
HAL Id: hal-04703936
https://laas.hal.science/hal-04703936v1

Submitted on 29 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Diagnosability of Possibly Uncertain Systems
Carine Jauberthie, Nathalie Verdière, Louise Travé-Massuyès

To cite this version:
Carine Jauberthie, Nathalie Verdière, Louise Travé-Massuyès. Functional Diagnosability of Pos-
sibly Uncertain Systems. IEEE Control Systems Letters, 2024, 8, pp.2181-2186. �10.1109/LC-
SYS.2024.3456230�. �hal-04703936�

https://laas.hal.science/hal-04703936v1
https://hal.archives-ouvertes.fr


Functional diagnosability of possibly uncertain
systems

Carine Jauberthie, Nathalie Verdière, Louise Travé-Massuyès

Abstract— Diagnosability is a crucial attribute of sys-
tems and their instrumentation, ensuring that specified
faults can be uniquely identified using the available sen-
sors. In a model-based context, diagnosability is evaluated
through analytical redundancy relations derived from the
model by eliminating unknown variables. These relations,
evaluated from sensor data, yield residuals, which indicate
the system’s normal or faulty state. Ideally, residuals exhibit
distinct values for different faults, generating unique fault
signatures that facilitate fault discrimination and affirm
system diagnosability.

This paper presents a sufficient condition for the
functional diagnosability of nonlinear dynamical systems,
based on the functional linear independence of fault sig-
natures. Unlike conventional diagnosability analysis, which
focuses on residuals evaluated in a binary manner, 0 when
not sensitive to a fault and 1 otherwise, functional diagnos-
ability emphasizes the system’s behavior by evaluating the
functional expressions of residuals defined as functional
fault signatures. Evaluated from sensor data, functional
signatures allow for an analysis of the whole residual tra-
jectories. This advantageously increases the discriminating
power. This approach leverages the symbolic framework
of differential algebra, accommodating both deterministic
and bounded uncertain systems without the need for a set-
membership framework.

Index Terms— Diagnosability, nonlinear dynamical sys-
tems, uncertain systems, fault functional signatures, func-
tional linear independence, differential algebra.

I. INTRODUCTION

Verifying diagnosability is an important task to be carried
out before putting a system into operation. Diagnosability
guarantees that the set of measures delivered by the available
sensors can be processed into an appropriate set of symptoms
that discriminate different faulty situations. This property must
be checked in the design phase so that the designer knows
beforehand which faults the diagnoser will be able to dis-
criminate during the operational life of the system. Although
diagnosability analysis has been a topic of research for a long
time in the diagnostic community [6], [12], [17], [19], [21],
this theme is still active today and is giving rise to new results
in both model-based and data-based frameworks [5], [9]–[12].

In a model-based framework, diagnosability is evaluated
through analytical redundancy relations (ARRs) derived from
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the model by eliminating unknown variables. These relations,
evaluated from sensor data, yield residuals, which indicate
the system’s normal or faulty state. Residuals possess both
computational and internal forms, with only the internal form
explicitly reflecting the impact of different faults. Ideally,
residuals exhibit distinct values for different faults, generating
unique fault signatures that facilitate fault discrimination and
affirm system diagnosability.

Unlike conventional diagnosability analysis, which focuses
on residuals evaluated from their computational form in a
binary manner, 0 when not sensitive to a fault and 1 otherwise,
functional diagnosability introduced in [22] emphasizes the
system’s behavior through the formal internal form of residuals
under various faults, defined as functional fault signatures.
Evaluated from sensor data, functional signatures allow for
an analysis of the whole residual trajectories, which advanta-
geously increases the discriminating power.

A sufficient condition for functional diagnosability was
previously proved as the identifiability of the faults modeled
as additional parameters impacting the system’s behavior [22].
A drawback of this approach is its sensitivity to experimen-
tal conditions, particularly to the class of admissible input
functions applied to the system. The approach assumes per-
sistently exciting inputs [18]. Indeed, input functions that fail
to sufficiently "excite" the system may prevent to determine
certain faults. Consequently, a requirement is that the class of
admissible inputs includes such persistently exciting functions.

Hence, the fault parameter identifiability condition offers a
sufficient condition for functional diagnosability, though it can
be overly restrictive in certain cases.

This paper provides a new sufficient condition for functional
diagnosability of non linear possibly uncertain dynamical
systems. The approach relies on ARRs, obtained through
variable elimination theory in the context of differential al-
gebra, and leverages the fact that each ARR is sensitive
to different subsets of faults. It considers functional fault
signatures defined from the formal internal form of residuals
under various faults, and states a condition based on their
linear functional independence. In addition to being simpler
to implement than the identifiability condition, this approach
has several advantages: first, functional signatures, evaluated
from sensor data, allow for a time-based analysis; second,
it accommodates both deterministic and bounded uncertain
systems without requiring a set-membership framework.

