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Abstract
Potential heuristics assign numerical values (potentials) to
state features, where each feature is a conjunction of facts.
It was previously shown that the informativeness of potential
heuristics can be significantly improved by considering com-
plex features, but computing potentials over all pairs of facts
is already too costly in practice. In this paper, we investigate
whether using just a few high-dimensional features instead of
all conjunctions up to a dimension n can result in improved
heuristics while keeping the computational cost at bay. We fo-
cus on (a) establishing a framework for studying this kind of
potential heuristics, and (b) whether it is reasonable to expect
improvement with just a few conjunctions. For (a), we pro-
pose two compilations that encode each conjunction explic-
itly as a new fact so that we can compute potentials over con-
junctions in the original task as one-dimensional potentials
in the compilation. Regarding (b), we provide evidence that
informativeness of potential heuristics can be significantly in-
creased with a small set of conjunctions, and these improve-
ments have positive impact on the number of solved tasks.

1 Introduction
In classical optimal planning, potential heuristics (Pom-
merening et al. 2015; Pommerening, Helmert, and Bonet
2017) are a family of admissible (and consistent) heuris-
tics computed as sums of potentials (numerical values) over
state features that are sets of facts (conjunctions). Poten-
tials ensuring admissibility and consistency can be found
by solving a certain linear program with any optimization
criteria that can be designed to emphasize different prop-
erties of the resulting heuristics (Seipp, Pommerening, and
Helmert 2015; Fišer, Horčı́k, and Komenda 2020). It was
shown that increasing the size of conjunctions can eventu-
ally lead to optimal heuristics (Pommerening, Helmert, and
Bonet 2017). Computation of potential heuristics over single
facts and pairs of facts is polynomial. However, computing
the heuristics over all pairs of facts is already too computa-
tionally costly in practice, and for conjunctions of size 3 or
more, it becomes coNP-hard to decide heuristic consistency.

Here, we focus on the question whether computing poten-
tial heuristics over just a few conjunctions can lead to a sig-
nificantly more informed heuristic. Corrêa and Pommeren-
ing (2019) partially addressed this question in their study
of the optimal correlation complexity of planning tasks ex-
pressed as the minimum conjunction size for which there ex-

ists a potential heuristic equal to the optimal heuristic. They
provided some evidence that a small number of large con-
junctions is often enough to significantly increase informa-
tiveness of potential heuristics. However, their analysis re-
quires full expansion of the reachable part of the state space
and therefore it is impractical. We take one step further by
showing how to compute potential heuristics over a set of
conjunctions so that it can be used in practice.

We leverage prior work of Steinmetz and Hoffmann
(2018) showing that potential heuristics over conjunctions
can be computed via the so-called ΠC compilation (Haslum
2012) where conjunctions C are explicitly represented as
facts. Potential heuristics over conjunctions C can be com-
puted as atomic (single-fact) potential heuristics in ΠC , but
the price we pay is the worst-case exponential blow-up in |C|
of the ΠC encoding. Since ΠC does not preserve state space
of the original task perfectly and thus does not preserve
all (potential) heuristics, we introduce a new compilation
ΠCexact that remedies this pitfall. This allows us to plug-in a
set of conjunctions C as input, and obtain a potential heuris-
tic over C as output, while exchanging computational com-
plexity for blow-up in the task encoding. Moreover, we use
prior work on mutual exclusion state invariants to mitigate
the blow-up (Keyder, Hoffmann, and Haslum 2014; Fišer
and Komenda 2018; Fišer, Horčı́k, and Komenda 2020).

To test whether it is possible to increase informativeness
of potential heuristics with only few conjunctions, we use
a simple greedy uninformed algorithm to obtain improv-
ing conjunctions. We show in our experiments that it is, in-
deed, often the case that a small number of conjunctions
leads to better heuristic estimates. We test this approach
with explicit-state search, but also with symbolic search
where potential heuristics can be used via so-called operator-
potential heuristics (Fišer, Torralba, and Hoffmann 2022a,b).
We show that even in this simple setting, we are able to
increase the number of solved tasks in some domains. We
leave the question how to intelligently find the improving
conjunctions to future work.

2 Background
We consider the finite domain representation (FDR) of plan-
ning tasks (Bäckström and Nebel 1995). An FDR planning
task is a tuple Π = ⟨V,O, I, G⟩. V is a finite set of vari-
ables, each v ∈ V has a finite domain dom(v). A fact



⟨v, x⟩ is a pair of a variable v ∈ V and one of its values
x ∈ dom(v). The set of all facts is denoted by F = {⟨v, x⟩ |
v ∈ V, x ∈ dom(v)}, the set of facts of variable v is denoted
by Fv = {⟨v, x⟩ | x ∈ dom(v)}, and similarly for sets of
variables V : FV =

⋃
v∈V Fv . Given p ⊆ F , V(p) denotes

all variables appearing in p, i.e., V(p) = {v | ⟨v, x⟩ ∈ p},
and we use a shorthand Fp = FV(p).

A partial state p ⊆ F is a set of facts s.t. there is at most
one fact of each variable, i.e., |p ∩ Fv| ≤ 1 for every v ∈ V .
p[v] denotes the value assigned to v ∈ V(p) in the partial
state p. A partial state s is called state if |s| = |V|. I is an
initial state. G is a partial state called goal, and a state s is
a goal state if G ⊆ s. A partial state p ⊆ F is also called a
conjunction, and we say that a conjunction c is true in the
state s if c ⊆ s and we say it is false otherwise. Let p, t be
partial states. We say that t extends p if p ⊆ t.
O is a finite set of operators, o ∈ O is defined by its par-

tial states precondition pre(o) and effect eff(o), and a cost
cost(o) ∈ R+

0 . We assume pre(o) ∩ eff(o) = ∅. o ∈ O is
applicable in a state s if pre(o) ⊆ s. The resulting state of
this application is oJsK = (s \ Feff(o)) ∪ eff(o), i.e., apply-
ing o on s changes the values of variables according to the
effect eff(o) and keeps the variables not mentioned in eff(o)
unaffected. We also use post(o) = (pre(o)\Feff(o))∪eff(o)
to denote the post-condition of o, i.e., the partial state that is
true after every application of o.

A sequence of operators π = ⟨o1, . . . , on⟩ is applicable
in a state s0 if there are states s1, . . . , sn such that oi is ap-
plicable in si−1 and si = oiJsi−1K for i ∈ {1, . . . , n}. The
resulting state is πJs0K = sn and cost(π) =

∑n
i=1 cost(oi)

denotes the cost of π. A sequence of operators π is called
an s-plan if π is applicable in the state s and πJsK is a goal
state. I-plans are simply called plans. An s-plan π is called
optimal if its cost is minimal among all s-plans. A sequence
of operators is called a path if it is applicable in the initial
state.

A state s is called reachable if there exists a path π such
that πJIK = s. R(Π) denotes the set of all reachable states
in Π. An operator o is reachable if it is applicable in some
reachable state. A state s is a dead-end if G ̸⊆ s and there
is no s-plan.

A heuristic is a function h : R(Π) 7→ R ∪ {∞} es-
timating the cost of optimal s-plans. The optimal heuris-
tic h⋆(s) maps each reachable state s to the cost of the
optimal s-plan or to ∞ if s is a dead-end. A heuristic h
is called (a) forward admissible (f-admissible) if h(s) ≤
h⋆(s) for every reachable state s ∈ R(Π); (b) forward
goal-aware (f-goal-aware) if h(s) ≤ 0 for every reachable
goal state s; and (c) forward consistent (f-consistent) if
h(s) ≤ h(oJsK) + cost(o) for all reachable states s ∈ R(Π)
and operators o ∈ O applicable in s.

Note that we define heuristics over the reachable states
(instead of all states) because we intend to use heuristics in
a (forward) heuristic search and because we use state invari-
ants describing the reachable state space for improving the
heuristic values (h-values). Also note that we allow negative
heuristic values as is usual in literature on potential heuris-
tics (the standard interpretation is that during the search,
negative heuristic values are interpreted as zero). It is well-

known that (forward) goal-aware and (forward) consistent
heuristics are also (forward) admissible.

3 Mutexes and Disambiguation
A mutex is a set of facts that is not part of any reachable
state, i.e., M ⊆ F is a mutex if M ̸⊆ s for every s ∈ R(Π).
It was previously shown that mutexes can be utilized to
significantly improve informativeness of potential heuristics
(Fišer, Horčı́k, and Komenda 2020).

