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A B S T R A C T

This research proposes a method for detecting subtle faults named snail trails for their visual similarity with
the trail of a snail in photovoltaic modules. Snail trails do not significantly reduce panel performance but
they are the main cause of serious panel deterioration such as microcracks and delamination and can go so
far as to set the panel on fire. To detect these faults, this research uses an ensemble learning framework,
named ensemble learning for diagnosis, which combines several complementary learning algorithms, namely
Support Vector Machines, K-Nearest Neighbors, and Decision Trees. A set of features is obtained by extracting
the time–frequency characteristics and statistics from the photovoltaic current signal of the photovoltaic panel.
This is followed by a feature selection and dimensionality reduction step that delivers the input to the learning
algorithms. The approach presented in this study is experimentally validated, independently for the 4 seasons
of the year, with data from a real photovoltaic string of 16 panels. The results demonstrate that the proposed
approach can efficiently classify healthy panels and panels with snail trails efficiently. Interestingly, the method
only requires the electrical current signal, measured on panels with data acquisition systems that are standard
in the photovoltaic industry. The genericity of the approach makes it a good candidate for detecting other
photovoltaic faults and for solving diagnosis problems in other domains.
1. Introduction

The development of the Solar photovoltaic (PV) industry has been
reinforced since the 1970s with the fossil energy crisis and the need
to operate a drastic energy transition. The National Renewable Energy
Laboratory (NREL) predicts that 231 𝐺𝑊 of PV will be installed in 2023
and according to GlobalData the installed PV capacity worldwide will
exceed 1,500 GW in 2030. To guarantee continuity in the production
of energy from these PV systems, the development of new sensors with
more PV conversion efficient materials and innovative technologies
has been promoted for the construction of PV cells. However, despite
these progresses, PV systems still present today strong problems of
production continuity linked to frequent occurrence of faults in their
components (protection systems, box junction, inverter, PV generator,
etc.). Facing the complexity of a PV power plant, it is not easy to detect
which component is faulty even though power losses can be as bad as
17.5% of the total power output (Dhere and Shiradkar, 2012).

Complete PV systems are composed of multiple components to
enable the delivered power to loads or grids as switching converters, DC
and AC fuses, all of which can suffer faults. Nevertheless, the studies

∗ Corresponding author at: LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France.
E-mail address: ehsepulved@laas.fr (E.H. Sepúlveda-Oviedo).

have identified that most faults occur at the PV panel level such as
corrosion, delamination, hot spots, among others (Santhakumari and
Sagar, 2019). Focusing on the PV generator and its basic units, namely
PV cells, responsible for the transformation of sunlight into electrical
energy, the main faults are linked to cell cracks, discoloration, snail
trails or delamination (Jordan et al., 2017). It is for this reason that
this study focuses on fault detection in PV panels rather than in strings
and PV complete systems.

In the field of fault detection applied to PV systems, multiple meth-
ods have been proposed, ranging from conventional methods based on
visual inspection, image analysis, electrical detection to more recent
methods based on machine learning (Sepúlveda-Oviedo et al., 2023a).
However, most of these works have focused on detecting faults whose
energy reduction in the PV system is critical. Damages caused by
these faults induce the reduction of the generated power and can even
cause a complete shutdown of the system. However, few works have
been concerned with detecting faults whose electrical signature remains
similar to that of a PV panel without fault (Sepúlveda-Oviedo et al.,
2022). Snail trail faults are in this category (see Fig. 1).
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Nomenclature

𝐷𝑇 Decision Trees
𝐷𝑊 𝑇 Discrete Wavelet Decomposition
𝐸𝐿 Ensemble Learning
𝐹𝑇 Fourier Transform
𝐼𝑠𝑜𝑚𝑎𝑝 Isometric Mapping
𝑘𝑁𝑁 K-Nearest Neighbor
𝑀𝑆𝐷 Multiresolution Signal Decomposition
𝑀𝑉 Majority voting
𝑃𝐶𝐴 Principal Component Analysis
𝑃𝑆𝐷 Power Spectral Density
𝑆𝑉𝑀 Support Vector Machine

Our article aims to demonstrate the following hypothesis:

• Snail fault detection can be achieved with little data and without
requiring additional imaging or instrumentation beyond existing
components in contemporary solar power plants.

.1. Snail trails fault

Snail trails (also named as snail tracks or worm marks) are lines
f local discoloration that occur on PV panels after long-term usage.
hese brown or black lines appear near bus bars on solar edges or
lose to microcracks (Li, 2021). The name of this effect originates from
he illusion like snails or worms have passed over the PV panel. The
xact cause of this phenomenon remains unclear, but some reports
uggest it may be associated with silver particles containing sulfur,
hosphorus, or carbon (Li, 2021). Other studies indicate that factors
uch as cell cracks, additives in the EVA film, chemical agents applied
o the cell surface, or humidity can expedite the formation of snail
rails (Kim et al., 2016). The progression of this fault can be slow
nd may propagate through the PV cell or, in some cases, stabilize
fter its initial appearance (Köntges et al., 2014). Although they do
ot cause a significant energy loss, they can trigger other faults that
ay ultimately lead to fires in the PV plant, as reported in Kim

t al. (2016). Furthermore, as indicated in Li (2021), a snail trail fault
an result in localized temperature increases (hot spots), non-uniform
egradation, or corrosion, all of which can have a severe impact on
ower production.1

.2. Motivation

The detection of snail trail faults has recently been explored using
achine learning methods. However, the proposed approaches are
rimarily based on image analysis. This is reasonable on a small scale
ue to its apparent visual signature, as observed in Fig. 1.

However, conducting such large-scale detections in high-power so-
ar plants becomes impractical due to the need for drones for image
apture, multiple specific conditions to ensure image capture under the
ame training conditions, and extensive training databases. Moreover, it
s essential to capture images rapidly for comparative purposes, as irra-
iation conditions exhibit rapid diurnal variations. This dynamic nature
f conditions makes it challenging to compare images taken at different
ime points, even if they originate from the same PV panel. All of this
xponentially increases the cost of the detection solution, and a method
hat is hardly scalable to large-scale industrial environments. Therefore,

1 For more detailed information on this type of fault, please refer to the
ollowing Refs. Li (2021).
2 
Fig. 1. Example of snail trail fault. Note the visual similarity with the trail of a snail.

detecting such faults without additional sensors or instrumentation has
been the motivation behind this study.

To address this issue, this study proposes the extraction of features
to identify such faults from the electrical current signal of the PV
system. This signal is already routinely collected for monitoring in
most of these plants. Therefore, the detection system proposed in this
study is capable of operating without the need for additional sensors or
instrumentation. However, it is evident that the complexity of detecting
this type of fault using an electrical signal is higher compared to
approaches that use images. To illustrate the challenge of detecting
these types of faults using only electrical signals compared to faults
with critical energy reduction, Fig. 2 presents the current signal of a
panel with a fault resulting in a significant power loss, specifically a
Partial Shading fault, a snail trail fault, and a healthy panel.

As it can be seen in Fig. 2, achieving fault detection with large
power loss using the current signal can be an easy task using con-
ventional machine learning algorithms as the difference with healthy
current is important. However, managing to detect almost unnoticeable
flaws due to the snail trail fault is really a challenge. It is important
to emphasize that the sooner a fault such as a snail trail is detected
and classified, in order to carry out maintenance on the defective
part, the greater the production guarantee. This means that snail trail
detection has a heavy impact on the useful life of the PV plants and
the cost of maintenance. Moreover, it is crucial to highlight that a ma-
chine learning approach can overcome the limitations of conventional
methods such as visual inspection (which is highly dependent on the
observer) and traditional laboratory methods that require the system
to be completely disconnected and production to be stopped in order
to perform diagnostics.

1.3. Contributions

The Ensemble Learning (EL) framework, named ELDIAG, proposed
in this study uses only the electric current signal linked to Maximum
Power Point (MPP) obtained with a manufactured optimizer detailed
in Section 3. Importantly, the measure of the current does not require
cutting the operative electrical production of the PV string. Fault sig-
natures are extracted through techniques inspired by time–frequency
signal processing and statistical analysis. A feature selection and di-
mensionality reduction step using two algorithms, Principal Component
Analysis (PCA) and Isometric Mapping (Isomap), then delivers the
input to the learning algorithms. ELDIAG is experimentally validated,
independently for the 4 seasons of the year, with data from a real PV
string of 16 panels.

The main contribution of this study is a generic ensemble learning
framework for fault detection and diagnosis that leverages the com-
plementarities of three machine learning algorithms, Support Vector
Machines, K-Nearest Neighbors and Decision Trees as developed in
Section 3.2. The learning step is efficiently organized by temporal slices
with characteristic variations.

