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Solving Multi-Robot Task Allocation and Planning
in Trans-media Scenarios

Virgile de La Rochefoucauld1,2, Simon Lacroix1, Photchara Ratsamee3 and Haruo Takemura2

Abstract— Trans-media robots, capable of operating across
diverse environments, add significant complexity for multi-robot
task allocation and planning problems. This paper introduces
a novel approach to plan missions for such multi-robot sys-
tems, that addresses the associated specific complexities and
constraints. It streamlines the overall mission planning process
by decomposing it into tractable sub-problems, and addresses
the issues of coalition formation, path planning, and task
scheduling. It provides mission plans in very little computation
time and allows to tackle large missions intractable by global
planners, with negligible loss in plan optimality.

I. INTRODUCTION

Trans-media robots, capable of operating across multiple
mediums, have garnered significant attention over the past
decade due to their potential to enhance versatility in com-
plex environments. Recent studies [1], [2], [3], [4], [5], [6]
and comprehensive reviews [7], [8], [9] highlight the growing
importance of aerial-aquatic robots in diverse application
domains.

Traditionally, missions involving multiple mediums have
relied on heterogeneous multi-robot teams [10], [11]. How-
ever, utilizing trans-media robots within these missions can
significantly enhance autonomy, mission scalability, and op-
erational flexibility. Despite these advantages, the integra-
tion of robots that transition between mediums introduces
substantial complexities in mission planning, particularly
in managing inter-media transitions and ensuring robust
supervision.

Contributions: This paper presents a novel framework
for addressing the challenges of trans-media multi-robot task
allocation (MRTA) and mission planning. We decompose
the planning problem into solvable sub-problems, resulting
in a structured approach that enhances the efficiency and
scalability of mission planning. Our methodology utilizes a
generalized formalism compatible with standard solvers, en-
abling the effective handling of specific constraints inherent
to trans-media missions. The approach encompasses offline
mission planning, including task allocation, scheduling, team
formation, and path planning.

We leverage the Planning Domain Definition Language
(PDDL 2.1 [12]) to systematically formalize the mission
domain and planning problems, facilitating a structured ap-
proach to solving complex planning tasks. The OPTIC plan-
ner [13] is employed to address the temporal and resource-
based complexities inherent in these missions.
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Fig. 1: Trans-media robots operating in both aerial and
aquatic environments in a water ponds sampling scenario

Considered Scenarios: Our study focuses on a pollution
sampling mission involving multiple water bodies separated
by land, as depicted in Figure 1. The mission requires the
collection of underwater measurements, which necessitates
operator supervision and real-time communication with a
base station. This communication is facilitated by a surface
robot that converts underwater acoustic signals into radio
transmissions.

To transition between aerial and aquatic environments,
the trans-media robots perform a ”switch” action, enabling
controlled landings and launches at designated transition
points on the water surface. These critical actions are planned
to occur after a preparatory aerial observation, ensuring safe
transitions.

Although specific, this context is representative of real-
world applications [14], and it allows us to analyze and tackle
most of the challenges faced by trans-media multi-robots:
large scale concurrences and communication constraints,
transitions, and evolution in both mediums.

Outline: After a brief review of the state of the art
on trans-media robots and planning for multi-medium mis-
sions, Section III details our MRTA and planning problem
formulation and the associated use case. Section IV presents
the problem decomposition and solving approach. Results in
section V highlight the performance of this approach with
respect to the direct use of the OPTIC solver, and Section
VI concludes the paper and discusses further extensions.

II. RELATED WORK

Research has been devoted to trans-media (aerial-aquatic)
robots for about a decade. [7] provides a comprehensive
review of various aerial-aquatic system configurations and
the associated challenges that have been tackled since the
pioneering proposals (e.g. [6]). Water egress/ingress [1] or



trajectory planning [15] remain challenging due to the com-
plexity of the transition between aerial and aquatic media.

But to the best of our knowledge mission planning for
teams of aerial-aquatic robots remains an unexplored prob-
lem. First solutions to tackle multi-medium missions have
used a team of cooperating heterogeneous multi-robot agents:
a wide range of problems and missions have been addressed
in this context, such as mixed reality team collaboration
[16], environmental monitoring [16], [17], [10], [11], energy
conservation [18], multi-medium environments [11], multi-
roles single environment [19], etc. [11] and [16] present
multi-scale data sampling missions, with humans in the
monitoring loop. In [20], the robots are identified based on
their assigned abstract roles: Carrier, Supplier and Observer.
The presence of human helpers in the field is also noted. The
authors use roles to generalise the rescue mission problem
and formalise multi-robot cooperation through hierarchy of
actions.