The most obvious mutex in an FDR task is a set of facts
containing two facts of the same variable, but more mutexes
can be inferred by the hm heuristic (Bonet and Geffner 2001;
Alcázar and Torralba 2015) or by inference of so called fam-
groups on lifted (Helmert 2009; Fišer 2020, 2023) or ground
(Fišer and Komenda 2018) level. Clearly, every superset of
a mutex is also a mutex. For notational convenience, we use
the notion of a mutex-set.
Definition 1. A set of sets of facts M ⊆ 2F is called a
mutex-set if (a) every M ∈M is a mutex, and (b) for every
M ∈ M and every f ∈ F it holds that M ∪ {f} ∈ M,
and (c) for every variable v ∈ V and every pair of facts
f, f ′ ∈ Fv , f ̸= f ′, it holds that {f, f ′} ∈ M.

In other words, a mutex-set is an upper set of a set of
mutexes (a,b) and it always contains all mutexes that can be
inferred directly from task’s variables (c). This allows us to
write p ∈ M if we want to express that the set of facts p
is not a partial state (i.e., it contains two facts of the same
variable), or that all states extending p are not reachable.
Note also that p ̸∈ M implies p is a partial state.

Mutexes can also be used for inferring disambiguations
(Fišer, Horčı́k, and Komenda 2020). A disambiguation of a
variable v for a partial state p is a set of facts X ⊆ Fv from
the same variable v such that every reachable state extending
p contains a fact from X . In other words, disambiguation of
v for p allows us to filter out facts of the variable v that
cannot be part of any reachable state extending p.
Definition 2. Let v ∈ V denote a variable, and let p denote
a partial state. X ⊆ Fv is called a disambiguation of v for
p if for every s ∈ R(Π) s.t. p ⊆ s it holds that X ∩ s ̸= ∅.

Note that the disambiguation X of a variable v for a
partial state p such that v ∈ V(p) can be set simply to
X = {⟨v, p[v]⟩}, and that the disambiguation X of v for
the empty partial state p = ∅ can be set to X = Fv .

Disambiguations can be used for finding unreachable op-
erators and determining unsolvability of tasks. If, for some
operator o ∈ O, a disambiguation of some v ∈ V for pre(o)
is empty, then o is unreachable; and if a disambiguation of
some v ∈ V for G is empty, the task is unsolvable. So, from
now on, we will consider only tasks for which we have non-
empty disambiguations of the goal and the operators’ pre-
conditions. We use the following disambiguation maps D.
Given a variable v ∈ V , D(v) denotes a disambiguation of v
for G. Given an operator o ∈ O and v ∈ V(eff(o)), D(o, v)
denotes a disambiguation of v for pre(o).

4 Potential Heuristics
Potential heuristics (Pommerening et al. 2015) were intro-
duced as admissible and consistent heuristics that assign a



numerical value (potential) to each fact, and the h-value for a
state s is a sum of the potentials of all facts in s. It was shown
that potentials can be computed by solving a linear program
(LP) with constraints expressing goal-awareness and consis-
tency of the resulting heuristic. Pommerening, Helmert, and
Bonet (2017) extended the concept of potential heuristics
to larger sets of facts (higher-dimensional features/conjunc-
tions) by associating each conjunction with a potential, and
defining the h-value of a state s as the sum of potentials of
the conjunctions true in s. Increasing the size of conjunc-
tions allows to distinguish between more states, eventually
leading to a potential heuristic that is optimal.

However, the computation of potentials becomes signifi-
cantly more difficult as the size of conjunctions grows. Pom-
merening, Helmert, and Bonet (2017) showed that deciding
consistency of a potential heuristic is coNP-hard in gen-
eral if we consider all conjunctions of size 3 or more. They
were however able to identify conditions when the con-
struction of an admissible potential heuristic is tractable, de-
pending on the interactions between the conjunctions. Stein-
metz and Hoffmann (2018) showed that admissible higher-
dimensional potential heuristics can be computed via a de-
tour to atomic potential heuristics (i.e., potential heuristics
over single facts) in the ΠC compilation, which we build
upon here. The size of ΠC grows worst-case exponentially
in |C|, yielding an alternative tractability condition—when
ΠC does not explode.

Since we plan to compute potential heuristics via compi-
lations where each conjunction is explicitly represented as a
fact, we formally use only atomic potential heuristics.
Definition 3. A potential function is a function P : F 7→ R.
A potential heuristic for P maps each state s ∈ R(Π) to the
sum of potentials of facts in s, i.e., hP(s) =

∑
f∈s P(f).

Potential functions inducing forward admissible potential
heuristics can be found by solving LPs, and it was shown
by Fišer, Horčı́k, and Komenda (2020) that, if restricted to
the reachable states, potential heuristics can be strengthened
by taking disambiguations into account. So, given a disam-
biguation map D, we can find potential functions P by solv-
ing the following LP: The LP has a variable P(f) for each
fact f ∈ F , the constraint∑

V ∈V
max

f∈D(V )
P(f) ≤ 0

ensuring forward goal-awareness, and the constraint∑
V ∈V(eff(o))

max
f∈D(o,V )

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o)

for each operator o ∈ O ensuring forward consistency.
Note that the maximization can be easily implemented with
auxiliary variables as described by Pommerening et al.
(2015). Since the aforementioned constraints ensure f-goal-
awareness and f-consistency (and therefore f-admissibility),
the objective function of the LP can be freely chosen
(Seipp, Pommerening, and Helmert 2015; Fišer, Horčı́k,
and Komenda 2020), e.g., maximization of

∑
f∈I P(f) will

result in a potential heuristic with the maximum possible
heuristic value for the initial state.

5 ΠC Compilation
The first compilation we use for computing potentials over
conjunctions is the ΠC compilation introduced by Haslum
(2012) in the context of strengthening delete-relaxation
heuristics. Since then, it proved to be useful in different con-
texts too (e.g., Keyder, Hoffmann, and Haslum 2014; Fick-
ert, Hoffmann, and Steinmetz 2016; Steinmetz and Hoff-
mann 2018). In particular, Steinmetz and Hoffmann (2018)
already showed that potential heuristics over ΠC provide
consistent and admissible estimates for the original task. We
follow up on their work in that we use the ΠC compilation in
the FDR formalism (Haslum (2012) used STRIPS), but we
also fully utilize mutexes to prune unreachable operators. It
was already pointed out by Keyder, Hoffmann, and Haslum
(2014) that mutexes are effective in preventing the compila-
tion to blow-up in practice as the size of ΠC is worst-case
exponential in |C|. Another subtle difference to the work of
Steinmetz and Hoffmann is that we consider heuristics de-
fined over reachable states only. For these reasons, we pro-
vide not only the description of the compilation, but also
full proofs showing that the compilation preserves forward
admissibility and forward consistency of heuristics. More-
over, we show that ΠC has some disadvantages. Namely, it
can induce superfluous paths in the state space.

For the rest of this section, let Π = ⟨V,O, I, G⟩ denote
a task with facts F , letM be a mutex-set, and let C ⊆ 2F

be a set of conjunctions, each consisting of at least two facts
(i.e., |c| ≥ 2 for every c ∈ C).

The idea of the ΠC compilation is following. First, we en-
code each conjunction c ∈ C as a binary variable vc: We set
vc to 1 if the conjunction is true in the state s (i.e., c ⊆ s),
and we set it to 0 if c is false (i.e., c ̸⊆ s). Second, we set
the initial state and goal so that every vc has the correct truth
value. Finally, we construct multiple operators for each in-
put operator o ∈ O so that application of at least one of
them maintains the intended values of the vc variables—this
is where the worst-case exponential blow-up comes from as
we need to enumerate possible contexts in which each oper-
ator can be applied. Before we get to the formal definition of
ΠC , we need to introduce some auxiliary notation that will
be helpful in the construction of operators.

Clearly, o ∈ O can make c ∈ C true or false only if eff(o)
and c share some variables:

Ceff(o) = {c ∈ C | V(c) ∩ V(eff(o)) ̸= ∅}.