The impacts of the work are the following:
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Fig. 2. Example of current of three PV panels with health states healthy (orange), Partial Shading (blue) and snail trail (red). This data was captured on June 21, 2021.
• Snail trail fault detection is achieved based on the MPP current
sensor only and it does not require to cut the operative electrical
production of the PV string,

• Detection is efficient even in low irradiation conditions,
• ELDIAG can be readily integrated into microprocessors, pre-

existing devices within monitoring systems, or electrical inter-
faces such as inverters. It has been implemented and tested within
a monitoring hardware device developed by the company Feedgy
Solar, a company specializing in solar energy solutions.

• ELDIAG is generic and can extend to faults detectable from time
series data.

The structure of the study is as follows: Section 2 presents the re-
lated work and methodology. Section 3 introduces the data acquisition
and pre-processing. Section 4 and Section 5 are dedicated to the feature
extraction method and the feature selection method respectively. Sec-
tion 6 presents the classification algorithms, promising research topics
and challenges. Section 7 gives the results and discussions. Finally,
Section 8 provides conclusions and research prospects.

2. Related work

In the last years, multiple fault detection works have been proposed
in PV systems, for instance, using neural networks (Hong and Pula,
2022) or fuzzy systems (Xu et al., 2022). Some works are based on the
principle of Model-Based Difference Measurement, where the measured
value of the variable (current, voltage, power, irradiation, etc.) is
compared with the value predicted by a statistical model (Garoudja
et al., 2017), others are based on image processing (Amaral et al.,
2021) or visual inspection (Packard et al., 2012). However, they have
problems to be updated or trained, or they have large components of
subjectivity and/or a high cost of implementation.

Other authors have proposed approaches based on machine learn-
ing (Sepúlveda-Oviedo et al., 2023a). Using unsupervised methods,
the authors have proposed approaches based on Fuzzy C-means (Xu
et al., 2022) or hierarchical clustering (Sepúlveda-Oviedo et al., 2021).
However, because they do not have labels, these systems are limited in
differentiating or identifying incipient faults or electrical behavior very
similar to that of a panel without a fault.

Alternatively, and recently, other authors have used supervised
learning. In this learning scheme it is necessary to have a database with
inputs (predictors) and outputs (labels or targets). These algorithms
try to discover the relationship between inputs and outputs. They first
produce a function that assigns data to labels. Then, this function is
used to predict the label of new unlabeled data. In this type of machine
learning, many approaches have been tested in the detection of faults
in PV systems (Sepúlveda-Oviedo et al., 2023a) such as Support Vector
Machines (SVM), decision trees, neural networks, Local outlier factor,
Naive Bayes Classifier, also deep learning.

Specifically, to our knowledge, in the detection of snail trail faults,
there are not numerous works. The few works addressing this issue can
be divided into two major categories. The first category, encompassing
the majority of snail trail fault detection studies, focuses on utilizing
various artificial intelligence approaches, primarily deep learning, on
thermal images, electroluminescence, RGB, etc. The second category,
3 
which has been growing in the literature, consists of articles whose
approach works on electrical signals for snail trail fault detection. To
position our study in relation to existing work in the literature, we
constructed Table 1. For an objective comparison of the proposed
approaches, Table 1 compares the few existing documents in the litera-
ture, dividing them into two categories based on the nature of the input
data, i.e., whether they use images or electrical signals for snail trail
fault detection. The aspects compared in Table 1 include approach, type
and quantity of data, how many scenarios under different irradiations
are evaluated, advantages, disadvantages, and accuracy. The number of
scenarios under different irradiance levels is of paramount importance
since the performance of PV systems is closely tied to solar irradiance,
which, in turn, can change rapidly. In cases of low irradiance, fault
detection becomes extremely challenging.

As can be observed in Table 1, in a general context, image-based
approaches, although highly efficient, are strongly limited to the de-
tection of faults with a noticeable visual expression. However, snail
trail-type faults are not strongly noticeable under low irradiation con-
ditions, which, in turn, poses a significant limitation for image-based
approaches. Moreover, these approaches require image capture under
certain conditions, which represents an increase in cost due to the
need for drones, image transmission, storage, among others, without
assuring that the approach can be directly applied to another new solar
plant. Generally, retraining would be necessary due to the change in
irradiation reference, which results in a change in panel temperature
and, therefore, modifications in image characteristics. Furthermore,
solar plants would also need an additional fault detection approach that
lacks a visual signature, increasing the overall solution cost. Finally,
these approaches necessitate a large number of samples (images) for
fault detection.

On the other hand, in the same Table 1, highlights a study that
uses electrical signals as input for snail trail fault detection algo-
rithms (Sepúlveda-Oviedo et al., 2022). This work focuses on over-
coming the limitations of using images and proposes an approach that
can be readily extrapolated to detect other faults. Since the signals
currently collected by PV data acquisition systems also capture time
series, by merely modifying the training phase, it is possible to detect
other types of failures in PV systems or other time series-based systems.
It is important to clarify that the faults of interest to the industry are
those that start to reduce PV production, or that generate other errors
of that type, and such faults invariably represent a typical modification
in the electrical signals of a panel. Therefore, even if the impact level
of the fault is low, there will inevitably be a change in the electrical
output signal of the PV system. This implies that an approach based on
electrical signals can cover a broader range of detectable faults than
an image-based approach. Furthermore, it demonstrated that a large
amount of data is not necessary for successful fault detection when
using electrical signals. However, the limitation of this work is that
it does not evaluate its approach under different irradiation conditions,
such as different seasons of the year.

Therefore, based on the hypothesis that utilizing the electrical signal
of the PV system allows the detection of a greater number of faults, a
reduction in the required number of samples for detection, resulting
in lower storage capacity, reduced computation time, and computing
power, this study proposes an approach that was also tested under
varying irradiation conditions (different seasons of the year).
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Table 1
Comparison of existing works in the literature that propose approaches for detecting snail trails type faults.

Ref Year Approach Data type # Scenarios Advantages Disadvantages Accuracy
and samples (%)

This study 2024 ELDIAG: An Ensemble Learning
Framework for Snail Trail Fault
Detection and Diagnosis in
Photovoltaic Modules

16 electrical
signals

4 High precision for detecting snail
trails, requiring little data,
avoiding changes in irradiation.
Easily extrapolated to other faults.

Conditioned on the capture of
electrical signals in the form of a
time series

[88, 89]

Oulefki et al.
(2023)

2023 Unsupervised sensing algorithms
and 3D Augmented Reality (AR)
visualization

277 Thermo-
graphic aerial
images and
934 infrared
images

1 High-precision detection of
abnormalities, such as hot spots
and snail trails.

It fails to differentiate between
hotspots and snail trails. It
requires retraining when the PV
plant conditions change. It was
only analyzed under a specific
meteorological scenario. Limited
to faults with visual signatures.

–

Venkatesh S
et al. (2023)

2023 A deep learning-based technique
involving convolutional neural
networks (CNNs)

600 RGB
images

1 High precision for six different
types of faults.

Strong internet dependency for
data transmission. No testing
under different irradiation
scenarios. High cost. High data
requirements. Requires additional
instrumentation (drones).

98.66

Vasanth
et al. (2023)

2023 DenseNet-201+kNN 600 RGB
images

1 High Precision in Snail Trail
Detection

High computational cost, internet
dependency for transmission,
large data volumes, and the
propagation of irrelevant
information due to artificially
augmented database from 600 to
3150.

100

Lestary et al.
(2022)

2022 Deep learning with the YOLO
(You Only Look Once) algorithm
version 3

277 Thermo-
graphic aerial
images

1 High Precision in Snail Trail
Detection

Challenging to implement on a
large scale due to its high cost.
Not tested using the same panels
under varying irradiation
conditions. Limited solely to
faults with visual signatures.

99.7

Naveen
Venkatesh
et al. (2022)

2022 An ensemble-based deep neural
network (DNN) + Random Forest
using Majority Voting

600 RGB
images

1 High accuracy compared to
approaches that solely use deep
learning.

It employs only one type of
machine learning algorithm in
ensemble learning, which limits
the final behavior of the ensemble
framework. Tested under a single
environmental scenario. High cost
due to the need for drones to
capture photos.

99.86

Sepúlveda-
Oviedo et al.
(2022)

2022 DTW Hierarchical clustering +
PLS regression

12 electrical
signals

1 High accuracy and low
computational cost.

It was not tested under different
irradiation scenarios throughout
the year.

87.5

Venkatesh
and
Sugumaran
(2022)

2021 Multiple deep learning and
machine learning algorithms are
compared

600 RGB
images

1 High precision for six different
types of faults.

High computational cost, internet
dependency for transmission, and
large data volumes are required
for detection.