To address the complexity inherent in planning and
scheduling tasks for multi-robot teams, [21] introduces a
temporal planner and constraint description methodology
aimed at simplifying the search space. The use of descriptive
languages such as PDDL and its temporal extension, together
with solvers such as OPTIC, increases the flexibility in
defining the problems and finding solutions. The proposed
strategy exploits the different capabilities of heterogeneous
robots to streamline mission planning and improve large
problems tractability. However, the unique advantage of
trans-media robots lies in their homogeneity and adaptability
to different environments, voiding the direct application
of such heterogeneity-based simplifications. Nevertheless,
constraining the solution space is a viable strategy for solving
complex problems.

III. PROBLEM MODELING

The problem is formalised as a MRTA problem planning
tuple P = ⟨R,A,P,S,M, I,G⟩, with:
• R = {r1,r2, . . . ,rn} the set of robots
• A the set of robot actions
• P= {p1, p2, . . . , pm} the set of points of interests (PoI’s)
• S = {s1,s2, . . . ,sk} the set of water bodies (or “sites”)
• M = {aerial, terrestrial,aquatic} the set of mediums
• I and G are respectively the initial and goal states.
PoI’s are classified into three categories:
• Pspl are the aquatic sampling points,
• Ptr are the transition points at the surface of the sites,
• Pobs are the aerial observation points above the sites.
Every PoI is associated with a site: the set P =

⋃i=k
i=1 Psi is

partitioned into sites. Each site contains a series of sampling
and transition points, and a single observation point above
the site center.

A specific base point pb denotes the terrestrial position at
which all robots are located in the initial state. The mission
goal is to have all sampling points visited by a robot, and all
robots back at pb. Figure 2 illustrates a multi-site sampling
missions.

Fig. 2: Representation of a multi-robot mission to sample
pollution in multiple bodies of water

The planning problem is modeled using PDDL 2.1, which
defines actions by predicates and effects, with an associated
duration (cost). The domain’s actions and constraints are
formalised as follows:
Navigate: These actions model the robot motions between
two PoI’s pi, p j belonging to the same medium. The set of
navigation actions is:

Anav =
{

anav(r, pi, p j) | r ∈ R, pi, p j ∈ P
}

with
r ∈ R, pi, p j ∈ P, pi ̸= p j,Mpi = Mp j

Observe: These action model the observation of all the
transition points of a site, from the unique observation PoI
associated to the site. The set of observation actions is:

Aobs = {aobs(r, p,s) | r ∈ R, p ∈ Pobs∩Ps}

Switch: This action represents a medium transition from mk
to ml for a robot r, that can only be executed at one of the
transition points of a site. The set of switch actions is:

Asw = {asw(r, p,mk,ml ,s)

| r ∈ R, p ∈ Ptr ∩Ps,{mk ̸= ml} ∈Mp}

This action can only be executed after the transition points
of the site s have been observed:

tstart(asw(r, pi,mk,ml ,s))≥ tend(aobs(r, p j,s))

pi ∈ Ptr ∩Ps, p j ∈ Pobs∩Ps
(1)

Takeoff and Land: these actions only occur at the base point
pb:

Ald = {ald(r, pb) | r ∈ R, pb ∈ P,mr = aerial}
Atoff = {atoff(r, pb) | r ∈ R, pb ∈ P,mr = terrestrial}

Convert Underwater Data: This action enables the online
transmission of underwater data to base operators through a
robot located at the site surface, converting acoustic trans-
missions into radio transmissions. The set of data conversion
actions is:

Acvrt = {acvrt(r, p,s) | r ∈ R, p ∈ Ptr ∩Ps,mr = aquatic}

Sample: These actions model underwater data collection, and
constitute the mission goal. Their set is:

Aspl =
{

aspl(r, p,s) | r ∈ R, p ∈ Pspl ∩Ps,mr = aquatic
}



Sampling actions can only be executed when another robot
is executing a data conversion on the same site s:

∀ru,rv ∈ R, ∀pi ∈ Pspl ∩Ps, ∀p j ∈ Ptr ∩Ps,

mru = mrv = aquatic,
tstart(aspl(ru,pi,s))≥ tstart(acvrt(rv, p j,s))

∧ tend(aspl(ru,pi,s))≤ tend(acvrt(rv, p j,s))

(2)

The goal state G is reached when all sampling points Pspl
in P have been sampled and the robots are back at the base
point pb, the planning problem consists in finding sequences
of actions from the initial state I to the goal state G, satisfying
communication and observation constraints 2 and 1.