Nevertheless, we are interested only in conjunctions whose
truth values are actually changed by the operator o. Namely,
conjunctions c ∈ Ceff(o) that are either true before o is
applied and false after, or false before and true after. For
every c ∈ C that is true before applying o it holds that
c ∪ pre(o) ̸∈ M (as c ∪ pre(o) ∈ M would imply o is not
applicable in a state where c is true). Moreover, o can make c
false only if c∪post(o) ∈M (as o must affect c by changing
at least one variable of c to a different value). Unfortunately,
we do not have any means to reliably test whether c is false
before the operator’s application, but we at least know that c
can be made true by o only if c∪post(o) ̸∈ M. This leads to
the set of conjunctions possibly affected by o ∈ O (reduced



V = {p, q, r}, ∀v ∈ V : dom(v) = {0, 1}
I = {⟨p, 0⟩, ⟨q, 0⟩, ⟨r, 0⟩}
G = {⟨q, 1⟩, ⟨r, 1⟩}
O = {o1, o2, o3}
o pre(o) eff(o) post(o)

o1 {⟨p, 0⟩} {⟨p, 1⟩} {⟨p, 1⟩}
o2 {⟨p, 0⟩} {⟨r, 1⟩} {⟨p, 0⟩, ⟨r, 1⟩}
o3 {⟨p, 1⟩} {⟨q, 1⟩} {⟨p, 1⟩, ⟨q, 1⟩}
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111
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o3
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o2
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Figure 1: Example planning task Π = ⟨V,O, I, G⟩ and
reachable part of its state space on the right where states are
annotated with values of variables p, q, r in this order, e.g.,
the state {⟨p, 1⟩, ⟨q, 0⟩, ⟨r, 1⟩} is annotated as 101.

using mutexes):

Ca(o) ={c ∈ Ceff(o) | c ∪ pre(o) ̸∈ M, c ∪ post(o) ∈M}
∪ {c ∈ Ceff(o) | c ∪ post(o) ̸∈ M}.

Ca(o) can be partitioned into (1) the set of conjunctions
always made true by o no matter what was their truth values
before applying o:

Ct(o) = {c ∈ Ca(o) | c ⊆ post(o)},

(2) the set of conjunctions always made false by o:

Cf(o) = {c ∈ Ca(o) | c ∪ post(o) ∈M},

and (3) the set of conjunctions potentially made true by o
depending on the state where o is applied:

Cp(o) = {c ∈ Ca(o) | c ∪ post(o) ̸∈ M, c ̸⊆ post(o)}.

Lastly, for every subset X ⊆ C, we define the regression
of the conjunctions in X over o (i.e., facts from X that if
true before the application, are true also after the operator’s
application):

regr(o,X) = pre(o) ∪
⋃
c∈X

(c \ eff(o)).

Now we are ready to formally define the ΠC compilation.
Definition 4. Given a planning task Π, a mutex-setM, and
a set of conjunctions C ⊆ 2F s.t. |c| ≥ 2 for every c ∈ C, the
planning task ΠC = ⟨VC ,OC , IC , GC⟩ is defined as follows.

(1) VC extends V with a fresh binary variable vc for each
conjunction c ∈ C, i.e., VC = V ∪ {vc | c ∈ C}, and
dom(vc) = {0, 1} for each c ∈ C.

(2) The initial state is extended with the correct truth val-
ues of vc variables, i.e.,

IC = I ∪{⟨vc, 1⟩ | c ∈ C, c ⊆ I}∪{⟨vc, 0⟩ | c ∈ C, c ̸⊆ I}.

(3) The goal is extended with vc set to 1 whenever c is
true in G, i.e., GC = G ∪ {⟨vc, 1⟩ | c ∈ C, c ⊆ G}.

(4) For every operator o ∈ O and every subset of con-
junctions X ⊆ Cp(o) potentially made true by o such that (i)
regr(o,X) ̸∈ M, and (ii) X is downward closed on Cp(o)
(i.e., for every c ∈ Cp(o) such that there exists c′ ∈ X such

C = {c}, c = {⟨q, 1⟩, ⟨r, 1⟩}
mutex: {⟨p, 0⟩, ⟨q, 1⟩}

o Ceff(o) Ca(o) Cp(o)
o1 ∅ ∅ ∅
o2 {c} ∅ ∅
o3 {c} {c} {c}
VC = V ∪ {vc},dom(vc) = {0, 1},
IC = {⟨p, 0⟩, ⟨q, 0⟩, ⟨r, 0⟩, ⟨vc, 0⟩}
GC = {⟨q, 1⟩, ⟨r, 1⟩, ⟨vc, 1⟩}
OC = {o∅1, o∅2, o∅3, o

{c}
3 }

o∅1 = o1, o
∅
2 = o2, o

∅
3 = o3,

pre(o
{c}
3 ) = {⟨p, 1⟩, ⟨r, 1⟩}, eff(o{c}3 ) = {⟨q, 1⟩, ⟨vc, 1⟩}

000|0

100|0

110|0

001|0

101|0

111|0111|1
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o∅3
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o∅2o∅2

o∅1
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Figure 2: ΠC = ⟨VC ,OC , IC , GC⟩ task constructed from
the task Π from Fig. 1 and assuming we were able to infer
the specified mutex. States in the reachable part of the state
space of ΠC are annotated with values of variables p, q, r, vc
in this order, e.g., the state {⟨p, 1⟩, ⟨q, 0⟩, ⟨r, 1⟩, ⟨vc, 0⟩} is
annotated as 101|0.

that c ⊆ c′ it holds that c ∈ X), OC has the operator oX
with cost(oX) = cost(o),

pre(oX) = regr(o,X)

∪ {⟨vc, 1⟩ | c ∈ C, c ⊆ regr(o,X)},
eff(oX) = (eff(o) ∪ {⟨vc, 1⟩ | c ∈ Ct(o) ∪X}

∪ {⟨vc, 0⟩ | c ∈ Cf (o)}) \ pre(oX).

ΠC is well-defined as all variables have finite domains, IC
is defined over all variables, and pre(oX) ∩ eff(oX) = ∅
for all oX ∈ OC . Note that the blow-up of the compila-
tion comes from enumerating all possible combinations of
conjunctions that are potentially made true by an opera-
tor (4). It is, however, mitigated by skipping operators that
can be proved to be unreachable (4i), and by considering
only downward closed sets (4ii). The latter follows from the
simple observation that whenever there are c, c′ ∈ C such
that c′ ⊆ c and c is true, then c′ is also necessarily true and
therefore there is no reason for splitting the context where
only c is true, only c′ is true, and both are true.
Example 5. Consider the task Π from Fig. 1, a single
conjunction c = {⟨q, 1⟩, ⟨r, 1⟩} (C = {c}), and a mutex
{⟨p, 0⟩, ⟨q, 1⟩} (and letM denote the corresponding mutex-
set). The resulting ΠC task is depicted in Fig. 2.
Ceff(o1) = ∅ because o1 does not affect variables q and r,

but Ceff(o2) = Ceff(o3) = {c} because o2 affects q and
o3 affects r. Ca(o2) = ∅ because c ∪ pre(o2) ∈ M and
c∪post(o2) ∈M, but Ca(o3) = {c} because c∪post(o3) ̸∈
M. Furthermore, Ct(o3) = Cf(o3) = ∅ and Cp(o3) = {c}
because c ∪ post(o3) ̸∈ M and c ̸⊆ post(o3). Therefore,
we have that o∅1 = o1, o

∅
2 = o2, o

∅
3 = o3 because Ct(o) =

Cf(o) = ∅ for every o ∈ O; and ΠC has one more operator
o
{c}
3 such that pre(o{c}3 ) = {⟨p, 1⟩, ⟨r, 1⟩} and eff(o

{c}
3 ) =

{⟨q, 1⟩, ⟨vc, 1⟩} because regr(o3, {c}) = {⟨p, 1⟩, ⟨r, 1⟩} and
c ∈ Ct(o3) ∪ {c} = {c}.



Note that the reachable part of the state space of ΠC dif-
fers from Π because it is possible to reach a (non-goal) state
{⟨p, 1⟩, ⟨q, 1⟩, ⟨r, 1⟩, ⟨vc, 0⟩} where vc has assigned 0 even
though c is true in this state. Nevertheless, the state space
of ΠC preserves the plan from Π and does not create any
shortcuts.

Given a state s from Π, we define the shorthand

C[s] = s∪{⟨vc, 1⟩ | c ∈ C, c ⊆ s}∪{⟨vc, 0⟩ | c ∈ C, c ̸⊆ s}

that can be used for translating a state s from Π to a state in
ΠC where all variables vc have assigned the correct values.
Now, we show that every path in ΠC corresponds to a path in
Π, i.e., the construction of ΠC preserves applicability of the
original operators from Π, therefore ΠC does not introduce
any shortcuts into the reachable part of its state space.