[88.25,
100]

Li et al.
(2018)

2018 A convolutional neural network
(CNN)

3000 RGB
images

1 High Precision for five Types of
Faults

Strong dependence on wireless
communication networks. High
cost. Limitations related to image
capture conditions.

[77.32,
84.40]
3. Methodology

In an effort to take advantage of multiple learning algorithms, EL is
a rather recent framework assembling properties of different techniques
with good trade-offs (Ganaie et al., 2022). It has been applied for
the diagnosis of renewable energy systems (Aizpurua et al., 2021).
The main idea is to combine several base models in order to produce
one optimal predictive model and to improve the classification results
of any of the base fault detection techniques. Two main types of
Ensemble Learning techniques can be considered: simple or advanced.
In the first case, the predictions made by different models are taken
as separate votes and the final prediction is obtained by combining the
votes (Eskandari et al., 2023). For this there exists multiple options such
as average, weighted average, majority voting and weighted majority
voting. In the second case several models are used to make intermediate
predictions and a meta classifier performs the final prediction based on
the intermediate ones (Mellit et al., 2023). This study proposes a simple
approach, as the goal is not to propose a new ensemble modeling but
to demonstrate its great potential in this type of applications.

The first objective of this research is to enhance the fault detection
and classification results in PV systems, even in cases where there is a
4 
limited number of PV panels (2 or more panels). The second objective of
this study is to decrease the computation time required by conventional
fault detection systems while ensuring the same or improved level of
detection accuracy.

The proposed solution is an ensemble learning framework whose
relevance is illustrated on a real PV platform.

The platform has 16 PV panels. The classifiers used are trained
using 8 panels, 4 in a healthy state and 4 with the snail trail fault.
The methodology is validated for the other 8 panels (4 healthy and 4
with traces of discoloration (snail tracks or snail trails). The considered
signal is the optimal current linked to the MPP of each panel. This data
is acquired using a commercial data acquisition module, known as the
Tigo optimizer,2 previously installed on the platform for production
optimization and monitoring purposes. All signals used (for training,
testing, validation) were captured for periods of one day, in each season
of the year. To consider the influence of weather on irradiance, signals
are divided into 4 temporal slices named: Morning, Midday, Afternoon
and Evening (Sepúlveda-Oviedo et al., 2022).

2 To obtain the description of this system, visit here.

https://fr.tigoenergy.com/ts4
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Fig. 3. Description of stages of the proposed Ensemble Learning approach.
A summary of the proposed methodology is presented in Fig. 3. Each
of the stages of the methodology is explained in detail in the following
sections.

3.1. Feature engineering

Although using EL improves classification results, the quality of
results stays strongly linked to the quality of the databases used to
train models. To increase the richness of the training data, some
works have explored signal decomposition based on Multiresolution
Signal Decomposition (MSD) (Yi and Etemadi, 2017b). However, de-
spite its interest this methodology does not focus on the process of
feature selection or dimensionality reduction and ignores the time
dependence of PV measurements. Furthermore, these approaches have
not been applied in real cases where electrical signatures of faulty
panels are similar to those of healthy ones, as in the case of panels
with snail trail phenomena. To reduce time dependency, an additional
stage of statistical feature extraction (skewness, entropy, mean, among
others) can be performed. With this type of non-time-dependent fea-
tures, an important increase of the variance between the classes is
achieved (Sepúlveda-Oviedo et al., 2022).

Extracting frequency time signatures and then statistical incremen-
tal signatures substantially increases the feature space dimension. This
is where the use of feature selection algorithms such as PCA makes
sense.

Working under the assumption that some faults may be visible in
the time domain and others in the frequency domain, a multiresolution
signal decomposition based on the discrete wavelet transform over each
temporal slice is used to analyze them simultaneously. As a product
of this decomposition, a set of detail and approximation coefficients
are obtained on which the extraction of statistical characteristics is
performed. For each temporal slice the features obtained are stored
in a matrix of predictors that is then subjected to a feature selection
process to reduce the feature space dimensionality keeping only the
most relevant information. The reduced feature matrix is used as input
to a set of machine learning algorithms, following an ensemble learning
strategy, to detect and classify PV system faults.

3.2. Ensemble learning strategy

The component methods of the ensemble learning strategy are K
Nearest Neighbors (KNN), SVM and Decision tree learning (DT). These
three algorithms have been selected because they operate based on
three distinct principles, allowing the approach to harness the strengths
of each principle. KNN relies on similarity measurement using a dis-
tance metric, the SVM method is based on finding an optimal separating
hyperplane between two data classes, and, lastly, DT are founded on
partitioning a dataset into smaller subsets to enable decision-making
based on the information within each subset. The ensemble learn-
ing strategy utilized offers fresh insights into faults by leveraging
5 
the complementary strengths of its component methods when han-
dling datasets. SVMs excel at identifying optimal non-linear decision
boundaries, which makes them highly effective for complex datasets.
Similarly, Decision Trees are adept at recognizing non-linear relation-
ships among features, though they may be susceptible to overfitting.
In contrast, KNN is vulnerable to noisy data due to its dependency on
the proximity of data points in the feature space, making it less robust
to noise than SVM and Decision Trees. The latter two are better at
handling noise, particularly SVMs, which aim to maximize the margin
between classes. Decision Trees, on the other hand, can partly overlook
noise and outliers by concentrating on splits that maximize information
gain across significant portions of the data.

To reach the optimal prediction, the 3 algorithms are combined
based on the majority voting ensemble technique.

4. Data acquisition and preprocessing

The 16 PV panels of the experimental platform with reference
SLK60P6L, can generate power between 205 and 240 𝑊 𝑝. Each panel
is instrumented with a commercial monitoring system provided by
an optimizer built by the company Tigo (Tigo, 2023) and able to be
connected to other optimizers in series. The signals have been acquired
with a sampling time of one minute in the year 2020 on August 6
between 7:00 a.m. and 8:00 p.m., November 6 between 7:45 a.m. and
5:15 p.m., February 6 between 8:00 a.m. and 6:00 p.m. and finally on
May 6 between 7:00 a.m. and 8:00 p.m. These dates were carefully
selected approximately in the middle of each of the seasons of the year,
to measure the robustness of the proposed approach. Every day the data
acquisition started as soon as the PV panel began to produce and ended
once the panel stopped producing. The signals captured on each day of
each season are shown in Fig. 4.

The snail trail fault considered in these experiments represents cor-
rosion of the sheet of the encapsulation surface (Li, 2021). Although
this fault does not cause severe or critical performance reduction of
the PV panels at the beginning, the fault can evolve producing cracks
or microcracks in the PV cells if the panels continue to be exposed
to the same conditions of solar radiation. This can even lead to the
production of the PV system (Kim et al., 2016). As it can be seen in
Fig. 4, the behavior of PV panels with a snail trail (Red color) is very
similar to that of healthy PV panels (orange) in all scenarios (Summer,
Fall, Winter and Spring).

Once the data has been captured, feature extraction can be per-
formed.

5. Feature extraction

This stage is based on the iterative wavelet decomposition, named
Multiresolution Signal Decomposition, of the current signal 𝐼𝑖 for each
PV panel 𝑖 = 1,… , 𝑛𝑝. It is combined with an extraction of statistical
features on the decomposed signals as it has been proposed in other
works previously (Dadhich et al., 2019) .
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Fig. 4. Optimal current signals from 8 photovoltaic panels used for training (4 healthy (orange) and 4 with snail trails (red)).
5.1. Multi-resolution signal decomposition applied to PV system

In the PV domain, different signal processing and decomposition
techniques have been studied and proposed for fault detection and
classification (Lebreton et al., 2022). Among the proposed techniques,
the continuous Fourier transform (FT) and the discrete FT that only
provide information in the frequency domain are the best well-known.

Other research recommends using a FT with an associated window
that provides time and frequency information. The problem with this
technique applied on PV systems is that once the window is chosen, it
cannot be changed if it becomes not suitable to new data. In some vari-
ations of weather conditions, it may induce a lack of efficiency to detect
non-stationary disturbances having different signatures. These reasons
have made the use of wavelet transform popular (Srikanta Murthy,
2018). The wavelet transform can deliver spatial frequency and time
information, showing interesting improvements in the identification
of different types of faults in PV systems (Ray et al., 2018). Along
the same lines, other approaches have been proposed modifying the
wavelet transform. Multi-resolution Signal Decomposition (MSD) ap-
plies the wavelet decomposition iteratively (Yi and Etemadi, 2017a).
Slantlet transform (Mandal et al., 2012) is based on a modified version
of the discrete wavelet with two zero moments and modified time
localization. Finally, the wavelet packet transform uses an iterative
decomposition on the approximation and detail coefficients of the
signal (Ahmadipour et al., 2022).

