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Motivation & Thesis Goals
Objective: Study of infinite dimensional systems, modeled by partial derivative equations (PDEs), connected through boundary conditions to finite dimensional
systems, modeled by ordinary differential equations (ODEs).
Motivation: Allows modeling many physical phenomena, including transport processes, and interaction between heat diffusion and chemical reactions, with ODEs
acting as sensors, controllers, and actuators. Limited research on the robust input-output approach for these systems.
Innovative Aspects:

Robust control like modeling of such heterogeneous systems, moving towards multi-dimensional space and multi-variable
input-output systems
Methodological tools like IQC or a new type of separator to produce numerically efficient analysis results for heterogeneous systems
Methods for the synthesis of controllers or observers within the chosen formalism

ODE

PDE

Stability & Control Methods
Stability of PDEs is mainly addressed through:

Modal approach: Effective calculation of the
spectrum of an infinite-dimensional operator as-
sociated with the PDE ⌢ No robustness,
⌢ Spectrum is difficult to calculate
⌢ Limited to linear systems;
Lyapunov function approach: Lyapunov certifi-
cate V̇ (x) < 0 to be found, often derived from an
energy function, evaluated through a state norm
⌣ Applicable to nonlinear systems,
⌢ Heavily depends on the type of PDE-ODE cou-
pling considered;
Input-Output approach: Tools from the robust
control community, such as small gain theorem
and Integral Quadratic Constraints (IQCs)
⌣ Partially extended to the infinite-dimensional
framework, ⌢ Need to choose a multiplier to cope
with a structured matrix of uncertainties ∆,
⌢ No explicit property on the states of the PDE

Input-Output Methods for PDE-ODE
Integral Quadratic Constraints: IQCs provide a framework for ab-
stracting the complexities inherent in dynamic system models, facil-
itating rigorous analysis of robust stability and performance metrics.
Two signals v, w satisfy the soft IQC defined by Π if〈(

v
w

)
, Π

(
v
w

)〉
=

∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
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v̂(jω)
ŵ(jω)

]
dω ≥ 0 (1)

w = ∆(v) satisfy the IQC defined by Π if (1) holds and if ∃ϵ > 0 such that also[
G(jω)

I

]∗

Π(jω)
[
G(jω)

I

]
≤ −ϵI ∀ω ∈ R (2)

with v = Gw holds, then the feedback loop composed of G and ∆ is stable.

Small gain: Particular case of IQC where (1) + (2) boils down to ||G|| · ||∆|| < 1 when Π =
[
I 0
0 −I

]
.

Filters can be added to the I-O system to deal with structured ∆: z := Ψ
[

v
w

]
and Π = Ψ∗MΨ.

Define state-space representation of the system, Ψ
[
G
I

]
= D + C(sI − A)−1B. LMIs can be written using the

KYP lemma: ∃ϵ > 0 s.t (2) holds iff ∃ P = P T such that
[
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]
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]
M
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]
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Dissipation analysis: Quantifies dissipative properties of dynamical systems, defined by a storage function
V (x) = xT Px and supply rate s(z) = zT Mz, characterized by V (x(t)) and V̇ (x(t)) ≤ s(z(t)).

Partial Integral Equations
PIE are infinite-dimensional state-space systems of the form

T ẋ(t) = Ax(t) x(0) = x0

where T and A are Partial Integral (PI) operators [1].
3-PI: can be used to represent PDE and coupled PDEs

(P{R0,R1,R2}x) := R0(s)x(s) +
∫ s

a

R1(s, θ)x(θ)dθ +
∫ b

s

R2(s, θ)x(θ)dθ P{Ri} : L2 → L2

4-PI: are used to represent coupling of ODE-PDEs(
P

[
x
x

])
(s) :=

[
Px +

∫ b

a
Q1(s)x(s)ds

Q2(s)x + (P{Ri}x)(s)

]
∈ Rn × Ln

2 [a, b]

Infinite dimensional IQCs can be written using the PI operator formalism:

Theorem: Suppose G is a PIE system, ∆ is a set of nonlinear systems (uncertainties), and their intercon-
nection is well-posed. Suppose there exist a bounded operator Ψ, and K such that:

∆ satisfies the hard IQC defined by Ψ, K

For any v, w we have that
〈

ΨT

[
Gw
w

]
, MKΨT

[
Gw
w

]〉
L

≤ −ε||uT ||2L
Then the feedback system defined by [G, ∆] is stable [2]

⌣ The state of the system is kept explicit,
⌢ Difficult to use this method analytically,
⌢ Boundary constraints are hidden, we would like to keep them explicit until the end to easily study how
stability changes when we connect ODE-PDE differently

Current work & Perspectives
Projection method for heat equation: IQC can be
built using the projection method. We need to ex-
tend the vector of boundary condition [3]

Bm(u) = col(u(0), u(1), ..., ∂
(m−1)
x u(0), ∂

(m−1)
x u(1))

if we consider the heat equation.

Bmext(u) =
[

Bm(u)
∂tBm(u)

]
This method allows us to build a filter Ψ. Hence
we can find a class of multipliers M , specific to the
PDE considered, and the terminal cost Z. The hard
finite horizon IQC with terminal cost is∫ T

0
zT (t)Mz(t)dt + ξT (T )Zξ(T ) ≥ 0

with ξ, z state and output of the filter Ψ.
⌣ Boundary conditions can be easily changed
⌢ The PDE state is hidden.
Perspectives:

Write PIE where border conditions are kept ex-
plicit
Extended version of IQCs for the heat equation
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