Proposition 6. Let π = ⟨oX1
1 , . . . , oXn

n ⟩ denote a path in
ΠC . Then π′ = ⟨o1, . . . , on⟩ is a path in Π and π′JIK =
πJICK ∩ F .

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of ΠC , i.e., s0 = IC and for every
i ∈ {1, . . . , n} it holds that oXi

i Jsi−1K = si. Moreover, let
s′i = si ∩ F for every i ∈ {0, 1, . . . , n}. Now, we show that
s′0 = I and every s′i, 1 ≤ i ≤ n, is a state in Π reachable by
the sequence of operators ⟨o1, . . . , oi⟩.

From the definition of ΠC we have that IC ∩F = I = s0.
Since, for every i ∈ {1, . . . , n}, it holds that pre(oi) ⊆
regr(oi, Xi) ⊆ pre(oXi

i ) ⊆ si−1 and regr(oi, Xi) =

pre(oXi
i ) ∩ F , it follows that pre(oi) ⊆ s′i−1, i.e., oi is ap-

plicable in s′i−1. Since eff(oi)\ regr(oi, Xi) = eff(oXi
i )∩F

and regr(oi, Xi) ⊆ si−1, we have that oXi
i Jsi−1K ∩ F =

((si−1 \ Feff(o
Xi
i )

) ∪ eff(oXi
i )) ∩ F = (s′i−1 \ Feff(oi)) ∪

eff(oi) = oiJs′i−1K = s′i = si ∩ F .

Next, we show that for every path π in the original task
Π, there is a corresponding path π′ in ΠC that has exactly
the same length and cost, and it leads to a state in ΠC with
correctly set variables vc, i.e., π′JICK = C[πJIK].
Proposition 7. Let π = ⟨o1, . . . , on⟩ denote a path in Π.
Then there exists a path π′ = ⟨oX1

1 , . . . , oXn
n ⟩ in ΠC such

that π′JICK = C[πJIK].

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of Π, i.e., s0 = I and for every
i ∈ {1, . . . , n} it holds that oiJsi−1K = si. Moreover, let
s′i = C[si] for every i ∈ {0, 1, . . . , n}. From the definition
of ΠC it directly follows that s′0 = IC .

Assume that there exists a sequence of operators π′ =

⟨oX1
1 , . . . , o

Xi−1

i−1 ⟩, for some i < n, such that π′ is applicable
in s′0 and π′Js′0K = s′i−1. Now, we show that there exists oXi

i

such that oXi
i is applicable in s′i−1 and oXi

i Js′i−1K = s′i.
Let X f = {c ∈ C | ⟨vc, 1⟩ ∈ s′i−1, ⟨vc, 0⟩ ∈ s′i}, Xt =

{c ∈ C | ⟨vc, 0⟩ ∈ s′i−1, ⟨vc, 1⟩ ∈ s′i}, XT = {c ∈ C |
⟨vc, 1⟩ ∈ s′i−1, ⟨vc, 1⟩ ∈ s′i}, and XF = {c ∈ C | ⟨vc, 0⟩ ∈
s′i−1, ⟨vc, 0⟩ ∈ s′i}. It is easy to see that X f , Xt, XT, XF

form a partitioning of C, and X f ⊆ Ca(oi) and Xt ⊆ Ca(oi)
as any variable assignment can be changed only by the effect
of the operator oi.

Let Xi = Cp(oi) ∩ (Xt ∪ XT). We show that (i) Xi is
downward closed on Cp(oi) and (ii) regr(oi, Xi) ̸∈ M and
(iii) Xt \ Ct(oi) ⊆ Xi and (iv) Xi ⊆ Xt ∪XT.

(i) Xt, XT, and Xt ∪ XT are all downward closed by
the construction of s′i, therefore Cp(oi)∩ (Xt ∪XT) is also
downward closed.

(ii) For every c ∈ Xt ∪ XT it holds that c ⊆ si by the
construction of s′i, therefore c \ eff(oi) ⊆ si−1 for every
c ∈ Xt ∪ XT, therefore also

⋃
c∈Xi

(c \ eff(oi)) ⊆ si−1,
therefore regr(oi, Xi) ̸∈ M because si−1 is reachable.

(iii) It is easy to see that Xt ⊆ Ca(oi) and also that Xt ∩
Cf(oi) = ∅ because c ∪ post(oi) ̸∈ M for every c ∈ Xt ∪
XT. So, since Ct(oi), Cf(oi), Cp(oi) form a partitioning of
Ca(oi) it follows that Xt \ Ct(oi) ⊆ Xi.

(iv) It follows directly from the construction of Xi.
From (i) and (ii) it follows there exists an operator oXi

i and
since regr(oi, Xi) consists of facts unaffected by the opera-
tor oi, it follows that oXi

i is applicable in s′i−1.
From the construction of Ct(oi) it follows that Ct(oi) ⊆

Xt, and from (iii) and (iv) it follows that (Ct(oi) ∪ Xi) ⊆
Xt ∪XT. Finally, since X f ⊆ Ca(oi) and for every c ∈ X f

it holds that c ∪ post(oi) ∈ M, we have that X f ⊆ Cf(oi),
so it follows that oXi

i Js′i−1K = s′i.

Now we show that ΠC preserves forward consistency and
forward admissibility of heuristics. To be precise, we show
that if we have a forward admissible (forward consistent)
heuristic hC for ΠC , then we can cast any state s reachable in
Π to another state C[s] in ΠC and use hC(C[s]) as a forward
admissible (forward consistent) estimate for s in Π.

Theorem 8. If hC : R(ΠCexact) 7→ R+
0 is a forward admissi-

ble (forward consistent) heuristic for ΠC , then h : R(Π) 7→
R+

0 such that h(s) = hC(C[s]) for every s ∈ R(Π) is a
forward admissible (forward consistent) heuristic for Π.

Proof. From Proposition 7 it follows that h is well-defined,
because C[s] ∈ R(ΠC) for every s ∈ R(Π).

To prove f-admissibility by contradiction, let us assume
we have a reachable state s ∈ R(Π) such that h(s) > h⋆(s).
Since hC is f-admissible in ΠC , it follows that hC⋆(s) ≥
hC(C[s]) = h(s) > h⋆(s) where hC⋆ denotes an optimal
heuristic for ΠC . Therefore hC⋆(s) > h⋆(s), therefore there
exists an I-plan ⟨o1, . . . , on⟩ in Π such that there does not
exist any IC-plan ⟨oX1

1 , . . . , oXn
n ⟩ in ΠC which is a contra-

diction with Proposition 7.
To prove f-consistency by contradiction, let us assume we

have reachable states s, s′ ∈ R(Π) and an operator o ∈
O such that oJsK = s′ and h(s) > h(s′) + cost(o). From
Proposition 7 we have that C[s], C[s′] ∈ R(ΠC) and there
exists oX ∈ OC such that oXJC[s]K = C[s′]. Therefore it
follows that hC(C[s]) > hC(C[s′]) + cost(o), and since hC

is f-consistent in ΠC we have that hC(C[s′]) + cost(oX) ≥
hC(C[s]) > hC(C[s′]) + cost(o), which is a contradiction
because cost(oX) = cost(o) by definition.



ΠC also has some pitfalls. Consider again the task Π
and the compilation ΠC from Example 5. π = ⟨o1, o2, o3⟩
is an I-plan in Π. However, the operator sequence π′ =
⟨o∅1, o∅2, o∅3⟩, while applicable in the initial state, is not an
IC-plan in ΠC . Even though c is actually satisfied in the re-
sulting state π′JICK, the variable vc is set to 0 in π′JICK. This
does not contradict the propositions above, because there
still is another sequence of operators π′′ ̸= π′ from ΠC s.t.
π′′JICK = C[πJsK], namely π′′ = ⟨o∅1, o∅2, o

{c}
3 ⟩. However,

it shows that the construction of ΠC can induce superfluous
paths in the state space. These paths cannot be shortcuts, but
they can be detours or lead to dead-ends.