Fault conditions in PV systems have associated some variations
in the waveform of the current output signal that can be located in
the frequency domain and/or in the time domain. Due to this, the
6 
MSD has become very relevant and is widely used (Lebreton et al.,
2022). In general, the MSD based on discrete wavelet decomposition
DWT divides the input signal into ranges with variable frequency.
The decomposition of the signals depends directly on the pattern or
mother wavelet selected for the decomposition. Each mother wavelet has
associated or captures a particular frequency band. Additionally these
mother wavelets have different computation speeds and decomposition
quality. It is for this reason that the quality of the decomposition must
be judged on the basis of the specific application. Mother wavelets can
be defined as follows:

𝛷𝑐,𝑑 (𝑡) =
1
√

𝑐
𝛷
( 𝑡 − 𝑑

𝑐

)

, (1)

where 𝑐 and 𝑑 represent the scale and offset factor respectively. 𝑡 is the
timestamp of the panel current signal and 𝛷 is the mother wavelet. The
values of 𝑐 and 𝑑 are obtained from the Equations (2) and (3) (Yi and
Etemadi, 2017b)

𝑐 = 𝑐−(𝑝𝑥∕2)0 , (2)

𝑑 = 𝑞𝑥𝑑0𝑐
𝑝𝑥
0 , (3)

where 𝑝𝑥, 𝑞𝑥 ∈ Z, 𝑐0 > 1 and 𝑑0 > 0. According to Yi and
Etemadi (2017b) the discrete wavelet decomposition with the mother
wave 𝛷𝑐,𝑑 (𝑡), of a signal 𝑆{1∶𝑛𝑆}, can be described as follows:

𝐷𝑊 𝑇 (𝑐, 𝑑) = 1
√

𝑐

∑

1∶𝑛𝑆

𝑆(𝑡)𝛷
( 𝑡 − 𝑑

𝑐

)

, (4)

The challenge when performing the MSD is the selection of the
relevant mother wavelet 𝛷 (𝑡). Therefore, some articles have dedicated
𝑐,𝑑
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Fig. 5. Decomposition into 3 levels applied on the current signal 𝐼𝑖 of each faulty or
healthy panel.

entire research to the development of complex algorithms for the
optimal selection of mother wavelet (Jang et al., 2021). For the selection
of the mother wavelet, in this research, all wavelet families were
tested and the mother wavelet Daubechies38 (db38) has been selected
due to its computational speed and good decomposition result. The
decomposition into 3 levels of one of the current signals as a function of
time is illustrated in Fig. 5. This is done for all the temporal slices. The
three levels of decomposition 𝑗 = 1, 2, 3, provide the coefficients of an
approximated signal, noted (𝐴𝑗

𝐼𝑖
), and the associated detail signal (𝐷𝑗

𝐼𝑖
).

Outlined in red, one can visualize the different required coefficients
(approximation and detail coefficients) of the signals from which one
can obtain the reconstructed signal (𝐼𝑖,𝑟), 𝑖 = 1,… , 𝑛𝑃 , where 𝑛𝑃 is
the number of panels. The extraction of statistical features is applied
to these signals, responsible for rebuilding the signal according to the
DWT theory.

5.2. Extraction of statistical features

The statistical features extracted in this section such as mean, Power
spectral density, Skewness, Entropy and Kurtosis are suggested for fault
detection in PV systems (Malik et al., 2022). For a signal 𝑆{1∶𝑛𝑆},
without loss of generality, Mean 𝜇 indicates a representative number
of the time series calculated as follows:

𝜇 = 1
𝑛𝑆

𝑛𝑆
∑

𝑡=0
𝑆𝑡, (5)

Power spectral density PSD represents the power content of the
signal as a function of frequency. The amplitude is normalized per unit
frequency as:

𝑃𝑆𝐷 = lim
𝑇→∞

1
𝑇
|𝑆𝑡|

2, (6)

Skewness is a representation of the asymmetry of the data respect to
𝜇 and is described as follows (Esmael et al., 2012):

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑛𝑆

∑𝑛𝑆
𝑡=0(𝑆𝑡 − 𝜇)3

(√

1
𝑛𝑆

∑𝑛𝑆
𝑡=0(𝑆𝑡 − 𝜇)2

)3
, (7)

Entropy is widely used in information theory to evaluate the un-
certainty of a signal and even as a tool to identify the quality of the
information or inherent surprise of the signal. Entropy can be defined
as:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑛𝑆
∑

𝑡=1
𝑝(𝑆𝑡)𝑙𝑜𝑔(𝑆𝑡), (8)

Kurtosis measures the maximum value and skewness of the proba-
bility distribution of the data and is defined as follows (Esmael et al.,
7 
2012):

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1
𝑛𝑆

∑𝑛𝑆
𝑡=0(𝑆𝑡 − 𝜇)4

(√

1
𝑛𝑆

∑𝑛𝑆
𝑡=0(𝑆𝑡 − 𝜇)2

)4
, (9)

With this set of statistical features, the feature matrix MF,∗ of
dimensions 𝑛𝑃 × ((𝐿 + 1) × 𝑛𝐹 ) is constructed adopting the notation
of Sepúlveda-Oviedo et al. (2022).

MF,∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝐿
𝐼1,∗

𝐷1
𝐼1,∗

… 𝐷𝓁
𝐼1,∗

… 𝐷𝐿
𝐼1,∗

. . … . … .

. . … . … .

. . … . … .
𝐴𝐿
𝐼𝑛𝑃 ,∗

𝐷1
𝐼𝑛𝑃 ,∗

… 𝐷𝓁
𝐼𝑛𝑃 ,∗

… 𝐷𝐿
𝐼𝑛𝑃 ,∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (10)

where the temporal slice ∗∈ {Morning, Midday, Afternoon and
Evening}, 𝐿 is the number of decomposition levels and 𝑛𝐹 is the num-
ber of statistical features. 𝐴𝐿

𝐼𝑖,∗
and 𝐷𝓁

𝐼𝑖,∗
are the vectors that correspond

to the coefficients of approximation and coefficients of detail. Each of
these vectors has dimension 𝑛𝐹 . It is possible that the high dimen-
sionality of the matrix MF,∗ increases the computational complexity
and/or contains information not relevant for the classification of the
panels. As a solution to this problem, a feature selection process that
compresses the original feature matrix MF,∗ for each of the temporal
slices ∗∈ {Morning, Midday, Afternoon and Evening} is applied. Then,
a generic and theoretical explanation of the combined methods in the
approach proposed in this research is carried out. The explanation is
made in a generic way to highlight that the method could be applied
to any other system. Then, the method is exemplified using the case
study.

6. Feature selection

Feature selection is a process that allows keeping only the relevant
information for classification and therefore fault detection. One of the
main advantages of this process consists in a drastic decrease of the
computational time of the learning algorithms, hence increasing their
efficiency to process complex big data. Multiple algorithms for feature
selection, often accompanied by dimensionality reduction, have been
proposed. Some of the best-known approaches are PCA, Isomap; Local
Linear Embedding, and Singular Value Decomposition. This research
uses PCA and Isomap algorithms that apply a transformation to the
original features. As a result, a transformation of the matrix MF,∗ into
a new matrix 𝑀𝐹 ,∗ of reduced dimensions 𝑛𝑃 × 𝑈 is obtained as:

𝑀𝐹 ,∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶1
𝐼1,∗

… 𝐶𝑢−1
𝐼1,∗

… 𝐶𝑈
𝐼1,∗

. … . … .

. … . … .

. … . … .
𝐶1
𝐼𝑛𝑃 ,∗

… 𝐶𝑢−1
𝐼𝑛𝑃 ,∗

… 𝐶𝑈
𝐼𝑛𝑃 ,∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

where 𝑈 is the number of features obtained as a result of PCA or
Isomap, also called latent components. Each row 𝑀𝐹 ,∗(𝑖, .), 𝑖 = 1,… , 𝑛𝑃
of the matrix 𝑀𝐹 ,∗ provides the signature of the health state of the
PV panel 𝑃𝑉𝑖. Each column 𝑀𝐹 ,∗(., 𝑗), 𝑗 = 1,… , 𝑈 of the matrix 𝑀𝐹 ,∗
provides each of the latent components.

In this case study, the signals from the 16 panels are decomposed
into 4 levels both for training and testing. That is, the matrix MF,∗ has
dimensions of 8 × (5 × 5) (5 statistical features and 4 detail signals +
1 approximate signal). The 25 features are reduced to only the first
three latent components (𝑈 = 3) which contain 95% of the explained
variance, as shown in Fig. 6. In other words, they encapsulate the most
relevant information from the original matrix MF,∗.