To each action is associated a cost defined by is duration:
• Observe, Sample, Takeoff and Land actions have fixed

costs
• Switch actions have two fixed costs, defined by the

aquatic/aerial direction
• Convert Data and Navigate actions have a cost defined

by their duration, the navigation cost depending on the
distances D(pu, pv) between the PoIs (pu, pv) and the
medium mr in which they are executed:

Cnav(r, pu, pv) = D(pu, pv)×V (mr) (3)

where V (mr) is the velocity of the robot r in the medium
m.

IV. PRE-ALLOCATION APPROACH

The planning problem is decomposed into components,
which reduces the planner’s search space via pre-allocations.
The solution focuses on localizing the sampling MRTA
and planning problems by pre-allocating teams on sites
and assessing paths for robots across them. This approach
enables OPTIC to effectively solve the MRTA for sites, while
maintaining a degree of optimality. The pre-allocation is
divided into three steps: the first involves estimating the cost
of sampling the PoIs on sites, followed by a clusterization of
the sites. The second step involves creating an allocation cost
estimation for different numbers of robots allocated to each
site and determining the optimal solution. Finally, the process
combines the best robot path scheduling and planning with
local solving of the site’s sampling plan and planning prob-
lem to avoid large-scale multi-robot concurrences. Figure 3
presents the steps of this approach.

Fig. 3: Structure of the decomposed Pre-allocation Problem

A. Sites clustering and cost estimation
We model the mission by defining each site in S as an

individual goal that the robots must visit and complete their
assigned tasks at, thereby treating the sites as distinct sub-
goals within the overall mission framework. To estimate the
cost of sampling each site, we employ a Multiple Travelling
Salesman Problem (MTSP) approach, which visits all Points
of Interest (PoIs) within a site. According to the taxonomy
by [22], this problem is classified as a ”Single depot, open
path MTSP.” The PoIs Ps j of a site s j are divided in a set
of Tours, each assigned to a robot, such that ∀ri ∈ R and
∀s j ∈ S:

⋃i=n
i=0 Tourri = Ps j .

The objective is to minimize the site completion time by
reducing the cost of the longest tour, defined as a MinMax
MTSP. All robots start their journey from the same position
p0, the site’s center, and visit the assigned points {p1, ..., ph}
in sequence. The goal and cost of a Tour for a robot ri are:

Minimize(max(C(Tourri))) (4a)

C(Tourri) =Cnav(ri, p0, p1)+
h−1

∑
k=1

Cnav(ri, pk, pk+1) (4b)

where Tourru

⋂
Tourri = /0,∀u ̸= i,1 ≤ u, i ≤ n. The

Cnav(ri, p0, p1) accounts for the first step of the tour, which
is why the summation starts at k=1.

To manage the entire mission planning process, we utilize
the K-MEANS clustering method [23] to group sites, with
varying robot team sizes. Each robot is assigned a cluster
of PoIs to visit in a Tour. Given the need to maintain
communication during sampling, a minimum of two robots is
required per site. The possible robot team sizes are defined as
NTeam = 2, ...,Ri, ...,n, where Ri ̸= n−1 and

⋃
Ri∈Nteam Ri = R

(the exclusion of size n−1 prevents single-robot teams).
We define C(s j,Rs j) as the estimated cost for a team Rs j

of robots to complete the sampling at site s j, as calculated
by equations 4a and 4b ∀r ∈ Rs j . The heuristic cost for each
site is based on the average cost across possible team sizes.

Fig. 4: Variation of clusterization occur due to changes in
sites weights (with fixed locations)

To optimize the distribution and paths among weighted
sites for different team sizes, an initial clustering is per-
formed using the K-MEANS method, focusing on site po-
sitions. Let Clset = {cl1,cl2 . . . ,cly} be the set of clusters,



where each cluster cl contains a set of sites Scl , such that
the union of all clusters in Clset covers all sites S, represented
as

⋃
cl∈Clset Scl = S.

Figure 4 illustrates the significance of considering site
weights in clustering outcomes, even when locations are
fixed. The weights influence the optimal distribution and
paths, showing that varying weights can lead to different
cluster formations, thus impacting overall mission planning.