6 ΠC
exact Compilation

Here, we introduce a new compilation ΠCexact that, in con-
trast to ΠC , preserves the reachable part of the state space
exactly. ΠCexact follows ΠC in that it also encodes each c ∈ C
as a binary variable vc, but it differs from ΠC in the way
operators are encoded. Each operator o in ΠCexact explicitly
encodes truth values of all conjunctions potentially affected
by o in both precondition and effect. This can lead to even
larger blow-up than in ΠC , but allows us to prove that not
only all paths from Π are preserved in ΠCexact, but also that
every reachable state s in ΠCexact is of a form s = C[s ∩ F ],
i.e., in every reachable state, every vc is set to 1 whenever
c ⊆ s, and it is set to 0 otherwise. Therefore, the reachable
parts of state spaces of Π and ΠCexact are isomorphic: There
is a one-to-one mapping between reachable states in Π and
ΠCexact, one-to-one mapping between paths preserving costs,
and therefore also one-to-one mapping between heuristics.
From now on, let Π = ⟨V,O, I, G⟩, F ,M, and C ⊆ 2F be
as in the previous section. We use some auxiliary notation:

We use the same set Ca(o) ⊆ C of conjunctions possi-
bly affected by o ∈ O. Moreover, we use total functions
f : Ca(o) 7→ {0, 1} for generating possible assignments to
variables vc for all c ∈ Ca(o). So, given o ∈ O and a total
function f : Ca(o) 7→ {0, 1}, we define sets of conjunctions
affected by o mapped by f to 1 and 0, respectively:

Cf,1(o) = {c ∈ Ca(o) | f(c) = 1},

Cf,0(o) = {c ∈ Ca(o) | f(c) = 0},
and the set of variables from Cf,0(o) that are not part of the
precondition or effect of o:

Vf,0(o) =
⋃

c∈Cf,0(o)

V(c) \ V(pre(o) ∪ eff(o)).

Moreover, for every partial state p over variables Vf,0(o)
(i.e., for every partial state s.t. V(p) = Vf,0(o)), we define

expre(o, f, p) = pre(o) ∪ p ∪
⋃

c∈Cf,1(o)

c,

progr(o, f, p) = (expre(o, f, p) \ Feff(o)) ∪ eff(o).

The idea of the construction of operators is that for ev-
ery operator o ∈ O, we consider all possible assignments
to variables vc corresponding to possibly affected conjunc-
tions c ∈ Ca(o). For each such assignment (a total function

f : Ca(o) 7→ {0, 1}), we create a set of operators based on o
applicable only in states where the assignment holds. Each
of these operators correspond to a possible change of the vc
variables. An operator o changes the value of vc from 1 to
0 whenever c is true before operator’s application and eff(o)
has at least one common variable with c but the values differ.
Changing the value of vc from 0 to 1 is more complicated.
Clearly, o can change vc to 1 only if eff(o) and c agree on
all common variables, but we also need to consider an ad-
ditional context of assignments to variables from c that are
not in pre(o) or eff(o) (these are variables Vf,0(o) ∩ V(c)).
Consider a conjunction c = {⟨a, 0⟩, ⟨b, 0⟩} and an operator o
with pre(o) = {⟨a, 1⟩} and eff(o) = {⟨a, 0⟩}. If c is false in
some state s, then either ⟨a, 0⟩ ̸∈ s or ⟨b, 0⟩ ̸∈ s. So clearly,
o can make c true only if ⟨b, 0⟩ ∈ s, as the effect assigns
0 to the variable a, but the value of b is not specified in the
precondition of the operator. In other words, o makes c true
depending on the additional context which is not explicitly
specified in its precondition. Therefore, the construction iter-
ates over all possible contexts of variables Vf,0(o) so that we
are able to exactly determine when the variables vc change
their values from 0 to 1.

So, the blow-up of the ΠCexact compilation is worst-case
exponential in |C| and |V|. We mitigate this blow-up by the
application of mutexes to filter out contexts that cannot co-
occur with an operator’s precondition.
Definition 9. Given a planning task Π, a mutex-set M,
and a set of conjunctions C ⊆ 2F s.t. |c| ≥ 2 for every
c ∈ C, the planning task ΠCexact = ⟨VC ,OCexact, IC , GC⟩ is
defined as follows. VC , IC , and GC are exactly the same as
for ΠC , but OCexact is constructed differently: For every op-
erator o ∈ O and every total function f : Ca(o) 7→ {0, 1}
and every partial state p over variables Vf,0(o) such that (i)
expre(o, f, p) ̸∈ M and (ii) for every c ∈ Cf,0(o) it holds
that c ̸⊆ expre(o, f, p), OCexact has the operator of,p such
that cost(of,p) = cost(o),

pre(of,p) = expre(o, f, p) ∪ {⟨vc, f(c)⟩ | c ∈ Ca(o)},
eff(of,p) = eff(o) \ pre(of,p)

∪ {⟨vc, 0⟩ | c ∈ Cf,1(o), c ∪ post(o) ∈M}
∪ {⟨vc, 1⟩ | c ∈ Cf,0(o), c ⊆ progr(o, f, p)}.

As for ΠC , it is easy to see that ΠCexact is well-defined.
Note that the condition (ii) makes sure that we consider
only compatible (downward closed) assignments to vari-
ables, i.e., whenever we have two conjunctions c, c′ ∈ C
such that c′ ⊆ c and f(vc) = 1, then the compilation con-
siders only the functions f where also f(vc′) = 1. Also note
that effects set vc to 1 only if vc is set to 0 in the precondition
and vice versa ⟨vc, 0⟩ ∈ eff(of,p) only if ⟨vc, 1⟩ ∈ pre(of,p).
Example 10. Consider again the task Π, conjunction set C,
and mutex-setM from Example 5. The resulting ΠCexact is
depicted in Fig. 3 (note that Ca(o) are the same as in Fig. 2).

Since Ca(o1) = Ca(o2) = ∅ we have that of∅,∅1 = o1 and
o
f∅,∅
2 = o2. For o3, we need to consider functions f0 and f1

such that f0(c) = 0 and f1(c) = 1 because Ca(o3) = {c}.
Since Vf0,0 = {r} and Vf1,0 = ∅, we construct 3 variants



C = {c}, c = {⟨q, 1⟩, ⟨r, 1⟩}; mutex: {⟨p, 0⟩, ⟨q, 1⟩}

VC , IC , GC as in ΠC (see Fig. 2)
f∅ : ∅ 7→ {0, 1}; f0, f1 : {c} 7→ {0, 1}, f0(c) = 0, f1(c) = 1

expre(o3, f0, {⟨r, 0⟩}) = {⟨p, 1⟩, ⟨r, 0⟩}
progr(o3, f0, {⟨r, 0⟩}) = {⟨p, 1⟩, ⟨q, 1⟩, ⟨r, 0⟩}
expre(o3, f0, {⟨r, 1⟩}) = {⟨p, 1⟩, ⟨r, 1⟩}
progr(o3, f0, {⟨r, 1⟩}) = {⟨p, 1⟩, ⟨q, 1⟩, ⟨r, 1⟩}
expre(o3, f1, ∅) = progr(o3, f1, ∅) = {⟨p, 1⟩, ⟨q, 1⟩, ⟨r, 1⟩}

OC
exact = {o

f∅,∅
1 , o

f∅,∅
2 , o

f0,{⟨r,0⟩}
3 , o

f0,{⟨r,1⟩}
3 , of1,∅3 }

o pre(o) eff(o)

o
f∅,∅
1 {⟨p, 0⟩} {⟨p, 1⟩}
o
f∅,∅
2 {⟨p, 0⟩} {⟨r, 1⟩}
o
f0,{⟨r,0⟩}
3 {⟨p, 1⟩, ⟨r, 0⟩, ⟨vc, 0⟩} {⟨q, 1⟩}
o
f0,{⟨r,1⟩}
3 {⟨p, 1⟩, ⟨r, 1⟩, ⟨vc, 0⟩} {⟨q, 1⟩, ⟨vc, 1⟩}
of1,∅3 {⟨p, 1⟩, ⟨r, 1⟩, ⟨q, 1⟩, ⟨vc, 1⟩} ∅

000|0

100|0 110|0

001|0 101|0 111|1

o
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o
f0,{⟨r,0⟩}
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o
f0,{⟨r,0⟩}
3

o
f∅,∅
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o
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2

o
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1 o
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3

of1,∅3

Figure 3: ΠCexact = ⟨VC ,OCexact, IC , GC⟩ task constructed
from the task Π from Fig. 1 (assuming we were able to infer
the specified mutex). States in the reachable part of the state
space of ΠCexact are annotated as in Fig. 2.

of the operator o3: of0,{⟨r,0⟩}3 , of0,{⟨r,1⟩}3 , and of1,∅3 . The ef-
fect of of1,∅3 is empty because eff(o3) ⊂ expre(o3, f1, ∅)
and c ∪ post(o3) ̸∈ M. Moreover, vc is not set in the ef-
fect of of0,{⟨r,0⟩}3 because c ̸⊆ progr(o3, f0, {⟨r, 0⟩}), i.e.,
o
f0,{⟨r,0⟩}
3 does not make c true. Observe that the reachable

parts of the state spaces of ΠCexact and Π are isomorphic, and
that the assignment to vc exactly tracks whether c is true or
false in each state (which is not the case for ΠC).