This paper is organized as follows: Section II formulates
the problem, Section III presents functional diagnosability and
the different concepts attached to it. Section IV develops the



results that lead to the new condition of functional diagnos-
ability. The Bernouilli equation is issued as a running example,
then Section V illustrates the method with a two water tanks
model. Finally, Section VI concludes the paper and draws
perspectives for future work.

II. PROBLEM FORMULATION

The systems considered are possibly uncertain, in which
case their parameters and initial state are set-valued and
bounded (in intervals in this paper). Let us denote the set of
real intervals by IR △

= {[x, x̄] : x, x̄ ∈ R, x ≤ x̄} and the set
of k-dimensional real interval vectors by IRk1. The considered
systems are of the following form in which a fault vector f
has been explicitly introduced:{

ẋ(t) = g(x(t), u(t), f, p), x(t0) = x0,
y(t) = h(x(t), u(t), f, p),

(1)

where x(t) ∈ IRn, y(t) ∈ IRm denote the state variables
and the outputs, respectively and u(t) ∈ IRl is the input
vector, which may be equal to 0 in case of an uncontrolled
system. p denotes the interval parameter vector included in a
connected set P ⊂ UP , where UP is an open set of IRp. f is
the fault vector such that f ⊂ FSY S ⊂ IRe, where FSY S is an
exhaustive set defining the fault domain. This means that faults
may also suffer uncertainty, in which case their magnitude is
represented by a bounded set of nonzero measure and the faults
are called "bounded faults" [14]. Let us denote by fj the jth
component of the fault vector f and by f j the vector derived
from f by setting all the components equal to zero except the
jth component.

The functions g and h are interval nonlinear functions and
can be viewed as two families of real functions, each of them
being real, rational and analytic 2 in x, u, f and p on an open
set M of Rn such that for all x̌(t) ∈ Rn, if x̌(t) ∈ x(t), then
x̌(t) ∈ M for every t ∈ [t0, T ].

The set of outputs, solution of (1) with input u (resp. without
input), parameter vector p, and fault vector f , is denoted
y(p, f, u) (resp. y(p, f)), where the dependency on time is
omitted to lighten the notations.

Given that real numbers can be considered as degenerated
intervals, note that (1) may as well represent a deterministic
system (no uncertainty) or a system of which some but not all
quantities are uncertain.

This paper seeks to analyse diagnosability for the class
of systems of the form (1). In other words, the goal is to
assess whether two faults fi and fj are diagnosable or not,
i.e., whether the input-output behavior of the system allows
us to discriminate the two faulty situations. We also want
to check whether the system as a whole is diagnosable,
i.e., whether all the considered faults forming the vector f
are mutually diagnosable. For this purpose, we propose to
rely on functional diagnosability as introduced in [22], for

1A k-dimensional real interval vector is a vector whose components are real
intervals. Each component interval represents a range of possible values within
the real numbers, thus defining a multi-dimensional box or hyperrectangle in
the k-dimensional space.

2This assumption is not restrictive since lots of models can be reduced to
a rational and analytical model by a change of variables [1].

it advantageously increases the discriminating power versus
standard diagnosability.

III. FUNCTIONAL DIAGNOSABILITY

This section summarizes the notion of functional diagnos-
ability which is defined thanks to the functional signatures of
the faults [22]. As detailed below, functional signatures are
defined from a set of residuals that can be generated from
analytical redundancy relations (ARRs).

A. Analytical Redundancy Relations
For any vector ϑ, let us define ϑ̃ as the vector composed of

ϑ and its time derivatives up to some (unspecified) order. An
ARR is a relation of the form wi(ỹ, ũ, f, p) = 0 deduced from
the model of the system by eliminating unknown variables, i.e.,
state variables x(t).

According to the assumptions on the system functions g and
h and using an elimination algorithm with a specific order,
ARRs can be put in the following form [20], [22]:

wi(ỹ, ũ, f, p) = m0,i(ỹ, ũ, p)−
∑ni

k=1 γ
i
k(f, p)mk,i(ỹ, ũ)

= w0,i(ỹ, ũ, p)− w1,i(ỹ, ũ, f, p) = 0
(2)

where i is an index identifying the ARR, (γi
k(f, p))1≤k≤ni

are
rational in f and p, γi

v ̸= γi
w (v ̸= w) and (mk,i(y, u))1≤k≤ni

are differential polynomials with respect to ỹ and ũ. Let ri =
w0,i(ỹ, ũ, p), where ri is called the residual and w0,i(ỹ, ũ, p),
which is fault-free, is the residual computation form. It only
involves known variables and can be evaluated from sensor
data. w1,i(ỹ, ũ, f, p), which depends on the faults, is the
residual internal form.