After adjusting the site weights, the clusters are recon-
figured to represent a more balanced division of weighted
sites. The sites within each cluster are then reordered for
optimal visitation, following a ’single depot, closed path
MTSP’ model based on site positions. The final step includes
calculating Cnav(ri, ph, pb), the cost of the path from the last
visited site back to the starting point, pb (the base).

B. Estimation of allocation costs

To estimate the costs associated with different robot as-
signments to sites and clusters, we adjust the number of
robots per site and define two key functions: Estimation
of Site Cost (ESC) and Estimation of Assignment Cost
(EAC).

1) Estimation of Site Cost (ESC): The ESC function
calculates the cost for all possible team sizes within NTeam
to complete sampling at a site s j. The result is a cost matrix
Cmat j , where each element ci j represents the cost of assigning
a team Ri to site s j as presented in Section IV-A:

Cmat j ← ESC(s j,NTeam)

Similarly, we define Cmatcl as the cost matrix for the set
of clusters Clset .

2) Estimation of Assignment Cost (EAC): To determine
the optimal allocation, we explore all possible combinations
of team and site assignments. We define Al(s j,Rs j) as the
allocation of team Rs j to site s j. For a cluster of sites
cl ∈ Clset , the allocation is expressed as Al(Scl ,Rcl), where
Al(Clset ,R) represents the allocation of all robots R across
all clusters.

The cost function CF(s j,Rs j) captures the cost Al(s j,Rs j),
taking into account previous assignments of the robots in Rs j .
Given a site s j, the assigned robots Rs j , and the previously
visited sites Sprev(r) = {s1, . . . ,sσ} by robot r with cost Cprev,
CF(s j,Rs j) is defined as:

CF(s j,Rs j) =C(s j,Rs j)+Cprev (5)

Cprev = max
r∈Rs∩Rs j

( ∑
s∈Sprev(r)

CF(s,Rs)+Cnav(r, psσ
, ps j)) (6)

where:
• C(s j,Rs j) is an element ci j of Cmat j ,from section IV-A.
• ∑s∈Sprev(r)CF(s,Rs) is the sum of the cost of the previous

site assessment allocated to the robots.
• Cnav(r, psσ

, ps j) is the distance cost between the last and
current sites for a robot r ∈ Rs∩Rs j .

The cost of Al(Scl ,Rcl) is defined as the maximum cost to
be minimized for all team size and site pairs within a cluster:

CF(Scl ,Rcl) = max(CF(s j,Rs j)s j∈Scl , Rs j∈Rcl ) (7)

where:
• Rcl = {Rs j}Rs j∈Rcl

• Al(Scl ,Rcl) = {Al(s j,Rs j)}s j∈Scl , Rs j∈Rcl

The EAC function returns the estimated cost of all pos-
sible team/site assignments for |Rs j | ∈ NTeam, computing the
optimal allocation and associated cost for a given number of
robots RS across a set of sites S, utilizing the team/site pair
assignments Alset(S,RS) and the cost matrix Cmat .

Algorithm 1 Optimal pre-allocation of Teams Assignment
Input A set of sites S within clusters Clset , possible robot
team sizes NTeam from a robot set R, and two sets of possible
team/site and team/cluster assignments Alset(S,NTeam) and
Alset(Cl,NTeam) Output: An optimal assignment Al(Clset ,R)
of team sizes to clusters, covering all sites S in Clset for all
robots in R.

1: for s j ∈ S do
2: Cmat ← ESC(s j,NTeam)
3: end for
4: for cl ∈Clset do
5: for RScl ∈ NTeam do
6: CF(Scl ,RScl )← EAC(Scl ,RScl ,Cmat ,Alset(Scl ,RScl ))
7: Cmatcl ←CF(Scl ,RScl )
8: end for
9: end for

10: for cl ∈Clset do
11: CF(Cl,R)← EAC(Cl,R,Cmatcl ,Alset(Cl,NTeam))
12: end for
13: Al(Clset ,R) = argmin(CF(Cl,R))

3) Optimal pre-allocation: Using the ESC and EAC
functions, Algorithm 1 identifies the optimal assignment
of sites within each cluster by minimizing the maximum
Tour cost across team sizes. This approach is extended to
determine the best allocation of teams to clusters Al(Clset ,R),
further minimizing overall assignment costs. By applying
clustering and assignment heuristics, the algorithm efficiently
allocates robot paths, balancing sampling completion time
and resource usage while reducing computational complex-
ity.