Analogously to the previous section, we use C[s] to trans-
late states from Π to ΠCexact. Now, we show that every path
in ΠCexact has its counterpart with the same cost in Π.

Proposition 11. Let π = ⟨of1,p1

1 , . . . , ofn,pn
n ⟩ denote a path

in ΠCexact. Then π′ = ⟨o1, . . . , on⟩ is a path in Π and
π′JIK = πJICK ∩ F .

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of ΠCexact, i.e., s0 = IC and for ev-
ery i ∈ {1, . . . , n} it holds that ofi,pi

i Jsi−1K = si. Moreover,
let s′i = si ∩ F for every i ∈ {0, 1, . . . , n}. Now, we show
that s′0 = I and, for every i ∈ {1, . . . , n}, s′i is a state in
Π reachable by the sequence of operators ⟨o1, . . . , oi⟩, and
s′i = si ∩ F .

From the definition of ΠCexact we have that IC ∩ F =
I = s′0. Since, for every i ∈ {1, . . . , n}, it holds that
pre(oi) ⊆ expre(oi, fi, pi) ⊆ pre(ofi,pi

i ) ⊆ si−1, it fol-
lows that pre(oi) ⊆ s′i−1, i.e., oi is applicable in s′i−1. Since

eff(ofi,pi

i )∩F = eff(o)\pre(ofi,pi

i ) it follows that for every
f ∈ eff(o) it holds that either f ∈ pre(ofi,pi

i ) (and therefore
also f ∈ s′i−1 and f ∈ s′i) or f ∈ eff(ofi,pi

i ) (and therefore
f ∈ s′i). Finally, since eff(ofi,pi

i ) ∩ F ⊆ eff(oi) we have
ofi,pi

i Jsi−1K ∩ F = oiJs′i−1K = s′i.

Next, we show that for every reachable state s in ΠCexact,
it holds that vc is set to 1 whenever c is true in s, and vc is
set to 0 whenever c is false in s. In other words, in contrast
to ΠC , all paths in ΠCexact lead to states with correctly set vc
values.

Proposition 12. Let s ∈ R(ΠCexact) denote a reachable
state in ΠCexact. Then s = C[s ∩ F ].

Proof. Since IC = C[IC ∩ F ] by construction, it follows
that if there exists a reachable state s ∈ R(ΠCexact) such
that s ̸= C[s ∩ F ], then there also exist a reachable state
s′ ∈ R(ΠCexact) and an operator of,p ∈ OCexact applicable in
s′ such that s′ = C[s′ ∩ F ] and of,pJs′K = s.

We need to investigate four cases:
(i) There exists c ∈ C such that c ⊆ s′ and ⟨vc, 1⟩ ∈ s′

and c ⊆ s and ⟨vc, 0⟩ ∈ s: The assignment to vc can change
to ⟨vc, 0⟩ only if c∪ post(o) ∈M which is in contradiction
with c ⊆ s because post(o) ⊆ s.

(ii) There exists c ∈ C such that c ⊆ s′ and ⟨vc, 1⟩ ∈ s′

and c ̸⊆ s and ⟨vc, 1⟩ ∈ s: From c ⊆ s′ and c ̸⊆ s we have
that c ∪ post(o) ∈M, therefore ⟨vc, 0⟩ ∈ s by construction
of eff(of,p), which is in contradiction with ⟨vc, 1⟩ ∈ s.

(iii) There exists c ∈ C such that c ̸⊆ s′ and ⟨vc, 0⟩ ∈ s′

and c ̸⊆ s and ⟨vc, 1⟩ ∈ s: The assignment to vc can change
to ⟨vc, 1⟩ only if c ⊆ progr(o, f, p) which is in contradiction
with c ̸⊆ s because progr(o, f, p) ⊆ s.

(iv) There exists c ∈ C such that c ̸⊆ s′ and ⟨vc, 0⟩ ∈ s′

and c ⊆ s and ⟨vc, 0⟩ ∈ s: From c ̸⊆ s′ and c ⊆ s
and Proposition 11 it follows that c \ s′ ⊆ eff(o), there-
fore c ∈ Ca(o). Therefore it follows from ⟨vc, 0⟩ ∈ s′

that f(c) = 0, therefore p = c \ (pre(o) ∪ eff(o)), there-
fore V(c \ eff(o)) ⊆ V(expre(o, f, p)), therefore V(c) ⊆
V(progr(o, f, p)). Therefore c ⊆ progr(o, f, p) because
progr(o, f, p) ⊆ s, therefore ⟨vc, 1⟩ ∈ s which contradicts
⟨vc, 0⟩ ∈ s.

Next, we show that for every path in Π there is a corre-
sponding path in ΠCexact with exactly the same cost.

Proposition 13. Let π = ⟨o1, . . . , on⟩ denote a path in Π.
Then there exists a path π′ = ⟨of1,p1

1 , . . . , ofn,pn
n ⟩ in ΠCexact

and π′JICK = C[πJIK].

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on I , i.e., s0 = I and for every i ∈ {1, . . . , n} it
holds that oiJsi−1K = si. Moreover, let s′i = C[si] for every
i ∈ {0, 1, . . . , n}. From Definition 9 it follows that s′0 = IC .

Let us assume that there exists a sequence of operators
π′ = ⟨of1,p1

1 , . . . , o
fi−1,pi−1

i−1 ⟩, for some i < n, such that
π′ is applicable in s′0 and π′Js′0K = s′i−1. Now, we show
that there exists ofi,pi

i such that ofi,pi

i is applicable in s′i−1
and ofi,pi

i Js′i−1K = s′i. From Proposition 11 we have that



pre(oi) ⊆ si−1 = s′i−1 ∩ F . Let fi : Ca(o) 7→ {0, 1}
denote a total function such that for every c ∈ Ca(o) it holds
that ⟨vc, f(c)⟩ ∈ s′i−1, and let pi = s′i−1 ∩ FVfi,0(oi). It
is easy to see that fi is well-defined because V(s′i−1) = V .
It is also easy to see that pi is a partial state, and since we
have that pre(oi) ⊆ s′i−1 and p ⊆ s′i−1 and, for every c ∈
Cfi,1(oi), c ⊆ s′i−1, it follows that expre(oi) ̸∈ M and
therefore ofi,pi

i ∈ OCexact, and for the same reasons we have
that pre(ofi,pi

i ) ⊆ s′i−1. Therefore ofi,pi

i is applicable in
s′i−1 and the rest follows from Proposition 12.

Finally, we show that there is a one-to-one correspon-
dence between heuristics in Π and ΠCexact preserving for-
ward admissibility and forward consistency (as well as op-
timality). It is because every path in Π can be mapped to
a path in ΠCexact (Proposition 13), every path in ΠCexact can
be mapped back to a path in Π (Proposition 11), and there
is a bijective mapping between all intermediate states of all
paths in Π and ΠCexact (Proposition 12).

Theorem 14. (A) If hCex : R(ΠCexact) 7→ R+
0 is an f-

admissible (f-consistent, optimal) heuristic for ΠCexact, then
h : R(Π) 7→ R+

0 such that h(s) = hCex(C[s]) for every
s ∈ R(Π) is an f-admissible (f-consistent, optimal) heuristic
for Π.

(B) If h : R(Π) 7→ R+
0 is an f-admissible (f-consistent,

optimal) heuristic for Π, then hCex : R(ΠCexact) 7→ R+
0 such

that hCex(s) = h(s ∩ F) for every s ∈ R(ΠCexact) is an f-
admissible (f-consistent, optimal) heuristic for ΠCexact.

Proof. Let T (Π) denote the set of all paths in Π, and let
T (ΠCexact) denote the set of all paths in ΠCexact. From Propo-
sition 13, it follows there exists a total function f : T (Π) 7→
T (ΠCexact), and from Proposition 11 it follows there exists a
total function g : T (ΠCexact) 7→ T (Π). From Proposition 12
it follows that f(g(π)) = π for every π ∈ T (ΠCexact) and
g(f(π)) = π for every π ∈ T (Π), therefore f and g are bi-
jective functions and inverses of each other. Finally from the
construction of ΠCexact and Propositions 11 and 13 it follows
that cost(π) = cost(f(π)) for every π ∈ T (Π). Finally,
from Proposition 12 it folows there exists a bijective func-
tion h : R(Π) 7→ R(ΠCexact) s.t. h(s) = C[s] for every
s ∈ R(Π) and h-1(s) = s ∩ F for every s ∈ R(ΠCexact),
and so (A) and (B) directly follows.