This process reduces the amount of data keeping the relevant infor-
mation for the classification of the health status of the panels. It allowed
to reduce in a proportion 1∕5 the training computational time and in
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Fig. 6. Cumulative explained variance of the PCA method.

a proportion 1∕3 the required disk space. The description of the two
chosen algorithms used to create two independent matrices 𝑀𝑃𝐶𝐴

𝐹 ,∗ and
𝑀𝐼𝑆𝑂𝑀𝐴𝑃

𝐹 ,∗ is briefly presented.

6.1. Principal component analysis

Principal Component Analysis (PCA) is a powerful multivariate
statistical technique that identifies and extracts uncorrelated features
(named latent components) from the multidimensional original feature
space. That is, the PCA algorithm uses a linear combination of the
original features to construct new features while maintaining the max-
imum variance information (Fadhel et al., 2019). PCA represents the
new features in two subspaces (Fadhel et al., 2019). The first is named
the principal subspace or the ‘‘representation’’ subspace and the second
is named the complementary or residual subspace in which noise and
outliers are rejected.

Assuming 𝑀 original features and their covariance matrix, the first
principal components, spanning the principal subspace, are given by
the first 𝑞 dominant eigenvectors of the data covariance matrix. These
later are associated with the highest 𝑞 eigenvalues. The last not retained
eigenvectors (𝑀 − 𝑞) define the residual subspace. The projection of
the data onto the dominant eigenvectors provides principal component
scores (Fadhel et al., 2019). The percentage of variance contained in
each principal component is expressed by its corresponding eigenvalue.
Each principal component is aligned in a direction corresponding to the
largest variance in the data, starting with the first PC. Therefore, the
principal components are ordered from the highest variance, or most
energized, associated with the highest eigenvalue, to the least variance
associated with the lowest eigenvalue (Fadhel et al., 2019).

Let us come to a case study. Without loss of generality and to
simplify the notations, the dimensions of the matrix MF,∗ are henceforth
expressed as 𝑁 ×𝑀 , where 𝑁 = 𝑛𝑃 and 𝑀 = ((𝐿 + 1) × 𝑛𝐹 ). Each row
of MF,∗ provides the original features for one of the PV panels and one
temporal slice. Each row is extended with the different observations for
these features, which results in a data matrix of dimensions (𝑂×𝑁)×𝑀 ,
where 𝑂 is the number of observations. Let us denote the data matrix
by 𝐗. Each of the rows of the data matrix 𝐗 represents a different
repetition of the observations, and each of the columns is a particular
feature.

The elements of 𝐗 are first standardized by subtracting the mean
of the observations for the corresponding feature and by dividing by
the standard deviation of that same feature. This provides us with
a standardized data matrix 𝐗𝐜 from which the covariance matrix is
calculated as follows:

𝐂 = 1 𝐗 𝑇𝐗 , (12)

𝑁 − 1 𝐜 𝐜

8 
where 𝐗𝐜
𝑇 denotes 𝐗𝐜 transposed. The quality of the obtained rep-

resentation depends on the latent components retained in the main
representation space. Let us denote by 𝐏 the column matrix of the
retained 𝑞 dominant eigenvectors, i.e. the linear transformation matrix.
Dominant eigenvectors are arranged in descending order of their cor-
responding eigenvalues (Fadhel et al., 2019). The principal component
scores are obtained by projecting the original centered and reduced
data onto the new space generated with 𝐏, obtaining the matrix 𝐓 of
the principal component scores of dimensions (𝑂×𝑞). That is, the linear
transformation matrix 𝑃 transforms 𝐗𝐜 into a new matrix of latent
components 𝐓 as follows:

𝐓 = 𝐏𝐗𝐜, (13)

where each column 𝐓(., 𝑖) of the matrix 𝐓 provides a principal compo-
nent for the set of PV panels 𝑛𝑝.

6.2. Isometric mapping

Isomap stands for isometric mapping. This method addresses di-
mensionality reduction as the problem of creating a transformation
from high dimension to low dimension in a graph-theoretic frame-
work (Samko et al., 2006). Isomap extends the metric multidimensional
scaling (MDS) (Hout et al., 2013) by incorporating the concept of
geodesic distances imposed by a weighted graph (Bouttier et al., 2003).

In graph theory, the distance between two vertices on a graph
corresponds to the number of edges in the shortest path connecting
them. This distance is also known as the geodesic distance (Bouttier
et al., 2003). Isomap is intended to preserve pairwise geodesic distances
between conformations in a graph, that is, in the lower dimension.
The distances 𝑑𝐗(𝑖, 𝑗) between all pairs 𝑖, 𝑗 of 𝑂 data points in the
high-dimensional input space 𝐗 are required as input to the Isomap
algorithm, generally measured using the standard Euclidean distance.
The algorithm outputs coordinate vectors 𝐘𝑖 in a (lower) d-dimensional
Euclidean space 𝐘 that best represents the intrinsic geometry of the
data. Dimensionality reduction or feature selection using Isomap is
based on three steps:

First step – Isomap estimates the neighborhood graph by determin-
ing the neighbors of each input point in the manifold 𝐌 based on the
distances 𝑑𝐗(𝑖, 𝑗) between pairs of input points 𝑖, 𝑗 in the input space
𝐗. The neighbors can be determined with the 𝐾 nearest neighbors (K-
Isomap) or with a neighborhood radius 𝜖 (𝜖-Isomap) (Samko et al.,
2006). Neighborhood relationships are plotted as a weighted graph 𝐆
over the data points, with weighted edges 𝑑𝐗(𝑖, 𝑗) between neighboring
points.

Second step – Isomap computes the shortest path graph given
the neighborhood graph. Isomap then estimates the geodesic distances
𝑑𝐌(𝑖, 𝑗) between all pairs of points in the manifold by computing the
shortest path lengths 𝑑𝐆(𝑖, 𝑗) in 𝐆. 𝑑𝐆(𝑖, 𝑗) = 𝑑𝐗(𝑖, 𝑗) if 𝑖, 𝑗 are joined by
an edge, and 𝑑𝐆(𝑖, 𝑗) = ∞ in otherwise.

Third step – Isomap constructs the lower dimensional embedding
applying classical MDS to the graph distance matrix 𝐃𝐆 = {𝑑𝐆(𝑖, 𝑗)},
constructing an embedding of the data in a d-dimensional Euclidean
space that best preserves the estimated intrinsic geometry of the man-
ifold.

The only free parameter of Isomap is the neighborhood factor 𝐾
or 𝜖 depending on the method used. Its efficiency lies in choosing an
appropriate value for these parameters whose choice is generally left
to the user.

7. Classification using ensemble learning

In this section, the principles of the three classification methods that
constitute the Ensemble Learning method are presented. The classifica-
tion methods are applied in parallel to the reduced matrices resulting
from the PCA and Isomap methods 𝑀𝑃𝐶𝐴

𝐹 ,∗ and 𝑀𝐼𝑆𝑂𝑀𝐴𝑃
𝐹 ,∗ and to the

matrix without feature selection MF,∗. Performing the classification on
the matrices 𝑀𝑃𝐶𝐴

𝐹 ,∗ and 𝑀𝐼𝑆𝑂𝑀𝐴𝑃
𝐹 ,∗ significantly reduces the calculation

time, since the high dimensionality of the features is reduced with a
minimum loss of information.
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Fig. 7. Example of classifying a new sample using kNN.

7.1. K-nearest-neighbors

The non-parametric algorithm K-Nearest-Neighbors (kNN) is one of
the most used models for classification thanks to its simplicity (Zhang
and Zhou, 2007). For a given sample 𝑥′ = [𝑥′1,… , 𝑥′𝑛𝐹 ] with 𝑛𝐹
features to be classified, kNN finds its nearest neighbors among already
classified samples based on some distance metric. This work uses the
Euclidean distance as illustrated by Eq. (14) for a classified sample
𝑥 = [𝑥1𝑥2,… , 𝑥𝑛𝐹 ] (Wang et al., 2020).

𝑑(𝑥, 𝑦) =

√

√

√

√

𝑛𝐹
∑

𝑖=1
(𝑥𝑖 − 𝑥′𝑖)2, (14)

kNN assigns the sample to the class most common among its k
nearest neighbors, as illustrated by Fig. 7.

The proper choice of the (only) free parameter 𝑘 has a significant
impact on diagnosis performance. As the value of 𝑘 is increased, the
model can tolerate more noise because the impact of variance caused
by random error is reduced but there is a risk of missing a small but
important pattern in the data. The key to choose an appropriate value
of 𝑘 is to strike a balance between overfitting and underfitting.

7.2. Support vector machines

Support vector machines (SVM) are one of the most powerful,
complex and widely applied classification algorithms for fault diagno-
sis (Cervantes et al., 2020). The SVM classifier searches for one or a
set of optimal separation hyperplanes, maximizing the margin between
classes. When classes are not linearly separable, the main idea of SVM is
to map the input space into a higher dimensional feature space through
a kernel function and then apply linear SVM in this space as illustrated
in Fig. 8. For this purpose, it uses a set of data points, known as support
vectors, that are close to the hyperplane and influence its position and
orientation.