C. Robot assignment and local planning

Figure 5 illustrates the approach applied to a typical
mission scenario (for clarity and ease of understanding, we
have excluded the final step of the robots returning to the
base). As presented in Section IV-B, robots are allocated to
various clusters of sites, and the paths for visiting these sites
are determined by calculating the optimal team size and site
allocation, along with the cost calculation for each robot, as
described in Equation 5.

Robots following identical paths during the mission are
grouped into the same team, as shown Figure 5b. Yet, our
methodology allows for a flexible team composition, as



(a) Distribution of robots across sites
over time with waiting time due to team
switching of robot 2

(b) Clustering of sites and the different
paths taken by robots.

(c) Robot allocation on a topological
graph: Robot 2 switches teams after Site
1 to join Robots 0 and 1 at Site 7.

Fig. 5: Flexible team composition and scheduling for mission scenario with 7 robots and 7 sites

illustrated in Figure 5c: a robot can leave its initial team
upon completing a site task to assist another team at a
more complex site with a higher associated cost. In such
scenarios, the association of the robot with its new team and
the corresponding waiting time at the new site are scheduled,
as shown Figure 5a. The comprehensive mission plan is
created by merging the robot paths with the MRTA plan for
each site, resolved using the OPTIC planner.

The flexibility and efficiency of our solution are markedly
improved by allowing robots to switch teams within the
same cluster. This adaptability can lead to a more optimal
allocation of resources, ensuring tasks are completed effi-
ciently and effectively. Despite this, our approach streamlines
the scheduling process, significantly enhancing the man-
ageability and scalability of solutions for intricate, multi-
robot, trans-media missions. Through careful planning and
dynamic allocation, our methodology addresses the chal-
lenges of complex missions, facilitating a more coordinated
and flexible response to varying task demands.

V. RESULTS

We report results established on averages defined by
20 different scenarios, each with 15 randomly generated
instances. The mission area is 1 km2, and contains randomly
placed water sites of size varying from 100 to 2500 m2, the
number of sampling and transition points for sites being
directly related to their surface. Table I compares results for
scenarios with 4 robots, and a number of sites varying from
1 to 18 sites, for the “global planning” OPTIC approach
(GP) and pre-allocation approach (PA). Both approaches are
stopped when either a 360 s timeout or a 32GB memory
allocation is attained. OPTIC can only solve the smaller
problems, rapidly reaching the maximum time or memory
allowed, whereas our approach solves the most complex
problems in a couple of seconds. Figure 6 shows how the
time to find a solution is partitioned into the various steps
for the scenarios of Table I. Figure 7 shows how this time
evolves with the number of robots and sites for the PA
approach: our approach can clearly address much larger
problems than OPTIC1.

1or other PDDL solvers – for instance POPF

Fig. 6: Time comparison for pre-allocation steps as site
numbers increase with 4 robots.

Fig. 7: Scale coverage of our approach for a variety of
problems and parameters



Metric GP PA Number of sites

0.08 0.03 1
0.2 0.05 2

Elapsed 1.15 0.13 3
Time (s) Timeout 0.17 4

... ... ...
Timeout 7.16 18

95 100 1
Coverage 35 100 2
of found 10 100 3

solutions in % 0 100 4
... ... ...
0 100 18

TABLE I: Elapsed time and solution percentages over 20
scenarios with 4 robots, varying site numbers (Intel E5-2695
v3, 2.3GHz 32GB RAM)

Given that OPTIC does not scale with problem complexity,
we can not statistically assess to what extent our approach
loses solution optimality (mission plan makespan). However,
on a small scale scenario (4 sites from 100 to 200 m2 on
a 25000 m2 terrain), the first solution found by OPTIC in
40.6 s has a makespan of 2530 s, and the optimal solution
(makespan of 2391 s) is found in 48 s, whereas our approach
finds a solution in 0.11 s, with a plan makespan of 2425 s.
The loss of optimality is negligible with respect to the
reduction of time to find a solution.

VI. CONCLUSION

We introduced the problem of mission planning and
MRTA for trans-media multi-robot teams and a solution to
mission planning for such systems in representative water
sites sampling scenarios with realistic constraints. Our ap-
proach demonstrates excellent performances with respect to
classical PDDL solvers, and can in particular solve much
larger scale problems.

Nearly snapshot planning time is very relevant for the kind
of systems considered: given the complexity of operation
of trans-media robots, the plan executions are expected to
often call for re-planning. In this sense, this work paves
the way for effective deployments of trans-media multi-
robot systems. Future work will focus on the consideration
of human supervision operations at mission planning time
and on developing a wholesome planning and supervision
framework with the human operator in the loop.
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