Despite the encouraging theoretical result formulated in
Theorem 14, the construction of ΠCexact can result in hav-
ing unreachable operators (as the input Π can have unreach-
able operators too). Therefore, inferring potential heuristics
as described in Section 4 does not guarantee we are able to
find all possible potential heuristics (as it is not guaranteed
in general even for Π).

7 Potential Heuristics over Conjunctions
Using potential heuristics over conjunctions in explicit-state
search is straightforward. Given a set of conjunctions C, we
construct either the ΠC or the ΠCexact compilation of the input
planning task Π, compute a potential heuristic hC in ΠC or
ΠCexact as described in Section 4, and finally use the heuristic

Algorithm 1: Inference of improving conjunctions.
Input: A task Π with facts F , an optimization criteria Opt
Output: A set of conjunctions Co

1 Co ← ∅; P← potential function for Π maximizing Opt;
2 for each k = 2, . . . , |V| do
3 for each c ⊆ F , |c| = k, c ̸∈ M do
4 if time limit reached then return Co ;
5 C ← Co ∪ {x ⊆ c | |x| ≥ 2};
6 P′ ← potential func. for ΠC (or ΠC

exact) max. Opt;
7 if P′ is improvement over P then
8 Co ← C; P← P′;
9 go to 2;

10 return Co

h such that h(s) = hC(C[s]) for all reachable states s ∈
R(Π) when running the search in Π. Theorems 8 and 14
show that such a heuristic h is f-admissible and f-consistent.

Moreover, ΠC and ΠCexact compilations are ordinary FDR
tasks that preserve all optimal plans (and do not induce any
shortcuts), therefore we can plan directly in them. Such ap-
proach does not offer many benefits for explicit-state search
as the larger number of operators makes generating succes-
sor states slower, more variables lead to larger memory con-
sumption for storing generated states, and the reachable state
space of ΠC is possibly larger than the reachable state space
of Π (although not in the case of ΠCexact). However, there are
planning techniques that might benefit from this approach.

Fišer, Torralba, and Hoffmann (2022a,b) showed that po-
tential heuristics can be transformed into operator-potential
heuristics associating each operator o with the change of
heuristic value of the corresponding potential heuristic in-
duced by o. Consequently, operator-potential heuristics can
be used to significantly improve performance of symbolic
search that searches over sets of states (represented as bi-
nary decision diagrams (Bryant 1986)) rather than individ-
ual states. So, we can run this planning technique directly
on ΠC and ΠCexact where the increased informativeness of
potential heuristics automatically translates into operator-
potential heuristics. This, of course, does not mean that the
symbolic search will not suffer from using larger planning
tasks. Also note that different variants of operators oX in ΠC

(of,p in ΠCexact) corresponding to the same operator o from
Π can induce a different change of heuristic values. There-
fore, we cannot directly translate potential heuristics over
conjunctions obtained via compilations to operator-potential
heuristics in the original task Π.

The next question is how to obtain conjunctions C im-
proving potential heuristics. As we already indicated before,
we do not attempt do design an efficient way to do it here.
Instead, we aim at gathering evidence that it is, indeed, com-
mon that there are small sets of conjunctions that can signifi-
cantly improve potential heuristics. So, here we use a simple
greedy algorithm (Algorithm 1) that systematically tries to
test conjunctions one by one starting from the smallest ones
(lines 2 and 3). For each tested conjunction and all its subsets
(line 5), a compilation is constructed and the corresponding
potential heuristic inferred using the LP described in Sec-



tion 4 (line 6). Finally, if the potential heuristic is improve-
ment over the current one, we extend the set of conjunctions
(lines 7 and 8) and restart the whole process (line 9).

Potential heuristics can be computed by maximizing dif-
ferent optimization criteria—in our experiments we focus on
the maximization of the h-value for the initial state only. The
improvement of the resulting heuristics can also be mea-
sured in different ways. Here, we simply compare objec-
tive values of the corresponding LPs—since we maximize,
higher values indicate a better heuristic. However, note that
the inference using LP cannot guarantee dominance between
potential heuristics in a general sense (one upper-bounds the
other in all reachable states). It can only ensure dominance
with respect to the optimization criteria (e.g., h-value for the
initial state, or average h-value over all syntactic states).

8 Experimental Evaluation
The proposed method was implemented1 in C and evalu-
ated on a cluster with Intel Xeon E5-2650v3 processors and
4 GB memory limit for each process. We used all planning
domains from the optimal track of International Planning
Competitions (IPCs) from 1998 to 2023 excluding the ones
containing conditional effects after translation. We merged,
for each domain, all benchmark from different IPCs leaving
54 domains and 1 806 tasks overall. Operators and facts are
pruned with the h2 heuristic in forward and backward direc-
tion (Alcázar and Torralba 2015), and the translation from
PDDL to FDR uses the mutex groups inference proposed by
Fišer (2020, 2023).

For explicit-state search, we ran A⋆ (Hart, Nilsson,
and Raphael 1968) with two variants of potential heuris-
tics: I denotes maximization of the h-value of the initial
state (Pommerening et al. 2015), and A denotes maximiza-
tion for the average (syntactic) state while enforcing the
maximum h-value for the initial state (Seipp, Pommeren-
ing, and Helmert 2015; Fišer, Horčı́k, and Komenda 2020).
We also evaluated symbolic search with operator-potential
heuristics (Fišer, Torralba, and Hoffmann 2022a,b): We used
forward search with A (denoted by

−→
A ), backward search

with I (
←−
I ) and the combination of the two in the bidirec-

tional search (
−→
A -
←−
I ). We use 30 minutes time limit for all

search variants (not counting the inference of conjunctions).
Since A⋆ with potential heuristics tends to terminate

quickly—either quickly finding a plan or quickly exhaust-
ing memory due to the low overhead of the heuristics’
evaluation—we also consider simple portfolios PCand PCex:
We run A⋆ with atomic potential heuristics (in either vari-
ants I or A) until it either finds a plan, or runs out of mem-
ory. In the latter case, we use the remainder of the 30 min-
utes time budget by spending 5 minutes on inferring con-
junctions C, and subsequently re-running A⋆ with potential
heuristics over C using ΠC (PC) or ΠCexact (PCex). These port-
folios count the time spent in the inference of conjunctions
into the whole time limit.

To obtain conjunctions C, we ran Algorithm 1 for 5 min-
utes for each task, and we set the optimization criteria to the

1https://gitlab.com/danfis/cpddl, branch icaps24-pot-conj.
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Figure 4: Comparison of h-values for initial states as ratios
to the h⋆-values for tasks where h⋆-values are known. ΠC
vs. ΠCexact is compared over the same set of conjunctions
inferred using ΠCexact.

maximization of the h-value for the initial state. Improving
conjunctions were found with ΠC (ΠCexact) in 47 (50) do-
mains and 794 (844) tasks. So, ΠCexact seems to be slightly
more successful in this respect. The maximum size of the
found conjunction per task ranged from 2 to 8 for ΠC and
from 2 to 5 for ΠCexact. The average (median) was 2.5 (2)
for ΠC and 2.6 (2) for ΠCexact meaning most of the improve-
ment comes from pairs of facts which is not surprising given
Algorithm 1 tests all pairs first. The minimum, maximum,
average and median size of the resulting C was, respectively,
1, 28, 3.9 and 3 for ΠC , and 1, 38, 3.8 and 3 for ΠCexact.
This indicates that both compilations used small sets of con-
junctions in most cases. Fig. 4 compares h-values for initial
states as ratios to the optimal heuristic on tasks where we
knew h⋆ (1 333 tasks). These results show that it, indeed,
is possible to obtain significantly more informative potential
heuristics via ΠC and ΠCexact with just few additional con-
junctions.