To formally understand SVM, let us consider the two-class support
vector machines and a set of 𝑛 training samples 𝑆 =

{

(𝑥1, 𝑦1), (𝑥2, 𝑦2),
… , (𝑥𝑛, 𝑦𝑛)

}

. 𝑥𝑖 ∈ 𝑅𝑑 , where 𝑦𝑖 is the class label of the 𝑥𝑖 sample and
𝑦𝑖 ∈ [−1,+1]. The optimal separating hyperplane (H) maximizing the
‘‘margin’’ of the classifier is given by the equation: 𝑤𝑇 𝑥+ 𝑏 = 0, where
𝑤 ∈ 𝐹 and 𝑏 ∈ 𝑅 are two parameters that determine the position of
the decision hyperplane in the feature space 𝐹 (its orientation is tuned
by 𝑤 and its displacement by 𝑏). This leads to the following decision
function and the problem is to find (𝑤, 𝑏):

𝑓 (𝑥;𝑤, 𝑏) = 𝑠𝑖𝑔𝑛(𝑤𝑇 𝑥 + 𝑏) ∈ {−1,+1}

where: 𝑠𝑖𝑔𝑛(𝑤𝑇 𝑥 + 𝑏) =

{

+ 1, if (𝑤𝑇 𝑥 + 𝑏) ≥ 0

− 1, otherwise
(15)

In soft-margin SVMs, certain samples can breach the margin, and a
non-linear decision boundary can be achieved by projecting the data
9 
Fig. 8. Example of classification hyperplane representation of SVM. 𝐻 corresponds to
the optimal hyperplane.

into a higher-dimensional space 𝐹 through a nonlinear function 𝛷(𝑥).
Although data points may not be linearly separable in their original
space, they are mapped to a feature space 𝐹 where a hyperplane
can separate them. To avoid over-fitting noisy data, slack variables 𝜉
are introduced, allowing some data points to lie within the margin.
The parameter 𝐶 > 0 in Eq. (16) regulates the balance between
classification error on the training data and margin maximization. The
objective function of SVM classifiers can be minimized as follows:

min
𝑤,𝑏,𝜉𝑖

‖𝑤‖

2

2
+ 𝐶

𝑛
∑

𝑖=1
𝜉𝑖

Subject to: 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖
𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛

(16)

The minimization problem is solved using Lagrange Multipliers
𝛼𝑖, 𝑖 = 1,… , 𝑛. The new decision function rule for a data point 𝑥 is:

𝑓 (𝑥) = 𝑠𝑖𝑔𝑛(
𝑛
∑

𝑖=1
𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏) (17)

Every 𝛼𝑖 > 0 is weighted in the decision function and thus supports the
machine. Since SVMs are considered to be sparse, there are relatively
few Lagrange multipliers with a non-zero value.

The function 𝐾(𝑥, 𝑥𝑖) = 𝛷(𝑥)𝑇𝛷(𝑥𝑖) is known as the kernel function.
Since the outcome of the decision function only relies on the dot-
product of the vectors in the feature space 𝐹 (i.e. all the pairwise
distances for the vectors), it is not necessary to perform an explicit
projection. As long as a function 𝐾 provides the same results, it can
be used instead. This is known as the kernel trick.

7.3. Decision trees

Tree-based ML techniques are among the most widely used nonlin-
ear models in many applications, where Random Forest (Sepúlveda-
Oviedo et al., 2023b) and DT are the most popular having, in some
cases, an accuracy greater than that of neural networks (Lundberg et al.,
2020). The DT model uses two types of nodes, which are the decision
node and the leaf node. Decision nodes have multiple branches and
are used to make a decision, while leaf nodes are the result of these
decisions. DTs are built from a recursive split of the set of samples based
on a set of splitting rules that relate to the features (Mahesh, 2019). An
illustration is presented in Fig. 9.

Many variants of DTs exist among which the Iterative Dichotomies
3 (ID3), Successor of ID3 (C4.5), Automatic Chi-Square Interaction
Detector (CHAID), Classification and Regression Tree (CART), etc. In
this work, the algorithm C4.5 has been selected due to its good results
in detecting faults in PV systems (Benkercha and Moulahoum, 2018).

C4.5 builds decision trees from a set of training data using the
concept of Information Gain that refers to entropy. Information Gain
computes the change in entropy of a dataset before and after splitting
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Fig. 9. Structure of the Decision Tree classifier. The DT classifier is composed of two
types of nodes: decision nodes and leaf nodes.

the data on the values of a given feature. More precisely, the Infor-
mation Gain of a split 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 equals the original entropy 𝐻 minus the
weighted sum of the sub-entropies 𝐻𝑗 , with the weights equal to the
proportion of data samples being moved to the sub-datasets as given
by Eq. (18).

𝐼𝐺𝑠𝑝𝑙𝑖𝑡 = 𝐻 −
⎛

⎜
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⎝
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|

|

𝐷𝑗
|

|

|

|𝐷|
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⎟

⎠

(18)

where |𝐷| is the number of samples in the original data set 𝐷 and |

|

|

𝐷𝑗
|

|

|

is the number of samples in the 𝑗th sub-dataset after being split.
C4.5 then attempts to lessen the bias of Information Gain 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 on

highly branched predictors by introducing a normalizing term called
the Intrinsic Information 𝐼𝐼𝑠𝑝𝑙𝑖𝑡 given in Eq. (19).

𝐼𝐼𝑠𝑝𝑙𝑖𝑡 = −
⎛
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|
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|

|

𝐷𝑗
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⎟
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(19)

C4.5 finally obtains the Gain Ratio of a split 𝐺𝑅𝑠𝑝𝑙𝑖𝑡 as follows:

𝐺𝑅𝑠𝑝𝑙𝑖𝑡 =
𝐼𝐺𝑠𝑝𝑙𝑖𝑡

𝐼𝐼𝑠𝑝𝑙𝑖𝑡
(20)

The feature with the highest Gain Ratio is chosen to make the split.

7.4. Majority voting

The three classifiers (kNN, DT, and SVM) are integrated using the
principle of majority voting (MV), as suggested in Zhang et al. (2020).
To clarify, we refer to kNN, DT as unstable/stochastic classifiers and
SVM as ‘‘stable learner’’ with the aim of achieving a better final detec-
tion result. In this context, a ‘‘stable learner’’ denotes a classifier with
the capacity to make accurate predictions consistently, while an ‘‘un-
stable/stochastic learner’’ typically exhibits less consistent predictive
capabilities.

This study takes advantage of the principle of majority voting, treat-
ing each ‘‘stable learner’’ and ‘‘unstable/stochastic learner’’ as a voter.
In this approach, the prediction results or outputs of the three classi-
fiers are compared to determine the final class assignment. Weighted
majority voting, relative majority voting, and absolute majority voting
are potential methods for conducting this vote.

Assume a set of 𝑛𝑣 weak classifiers or voters, each returning a
singleton output set 𝑂𝑖, 𝑖 = 1,… , 𝑣 that contains one label value 𝑙𝑗 , 𝑗 =
1,… , 𝑛𝑙 for each sample 𝑥. Hence 𝑂𝑖 ⊂ {𝑙1, 𝑙2,… , 𝑙𝑛𝑙} and |

|

𝑂𝑖
|

|

=1 for
𝑖 = 1,… , 𝑣. The voter output sets are gathered in the multiset  =
10 
𝑂1 ∪ 𝑂2 ∪ ⋯ ∪ 𝑂𝑣. Then the relative majority vote returns the label 𝑙𝑣
that has maximal frequency in  as follows:

𝑙𝑣 = argmax
𝑙𝑗∈

{#𝑙𝑗} (21)

where #𝑙𝑗 is the frequency of the label 𝑙𝑗 .
Note that if the trust placed in each weak classifier is different, one

can use a weighted variant of relative voting. In this case, the final label
is obtained as follows:

𝑙𝑣 = argmax
𝑙𝑗∈

{
𝑣
∑

𝑖=0
𝑤𝑖 #𝑂𝑖

𝑙𝑗} (22)

where #
𝑂𝑖

is the frequency of the label 𝑙𝑗 in the set 𝑂𝑖.
Finally, the absolute majority voting method only generates the final

label if the highest voting rate of some label exceeds 50%, otherwise,
it does not issue a prediction. A combination of relative and absolute
majority voting is used in this work.

An example of classifying a current signal for a snail trail panel is
presented in Fig. 10. At the first level, presented in Fig. 10, the relative
majority voting is used to determine the health status in each temporal
slice. Relative majority voting has been selected for this research due to
its interesting results in fault detection (Zhang et al., 2020) and the non-
use of arbitrarily assigned weights. At the second level, the absolute
majority vote is used to determine the overall health status of the panel.