From (2), the following is always true:

w0,i(ỹ, ũ, p) = w1,i(ỹ, ũ, f, p) (3)

In the ideal case of no noise nor disturbances, when no fault
is acting on the system, i.e., f = 0, w1,i(ỹ, ũ, 0, p) = 0 and
hence, from (3) the residual ri = w0,i(ỹ, ũ, p) = 0 for any
triple (ỹ, ũ, p) that satisfies (1).

ARRs can be designed to react to different faults and this
is why, when put together, the corresponding residuals can
provide a different signature for every fault. ARRs can hence
be used to detect, isolate, and estimate a fault acting on the
system [13], [22].

The polynomials wi(ỹ, ũ, f, p) are input-output polynomials
that can be obtained using elimination theory. In the last
decade, algorithms have been developed and implemented in
softwares like Maple [3]. They are based on differential alge-
bra [16] and the procedure consists in eliminating unknown
state variables from the model in order to obtain the ARRs.

Example 3.1: Consider the Bernoulli equation:

ẏ(t) = β1y(t) + β2y(t)
2, for t ∈ [0, 10], y(0) = −1 (4)

whose solution is y(t) = β1e
β1t

β2−β1−β2eβ1t .
The residual computational form reads: w0,1(ỹ, p) = ẏ(t)−

β1y(t) − β2y(t)
2. If some positive single faults f1 and f2

impact additively the two parameters β1 and β2 respectively,
then the residual internal form is: w1,1(ỹ, f, p) = f1y(p, f) +
f2y(p, f)

2 where p = (β1, β2)
T , f = (f1, f2)

T (T denotes
the transpose operation).



B. Signature and functional signature of a fault
Formally speaking, the signature of a fault is a function Sig

which associates to a fault a set of indicators corresponding to
the residuals associated to the ARRs being used. The internal
form of the residuals indicates which faults should activate
which residuals.

Definition 3.1 (Signature of a fault): Assume that m ARRs
are used, then the fault signature Sig(fj) of fj is the binary
m-vector where the ith component of the fj’s signature is
evaluated "1" when the fault fj may act on the residual ri,
otherwise it is evaluated 0.

Classically, residual vectors are binary and two faults are
said diagnosable if their signatures are different. A system is
qualified diagnosable if all the fault signatures are pairwise
different [6]. To increase the discrimination power, [22] has
proposed the concept of functional signature. The functional
signature of a fault is a function FSig which associates to fj
the vector formed by the internal form of the m residuals by
considering that only the fault fj is acting on the system.

Definition 3.2 (Functional signature of a fault): The func-
tional signature FSig(fj) of a fault fj is the vector whose ith
component is w1,i(ỹ, ũ, f

j , p), that is the polynomial obtained
from w1,i(ỹ, ũ, f, p) by considering all the components of f
equal to zero but the jth component equal to fj .
FSig(fj) is a vector of functions of the form (cf. (2):

FSig(fj) =

(
ni∑
k=1

γi
k(fj , p)mk,i(ỹ, ũ)

)
i=1,...,m

.

Comparing functional signatures hence accounts for compar-
ing functional vectors. This comparison is of course finer
than comparing classical binary fault signatures as defined in
Definition 3.1, hence higher diagnosability power is obtained.

The ith component of FSig(fj), which corresponds to an
interval function, is written FSigi(fj). FSigi(fj) consists of
a set of trajectories generated in the presence of fj and can
be viewed as a tube of trajectories, or an envelope, on the
time interval [t0, T ]. Note that if fj is reduced to a real
number, FSigi(fj) is composed of one single trajectory. The
term functional signature is used independently of the bounded
nature of the fault.

(Functional) fault signatures can be collected in a table,
called the (functional) signature matrix, for which the cell
intersecting the ith line and jth column contains the ith

residual for the fault fj , i.e., ri(fj) = w1,i(ỹ, ũ, f
j , p) [14].

Example 3.2: Continuing the Bernouilli equation example,
the functional signatures are constructed based on the internal
form of the residual. From w1,1(ỹ, f, p), we get FSig(f1) =
f1y(p, f1) and FSig(f2) = f2y(p, f2)

2. Each functional
signature defines a set of trajectories when t ∈ [t0, T ]. For
uncertain systems, in particular when f1 and f2 are bounded,
functional fault signature discriminability is not straightfor-
ward and meets three possible cases, as illustrated by the
following numerical examples.
Let us consider the time interval [0, T ] = [0, 10] and assume
that f1 and f2 occur at time point tf = 4.6 seconds. In this
scenario, let us assume that f1 has interval value [0.5, 1] and
f2 has interval value [0.55, 0.6] for the three following cases.