To get some indication which compilation tends to lead
to more informative heuristics, the comparison between ΠC

and ΠCexact in Fig. 4 is done with the same C (inferred with
ΠCexact) in each task for both. It seems ΠCexact is more suc-
cessful than ΠC in this respect too. However, ΠCexact also
tends to generate larger task representations than ΠC : The
minimum, maximum, average and median ratio between the
number of operators in the compilation and in the original
planning task was 1, 7.9, 1.2 and 1 for ΠC , and 1, 46.4, 2.8
and 1.4 for ΠCexact. This is also reflected in the speed of com-
puting potential heuristics. We were able to evaluate on av-
erage 64.4 conjunctions per second in case of ΠC (median
was 32.7), and 55.3 with ΠCexact (median 27.6).

Table 1 shows the number of solved tasks (coverage) by
the explicit-state search configurations. We are able to in-
crease the coverage in some domains even with a small set of
conjunctions inferred with a simple greedy uninformed algo-
rithm. (Note that A⋆ with I over all pairs of facts solves only
451 tasks.) ΠC and ΠCexact perform similarly, and the base-
line (Π) rarely solves more tasks. The biggest difference be-
tween ΠC and ΠCexact seems to be in A and the woodworking
domain where ΠC managed to obtain more informed heuris-
tics mainly due to the fact that Algorithm 1 with ΠC was able
to test larger number of conjunctions within the time limit.

Portfolio results (PC , PCex) show that 30 minutes time bud-
get is plenty for A⋆ with potential heuristics to conduct addi-
tional analysis to find improving conjunctions. Considering
we are typically able to test thousands of different conjunc-



domain A⋆ with I A⋆ with A

Π ΠC ΠC
ex PC PC

ex Π ΠC ΠC
ex PC PC

ex

depot (22) 6 5 6 6 6 11 11 11 11 11
driverlog (20) 8 9 9 9 9 13 13 13 13 13
elevators (50) 28 31 31 31 31 28 35 33 35 33
freecell (80) 48 49 47 49 48 70 70 70 70 70
ged (20) 15 19 19 19 19 15 19 19 19 19
logistics (63) 12 17 17 17 17 21 25 25 25 25
nomystery (20) 9 10 9 10 9 14 14 14 14 14
openstacks (100) 54 53 53 54 54 54 53 53 54 54
parking (40) 0 1 1 1 1 14 14 15 14 15
pipesw-notank (50) 24 24 24 25 24 26 26 27 26 27
pipesw-tank (50) 15 16 15 16 15 17 18 17 18 17
rovers (40) 6 6 7 6 7 8 8 8 8 8
slitherlink (20) 4 4 3 4 4 4 4 4 4 4
spider (20) 14 13 14 14 14 15 15 15 15 15
tidybot (40) 32 32 30 32 32 32 32 32 32 32
tpp (30) 6 8 8 8 8 8 8 8 8 8
visitall (40) 23 23 24 23 24 29 29 29 29 29
woodworking (50) 17 19 19 19 19 27 39 31 39 31

others (1051) 571 571 571 571 571 614 614 614 614 614

Σ (1806) 892 910 907 914 912 1 020 1 047 1 038 1 048 1 039

Table 1: Coverage for explicit-state search.

tions within 5 minutes, these results suggest we could obtain
better conjunctions by just slightly modifying Algorithm 1
so that it prioritizes more promising conjunctions instead of
blindly trying all of them one by one.

The comparison of coverage of symbolic search config-
urations in Table 2 paints quite different picture from the
explicit-state search. Planning directly in ΠC or ΠCexact does
not seem to have significant effect on

−→
A overall although

there are few domains where it is beneficial, and it seems to
be mostly detrimental for

−→
A -
←−
I . The reason is that planning

directly in ΠC and ΠCexact tends to consume more memory
because all binary decision diagrams (BDDs) grow as the
task grows, therefore also manipulating BDDs is slower. In
some tasks, there is also an issue with the ordering of BDD
variables (corresponding to facts in the task) causing signif-
icant blow-up of the BDD encodings. This, unfortunately,
makes it harder to apply potential heuristics over conjunc-
tion in this setting, because we would need to consider con-
junctions that not only improve the informativeness of the
heuristics, but also induce a good ordering of BDD variables.

Nevertheless, at least the symbolic backward search
←−
I

seems to benefit from the compilations (more often from
ΠCexact than from ΠC). The main reason is that the backward
search usually generates a smaller number of BDDs repre-
senting sets of states than the forward direction, but they typ-
ically encapsulate larger number of states. So, it seems hav-
ing more informative heuristics is able to push this method a
little bit further, but enough to see a difference in coverage.

9 Conclusion and Future Work
In this work, we focus on higher-dimensional potential
heuristics computed via a small number of conjunctions ex-
plicitly represented as facts in compilations of the input
planning tasks. We propose to use two variants of compi-
lations: a well known ΠC compilation (Haslum 2012), and
a newly introduced ΠCexact compilation. We compute poten-
tial heuristics over conjunctions as atomic potential heuris-
tics in the compilations. Instead of trying to figure out how
to find “good” conjunctions guaranteeing increased informa-

domain Symb.
−→
A Symb.

←−
I Symb.

−→
A -
←−
I

Π ΠC ΠC
ex Π ΠC ΠC

ex Π ΠC ΠC
ex

agricola (20) 19 16 18 4 0 1 18 12 16
barman (34) 16 15 18 4 3 4 14 11 12
childsnack (20) 2 2 3 0 0 0 2 2 3
depot (22) 10 10 11 4 4 4 10 10 10
driverlog (20) 13 13 13 10 11 11 13 13 13
elevators (50) 35 39 37 10 12 14 41 34 33
floortile (40) 17 16 19 26 25 27 26 22 27
freecell (80) 68 68 68 27 28 27 67 67 66
ged (20) 15 15 15 10 10 13 19 19 15
logistics (63) 28 28 28 19 24 23 28 28 28
nomystery (20) 18 18 18 14 13 14 19 19 19
openstacks (100) 90 89 86 73 75 73 89 88 86
parking (40) 13 13 13 6 6 6 12 12 13
pegsol (50) 48 48 48 30 31 34 48 48 46
petri-net-align (20) 11 11 10 1 1 1 8 6 5
pipesw-notank (50) 24 24 24 9 9 10 24 24 24
pipesw-tank (50) 21 20 18 7 7 7 20 20 19
quantum-layout (20) 14 14 15 13 13 13 14 14 15
ricochet-robots (20) 2 1 1 0 0 0 2 1 2
rovers (40) 14 13 14 10 9 10 14 14 14
slitherlink (20) 5 6 5 0 0 0 5 6 5
snake (20) 8 11 11 0 0 0 8 7 7
sokoban (50) 50 50 50 38 37 38 50 50 50
termes (20) 12 10 11 7 13 13 13 13 13
tidybot (40) 34 34 32 8 8 10 30 30 32
tpp (30) 12 12 12 8 7 8 12 12 12
visitall (40) 22 22 22 18 18 19 22 22 23
woodworking (50) 46 48 44 34 46 40 46 49 48

others (757) 469 469 469 342 342 342 449 449 449

Σ (1806) 1 136 1 135 1 133 732 752 762 1 123 1 102 1 105

Table 2: Coverage for symbolic search.

tiveness of the resulting heuristics, we focus on a basic ques-
tion whether heuristic estimates can be improved with just
few conjunctions and without significantly increasing com-
putational cost in practice. To this end, we use a very simple
greedy algorithm that blindly tries small conjunctions one
by one, accepting the conjunction if its addition increases h-
value for the initial state. We conclude that even in this sim-
ple setting, we can, indeed, increase informativeness of po-
tential heuristics with just few conjunctions. Moreover, we
provide a machinery for computing potential heuristics over
conjunctions requiring only conjunctions to be plugged-in.

We leave many questions unanswered for future work.
The first one is how to determine which conjunctions lead
to an improvement. Possible directions for answering this
question might be previous works on the selection of im-
proving conjunctions for delete-relaxed heuristics (Fickert
and Hoffmann 2017) or for learning no-goods using state-
equation heuristics (Steinmetz and Hoffmann 2018). Selec-
tion of patterns for pattern databases might also be relevant
(Edelkamp 2006; Haslum et al. 2007; Franco et al. 2017;
Rovner, Sievers, and Helmert 2019). Another question is
the exact relationship between ΠC and ΠCexact compilations
with respect to the possible potential heuristics that they can
express via linear programs (LPs). It would also be inter-
esting to know their relationship to the direct encoding in
LP described by Pommerening, Helmert, and Bonet (2017).
Lastly, it is not entirely clear how to successfully transfer the
increased informativeness of potential heuristics to operator-
potential heuristics in the context of symbolic search (Fišer,
Torralba, and Hoffmann 2022a,b).
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