𝑔 𝑗 s.t. 𝑓 − _ =

∑︁
𝜶∈N𝑑

2𝑛

𝜙(𝑃𝛼) 𝑃𝛼

-
𝜓 𝑗 ∈ Σ[x]𝑛−𝑑 𝑗

, 0 ≤ 𝑗 ≤ 𝑚 M𝑛(𝑔 𝑗 · 𝝓) � 0 , 0 ≤ 𝑗 ≤ 𝑚

Table 7.1. Hierarchies of upper and lower bounds interpreted as
searching for respective positive probability density

∑
𝜶 𝜎𝜶𝑃𝜶 and

signed density
∑

𝜶 𝜙(𝑃𝜶)𝑃𝜶, w.r.t. `.

7.6. Notes and sources. Sections 7.1-7.2: For more details and historical back-
ground on the CD kernel and the Christoffel function, the interested reader is
referred to [124, 93, 70] and references therein.
Section 7.3 is based on [86] and [38].
Section 7.4 is essentially from [66, 67] and [73]. Remarkably, the generalized
Pell’s equation establishes links between seemingly unrelated fields like optimiza-
tion, positivity certificates, conic duality on one side, and orthogonal polynomials
and equilibrium measures on the other side. It is likely that the generalized Pell’s
equation is valid only for sets with specific geometries and with an appropriate set
of generators. Indeed from the proof in [73], crucial is a property of Gegenbauer
polynomials (in particular a summation property). However for more general basic
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semi-algebraic sets 𝑆, there is still a weaker result that links the constant polyno-
mial 1 ∈ 𝑄𝑛(𝑔) and moments 𝝓 ∈ 𝑄∗

𝑛(𝑔) of the equilibrium measure ` of 𝑆; see [73].

In Section 7.5 one interprets both Moment-SOS hierarchies of upper and lower
bounds in the common language of densities w.r.t. a reference measure ` whose
support is 𝑆. In contrast to the hierarchy of upper bounds, finite convergence for the
hierarchy of lower bounds is possible (and in fact takes place generically) because
a signed density w.r.t. ` may have all its moments up to order 2𝑛 equal to those of
the Dirac measure at a global minimizer, which is not possible for a positive density
w.r.t. ` on 𝑆 (with nonempty interior) as in the hierarchy of upper bounds.

8. Conclusion

One has described the Moment-SOS hierarchy methodology for polynomial
optimization (hierarchies of lower and upper bounds). It also applies solve the
generalized Moment Problem (GMP) with algebraic data, whose list of applications
in many area of Science and Engineering is almost endless. The basic principle
behind the Moment-SOS hierarchy is quite simple and for illustration purpose we
have described its application on two problems (viewed as instances of the GMP)
in computational geometry and optimal control.

It is a powerful methodology but the computational cost of its basic formulation
can be quite heavy even for problems of modest dimension. Fortunately, as large
scale problems often exhibit sparsity and/or symmetries in their formulation, one
has also described how such properties can be exploited to define a sparsity-adapted
Moment-SOS hierarchy whose associated computational burden can be drastically
reduced.

Much remains to be done in several research directions (some have been briefly
mentioned). As it is at the crossroad of several disciplines, it is very likely that we
should see more and more contributions in the coming years.
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