• Case 1: for β1 = 0.5, and β2 = −0.2, the intersection
of FSig(f1) and FSig(f2) is empty on the interval
]4.6; 10], as shown in Figure 1a.

• Case 2: for β1 = 0.5, and β2 = −0.3, the intersection of
FSig(f1) and FSig(f2) is not empty on the time interval
]4.6; 10], as shown in Figure 1b.

• Case 3: for β1 = 0.5, and β2 = −0.35, FSig(f2) is
included in FSig(f1) on the time interval ]4.6; 10], as
shown in Figure 1c.

Note that in the classical sense, this model is not diagnosable
because the signatures of f1 and f2 are both equal to 1 (the
residuals are non zero for the two faulty situations). However,
case 1 and case 2 show that f1 and f2 can be discriminated,
what can be assessed by functional diagnosability.

FSig(f1)

FSig(f2)

tf

time
R

e
si

d
u

al
 V

al
ue

s

(a) Case 1.

tf

FSig(f1)

FSig(f2)R
e

si
du

al
 V

al
u

es

time

(b) Case 2.

FSig(f1)

FSig(f2)

tf

R
e

si
d

ua
l V

a
lu

es

time

(c) Case 3.

Fig. 1: Three cases for the Bernouilli equation example
illustrating disjoint, intersecting and included fault signature
trajectory sets.

The above scenario illustrates three possible cases of fault
functional diagnosability whose formal definitions are given
in the following section.

C. Diagnosability and functional diagnosability
Several definitions of diagnosability have been proposed

around the use of ARRs. The classical diagnosability definition
is based on binary residual fault signatures. Two faults fi and
fj are diagnosable if they have different fault signatures [6].

[7] considers that a system is diagnosable if each fault fj
can be written as the solution of a polynomial equation in fj
and a finite number of time derivatives of inputs and outputs.
This definition is close to the one of identifiability proposed in
[18]. However, the definition of diagnosability proposed in [7]
is based on obtaining particular differential polynomials which
may require many manipulations of the model equations. In
case of complex models, it is often impossible to obtain
such polynomials even using dedicated symbolic software.
Furthermore, the order of derivatives is so high that they are



hardly suitable in practice.
In [22], the authors propose to relax the constraints of [7]
and to use ARRs involving one or more faults for studying
diagnosability, the advantage being to obtain ARRs with
derivatives of lower order. Obtaining such ARRs is based
on the work of [8]. In practice, ARRs are obtained from
the Rosenfeld-Groebner algorithm implemented in Maple [3].
The definition of functional diagnosability as proposed in
[22] is based on these particular ARRs. It was shown that,
if a deterministic model is identifiable with respect to the
faults, then the residuals of the ARRs forming the functional
signature have distinct trajectories.

In the general case of bounded faults, one must deal with
sets of trajectories or tubes. Distinguishing sets of trajectories
leads to the following definition of functional diagnosability
and strong-functional diagnosability.

Definition 3.3: Two faults f1 and f2 are functionally di-
agnosable over the time interval [t0, T ] if FSig(f1) and
FSig(f2) are distinct in the sense that there exists at least one
component i∗ and a time interval [t1, t2] ⊆ [t0, T ] such that for
all t ∈ [t1, t2], FSigi∗(f1) ̸⊆ FSigi∗(f2) or FSigi∗(f2) ̸⊆
FSigi∗(f1). If in addition FSigi∗(f1) ∩ FSigi∗(f2) = ∅, f1
and f2 are strongly functionally diagnosable over [t0, T ].

Definition 3.3 means that, if a functional signature is in-
cluded in another, the faults cannot be distinguished. Other-
wise, if the two sets of trajectories defined by the functional
signatures do not intersect, the two faults are strongly func-
tionally diagnosable. The ambiguous case is when they strictly
intersect, in which case the two faults are just functionally
diagnosable. Definition 3.3 gives a numerical way to detect
faults in a bounded context.

Definition 3.4: The model (1) is (strongly) functionally
diagnosable over the time interval [t0, T ] for FSY S if any two
faults f1, f2 ⊆ FSY S are (strongly) functionally diagnosable
over [t0, T ].

Example 3.3: Consider again the Bernouilli equation exam-
ple.