8. Results

This section presents the classification results for the 𝑛𝑣 = 3 algo-
rithms (kNN, SVM and DT) and the EL method through the optimal
current signals of 8 PV panels different from those used for training.
The tuning parameters for the algorithms used in our study were
meticulously selected through multiple rounds of testing to ensure
optimal performance. This iterative process was crucial for achiev-
ing the best individual results with each algorithm, underlining the
importance of precise parameter tuning in our findings. This process
can be automatized by selecting a multidimensional grid and testing
every combination. The current signals are captured under the same
conditions as the signals presented in Fig. 4.

The selected characteristics with significant variance (obtained with
the dimensionality reducers) are a priori those that can be useful to
solve problems of detection and classification of the health status of PV
panels. These features are processed by the feature selection algorithms
and then processed by the classification methods. All algorithms (kNN,
SVM, DT and EL) are trained and tested with the same PV panels. Then,
the algorithms are tested with the signals presented in Fig. 11.

In this case study, the first majority vote uses the relative majority
voting. Then, the results obtained from the relative majority voting for
the 4 temporal slices are submitted to an absolute majority voting in a
second stage.

To evaluate the prediction results of the classification algorithms,
i.e the number of panels correctly classified, the confusion matrix and
the 𝐹𝑣𝑎𝑙𝑢𝑒 are used. For example, in a classification example with two
classes (class Positive (𝑃𝑜𝑠) and class Negative (𝑁𝑒𝑔)), the 𝐹𝑣𝑎𝑙𝑢𝑒 metric
does not consider true negatives. A true negative is generated when a
sample (in this case, a PV panel) that belongs to class 𝑁𝑒𝑔 is effectively
classified in class 𝑁𝑒𝑔. The 𝐹𝑣𝑎𝑙𝑢𝑒 takes its value between 0 and 1, with 1
being the best performance and 0 being the worst. The 𝐹𝑣𝑎𝑙𝑢𝑒 is defined
as follows:

𝐹𝑣𝑎𝑙𝑢𝑒 = 2 ∗
𝑝𝑟 ∗ 𝑟𝑒
𝑝𝑟 + 𝑟𝑒

, (23)

where the term 𝑝𝑟, represents the precision that can be seen as the cost
of false positives and is defined as follows:

𝑝𝑟 =
𝑇 𝑟𝑢𝑒𝑃𝑜𝑠 . (24)
(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠)
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Fig. 10. Example of fault classification of a PV panel with snail trail using EL based on Majority voting.

Fig. 11. Optimal current signals from 8 photovoltaic panels used in the testing of the proposed methodology. The signals were captured during 4 full days, one day for each
season of the year. selected for each season of a year. The data is captured with a frequency of one minute. The 4 temporal slices proposed (Sepúlveda-Oviedo et al., 2022) and
adopted in this research are represented using dotted lines.
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Table 2
Fault detection and classification results (𝐹𝑣𝑎𝑙𝑢𝑒) for signals captured in Summer. In
Without Approach scenario, the statistical characteristics are extracted directly from the
raw current signal. In New approach scenario, the full approach (signal decomposition,
statistical feature extraction, and dimensionality reduction using PCA and Isomap) is
performed.

Season Temporal slice Methodology kNN SVM DT EL

Summer

Morning Without approach NSD_NDR 0.62 0.62 0.5 0.71
New approach PCA 0.73 0.7 0.53 0.88

Isomap 0.7 0.71 0.54 0.8

Midday Without approach NSD_NDR 0.63 0.65 0.53 0.72
New approach PCA 0.63 0.71 0.54 0.80

Isomap 0.66 0.65 0.54 0.75

Afternoon Without approach NSD_NDR 0.62 0.64 0.54 0.72
New approach PCA 0.63 0.71 0.59 0.83

Isomap 0.68 0.64 0.55 0.74

Evening Without approach NSD_NDR 0.63 0.63 0.51 0.7
New approach PCA 0.67 0.66 0.53 0.85

Isomap 0.67 0.67 0.53 0.7

Table 3
Fault detection and classification results (𝐹𝑣𝑎𝑙𝑢𝑒) for signals captured in Fall. In Without
pproach scenario, the statistical characteristics are extracted directly from the raw
urrent signal. In New approach scenario, the full approach (signal decomposition,
tatistical feature extraction, and dimensionality reduction using PCA and Isomap) is
erformed.
Season Temporal slice Methodology kNN SVM DT EL

Fall

Morning Without approach NSD_NDR 0.63 0.64 0.5 0.72
New approach PCA 0.67 0.73 0.53 0.88

Isomap 0.63 0.63 0.5 0.76

Midday Without approach NSD_NDR 0.62 0.64 0.54 0.72
New approach PCA 0.66 0.67 0.6 0.88

Isomap 0.67 0.71 0.51 0.8

Afternoon Without approach NSD_NDR 0.62 0.65 0.53 0.7
New approach PCA 0.68 0.64 0.59 0.87

Isomap 0.62 0.65 0.54 0.76

Evening Without approach NSD_NDR 0.62 0.62 0.5 0.7
New approach PCA 0.7 0.69 0.57 0.88

Isomap 0.67 0.7 0.5 0.79

The term 𝑟𝑒 represents the recall, this recall is the estimate of the
umber of panels correctly classified based on the total number of
anels belonging to the class. The recall is defined as follows:

𝑒 =
𝑇 𝑟𝑢𝑒𝑃𝑜𝑠

(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔)
. (25)

Tables 2–5 present the results of the classification methods, for
each season of the year, as a function of 𝐹𝑣𝑎𝑙𝑢𝑒. The values reported
in Tables 2–5 are divided by each temporal slice. In the first scenario
(without treatment approach), the extraction of statistical features is
performed directly on the database of current signals. That is, no
signal decomposition and no dimensionality reduction (NSD_NDR). In
the second scenario, signal decomposition is performed using MSD,
statistical feature extraction, and dimensionality reduction using PCA
and Isomap.

Only on the classification results using the proposed methodology
with the PCA method, the confusion matrix is used because in all the
scenarios presented in the Tables 2–5, the PCA method outperforms
the Isomap method. The confusion matrix is a widely known tool that
allows visualizing the performance of a supervised learning algorithm
or classification algorithm (Mahesh, 2019). In this matrix, each column
represents the number of predictions of each class, while each row
represents the instances in the actual class. This allows to see what
types of successes and errors the model of this research is having
when going through the learning process with the current data as a

function of the time of each PV panel of the string. Fig. 12 shows the
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Table 4
Fault detection and classification results (𝐹𝑣𝑎𝑙𝑢𝑒) for signals captured in Winter. In
Without Approach scenario, the statistical characteristics are extracted directly from the
raw current signal. In New approach scenario, the full approach (signal decomposition,
statistical feature extraction, and dimensionality reduction using PCA and Isomap) is
performed.

Season Temporal slice Methodology kNN SVM DT EL

Winter

Morning Without approach NSD_NDR 0.63 0.64 0.54 0.71
New approach PCA 0.7 0.75 0.54 0.8

Isomap 0.67 0.65 0.57 0.75

Midday Without approach NSD_NDR 0.63 0.63 0.54 0.72
New approach PCA 0.73 0.74 0.54 0.8

Isomap 0.65 0.67 0.5 0.72

Afternoon Without approach NSD_NDR 0.64 0.65 0.51 0.71
New approach PCA 0.64 0.74 0.57 0.79

Isomap 0.71 0.68 0.6 0.73

Evening Without approach NSD_NDR 0.61 0.64 0.5 0.7
New approach PCA 0.69 0.72 0.59 0.85

Isomap 0.72 0.67 0.54 0.74

Table 5
Fault detection and classification results (𝐹𝑣𝑎𝑙𝑢𝑒) for signals captured in Spring. In
Without Approach scenario, the statistical characteristics are extracted directly from the
raw current signal. In New approach scenario, the full approach (signal decomposition,
statistical feature extraction, and dimensionality reduction using PCA and Isomap) is
performed.

Season Temporal slice Methodology kNN SVM DT EL

Spring

Morning Without approach NSD_NDR 0.61 0.62 0.5 0.7
New approach PCA 0.66 0.67 0.61 0.87

Isomap 0.63 0.65 0.61 0.76

Midday Without approach NSD_NDR 0.63 0.63 0.55 0.71
New approach PCA 0.65 0.72 0.58 0.88

Isomap 0.7 0.65 0.6 0.71

Afternoon Without approach NSD_NDR 0.62 0.63 0.53 0.72
New approach PCA 0.69 0.64 0.59 0.85

Isomap 0.63 0.67 0.6 0.76

Evening Without approach NSD_NDR 0.63 0.64 0.55 0.71
New approach PCA 0.63 0.71 0.62 0.89

Isomap 0.67 0.69 0.57 0.79

results of the classification algorithms for each season of the year, after
dimensionality reduction using PCA. The results are presented in the
form of a confusion matrix where 0 is the healthy class and 1 is the
class of the panels with snail trail. In this research, it is considered that
if at least in a temporal slice the sample is classified as faulty, the final
label is assigned as a faulty panel.

9. Discussion

As observed in Tables 2–5, the performance of classifiers signif-
icantly improves with the method proposed in this study, namely
PCA and Isomap. Additionally, in the same Tables 2–5 and Fig. 12,
the EL algorithm demonstrates the ability to accurately discriminate
between the two panel types (healthy and snail trail). This reduction of
information to the essential elements effectively eliminates redundant
or irrelevant data, enhancing the overall efficiency of the classification
process.

It can be seen how the Ensemble learning approach proposed in this
work is superior to that of the kNN, SVM and DT algorithms. Thus,
the algorithm for the use of temporal slices includes the analysis of
the evolution of the faults detected over time. In addition, results have
been obtained with drastic reduction of time calculation (up to 35%
less computing time).

Although the accuracy results presented in Tables 2 to 5 may not
match those achieved by image-based approaches as shown in Table 1,

it is important to highlight the following aspects. Firstly, our approach
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Fig. 12. Confusion matrix of the results of the classification algorithms for each season of the year, after dimensionality reduction using PCA. The class 0 corresponds to healthy
panels and the class 1 corresponds to panels with a snail trail.
robustly identifies snail trail faults under varying irradiation conditions
using only one current signal per PV panel. This significantly reduces
the required number of samples while maintaining the robustness
of fault detection. Additionally, our approach does not require any
additional installation to function. In economic terms, it is superior,
as it offers an industrially scalable solution. Furthermore, by operating
using electrical signals, it can detect a large number of faults, surpassing
the limitations of image-based approaches.

Moreover, due to data dimensionality reduction and effective fea-
ture extraction using the Multi-resolution signal decomposition, our
approach has the potential not only to detect permanent faults like
snail trails but also to identify rapid changes in electrical signals (such
as those generated by arc faults). Finally, in comparison to image-
based approaches, our method significantly reduces the computational
and memory requirements for fault detection. When comparing the
detection results to those achieved by the study in Sepúlveda-Oviedo
et al. (2022) presented in Table 1, it can be observed that the results are
comparable. However, our approach ensures this level of performance
consistently across different seasons with low computational cost. No-
tably, the algorithm even outperforms the results in Sepúlveda-Oviedo
et al. (2022) in the Spring season during low irradiation conditions at
the end of the day as seen in Table 5.

The various contributions highlighted make both the proposed ap-
proach effective to detect the faults of PV systems and is likely to
reduce maintenance costs significantly. As the EL approach is a generic
approach, it can be easily extrapolated to a multiple detection of faults
with an adaptation of some decision rules or other diagnosis problems
in other domains. Finally, the approach proposed in this research can
be easily embedded in microprocessors or numerical devices existing in
monitoring systems or electrical interfaces like inverters that are able
to capture several electrical measurements of strings, panels, or arrays
as a function of time.
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10. Limitations

The main limitation of this approach lies in the selection of the
mother wavelet, the decomposition levels for Multi-resolution signal
decomposition, and the number of latent components obtained from
PCA. In this case, all these aspects were determined through multiple
trials. However, the values may vary when detecting a different type
of fault, by increasing or reducing the number of features generated
by Multi-resolution signal decomposition or the amount of explained
variance contained in the first three latent components of PCA.

In the context of our current study, we did not employ cross-
validation, to measure the performance of our approach, due to sev-
eral specific challenges associated with our dataset and the nature of
our case study. These challenges include the high specificity and low
variability of our snail trails dataset, which is difficult to replicate
synthetically and cannot be effectively split for cross-validation without
compromising its coherence or representativeness. This is particularly
problematic for data with inherent sequentially or time series data.
Furthermore, our dataset, while small, exhibits distinct characteristics
that the model consistently recognizes, suggesting it can generalize
well even in the absence of cross-validation. We also faced the po-
tential risks of overfitting and introducing bias with cross-validation
in such a small dataset, alongside the ‘‘curse of dimensionality’’ in
high-dimensional data spaces, which can diminish the effectiveness
of cross-validation (Debie and Shafi, 2019). Despite these challenges,
multiple field verifications and the use of evaluation metrics like the
F-score and confusion matrix have demonstrated the model’s stability
and consistency, supporting its efficacy.

Like any approach based on machine learning, the accuracy of our
method is significantly influenced by the correct selection of hyper-
parameters for each algorithm. This underscores the critical role of
parameter tuning in defining the efficacy and reliability of our results.
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11. Future work

Due to the interesting results obtained, potential directions for
future work include the following aspects:

• Integrating the proposed approach into multiple real-time moni-
toring devices.

• Collecting various electrical signals with parasitic noise signals to
assess the algorithm’s robustness to noise.

• Testing the proposed approach with other types of permanent
and/or temporary faults.

• Modifying the size of the temporal slices to identify the minimum
amount of data required for fault detection.

• Adapting the algorithm for testing using a single sliding temporal
slice for fault detection.

• Proposing a data normalization algorithm for PV data that allows
the algorithm to be applied to new PV plants without the need
for retraining. This algorithm will consider operational aspects
of the plant (number of panels, orientations, technologies, etc.)
and environmental factors (humidity, wind speed, irradiance, and
ambient temperature).

• Exploring the use of heuristic or metaheuristic optimization algo-
rithms to fine-tune the parameters of our approach.

• Building an extended database containing the electrical signature
of multiple faults.

• Exploring approaches similar to the one proposed in this study for
other key elements in energy generation systems, such as storage,
conversion, and transmission components.

• Performing a sensitivity analysis to ascertain the influence of
hyperparameters on the diagnostic outcome.

• Exploring and comparing other ensemble approaches such as
fusion via incremental learning or ensembles using Dempster
Shafer.

• Exploring classifiers such as edRVFL - randomized networks as
potential replacements for the DT. edRVFL - randomized networks
has proven to be faster than some RF algorithms such as Oblique
Random Forest or Double Rotation Forest that are themselves
much more efficient than DT.

2. Conclusions

This research proposes a method for detecting subtle faults known
s snail trails using an ensemble learning framework called ELDIAG.

ELDIAG combines several complementary learning algorithms, includ-
ing Support Vector Machines, K-Nearest Neighbors, and Decision Trees.
It extracts time–frequency characteristics and statistics from the PV
current signal of the panel, followed by feature selection and dimen-
sionality reduction. ELDIAG is experimentally validated for all four
seasons using data from a real PV string of 16 panels. The results
show efficient classification of healthy panels and those with snail
trails. Notably, the method relies solely on the electrical current signal,
making it suitable for standard PV data acquisition systems.

Based on the results obtained, we consider that our proposal pro-
vides unique key elements.:

• The algorithm works without disrupting PV system production.
• It allows temporal analysis of faults’ evolution.
• The combination of relative and absolute majority voting aids in

fault detection and characterization.
• It detects rapid signal changes through multi-resolution signal

decomposition.
• The approach is computationally efficient and can be integrated

into various data acquisition systems.
• It reduces the data storage space required for the predictor matrix.
• It successfully detects faults even under low irradiation condi-

tions.
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The research focuses on early fault diagnosis, particularly for faults
like snail trails that may lead to severe issues affecting PV system pro-
duction. The results underscore the capability of our method to identify
panels with subtle faults, even under low irradiation conditions. This
ability is crucial for enhancing the production reliability of PV systems.
Furthermore, adopting approaches such as the one presented in this
study enables early intervention in the PV system (at a stage where
power loss is not substantial). Such preemptive actions help prevent
the occurrence of more severe failures that could be triggered by snail
trails, including hot spots or cracks. These issues, unlike the initial
snail trail faults, can lead to significant power losses and pose potential
safety risks to operational staff. Moreover, this approach simplifies data
collection, storage, and computation, making it cost-effective and easily
integrable into various data acquisition systems, including PV inverters
and monitoring systems.

The PV industry can significantly benefit from this work by inte-
grating this approach into their monitoring and maintenance systems.
It enables early detection of faults, improves the operational efficiency
of solar panels, reduces maintenance costs, and extends the lifespan of
the equipment. Moreover, it provides a foundation for the development
of smarter and more automated monitoring systems. The primary users
would be operators of PV plants, maintenance engineers, and solar tech-
nology companies that develop monitoring and diagnostic solutions. It
may also be of interest to researchers in the field of solar energy and
artificial intelligence applied to renewable energy systems.
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