• In case 1, f1 and f2 are strongly functionally diagnosable
since FSig(f1) ∩ FSig(f2) = ∅ over the time interval
]4.6, 10].

• In case 2, f1 and f2 are functionally diagnosable since
FSig(f1) ∩ FSig(f2) ̸= ∅, FSig(f1) ⊈ FSig(f2), and
FSig(f2) ⊈ FSig(f1) over the time interval ]4.6, 10].

• In case 2, f1 and f2 are not functionally diagnosable since
FSig(f2) ⊂ FSig(f1) over the time interval ]4.6, 10].

Detectability is a specific form of diagnosability that only
requires the ability to distinguish a fault from the absence of
faults. Functional detectability can hence also be defined based
on functional signatures as follows.

Definition 3.5: The fault fj is functionally detectable if the
functional signature FSig(fj) is not equal to the null vector
over [t0, T ].

Definition 3.4 is given for uncontrolled systems. If the sys-
tem is controlled, i.e., u(t) ̸= 0, we can distinguish the case in
which the property is true for at least one input or for all inputs.
The faults f1 and f2 are said (strongly) input-functionally
diagnosable. The distinction between (strongly) functionally

detectable and (strongly) input-functionally detectable faults
can also be done.

IV. A NEW CONDITION FOR FUNCTIONAL
DIAGNOSABILITY

This section presents a theoretical result for determining the
functional diagnosability of potentially bounded faults based
on the formal expressions of functional signatures, which are
actually the observable manifestations of faults.

Functional signatures FSig(fj), j ∈ [1, e] are function
vectors where each component FSigi(fj), i ∈ [1,m], repre-
sents the i-th residual internal form among the m considered
residuals, assuming that only the fault fj is affecting the
system.

Proposition 4.1: Two faults fi and fj , fi ̸= fj are func-
tionally diagnosable over the time interval [t0, T ] if there
exists at least one k such that the components k of their
functional signatures, i.e., FSigk(fi) and FSigk(fj), are
linearly functionally independent over [t0, T ].
Proof– By contrapositive, it is clear that if two distinct faults
are not functionally diagnosable, all the components of their
functional signatures are equal over the time interval [t0, T ]
and consequently, all the components of their functional signa-
tures are linearly functionally dependent on some subinterval
of [t0, T ].

In the following, we leverage the fact that linear functional
independence of vectors is implied by linear functional inde-
pendence of at least one of their components. When we talk
about the functional independence of a vector, it will be in
relation to one of its components, in particular with regard to
fault signatures.

The following proposition links the functional linear inde-
pendence of any two fault signatures with model diagnosabil-
ity.

Proposition 4.2: If the functional signatures of any couple
of faults are linearly functionally independent over the time
interval [t0, T ], then the model is functionally diagnosable over
the time interval [t0, T ].

Proof– Functional linear independence of any two fault
signatures over [t0, T ] implies, by Proposition 4.1, that any pair
of faults is functionally diagnosable over [t0, T ]. By definition,
the model is then functionally diagnosable over [t0, T ].

It has been shown that a set of differentiable functions is
linearly independent on a time interval if their Wronskian does
not vanish identically [2]. In addition, linear independence
of a set of functions implies that the functions are pairwise
linearly independent, which is, from Propositions 4.1 and 4.2,
the condition sought to prove the functional diagnosability of
the system.

Definition 4.1: Consider a set of faults F ⊆ FSY S , |F| ≥ 2
and the functions given by the ith component FSigi(F)
of their fault signatures, and define the Wronskian Wi(F)
as the determinant constructed by placing the functions
FSigi(fj), fj ∈ F , in the first row and the 1-st to the
(|F| − 1)-th derivatives of the functions in the subsequent



rows, thus forming the square matrix:

∣∣∣∣∣∣∣∣∣
FSigi(f1) . . . . . . FSigi(f|F|)
FSigi(f1)

′ . . . . . . FSigi(f|F|)
′

...
...

...
...

FSigi(f1)
(|F|−1) . . . . . . FSigi(f|F|)

(|F|−1)

∣∣∣∣∣∣∣∣∣ (5)

Propositions 4.3 and 4.4 below are based on the properties
of the Wronskian, in particular the link between the vanishing
of the Wronskian and linear dependance as proved in [2].

Proposition 4.3: Consider a set of faults F ⊆ FSY S , |F| ≥
2. If Wi(F) ̸≡ 0 over the time interval [t0, T ], i.e., is of full
rank, then the faults in F are functionally diagnosable over
[t0, T ].

Proof- Wi(F) ̸≡ 0 implies that the fault signatures of the
faults in F are linearly functionally independent, as well as
any subset of fault signatures within this set. Proposition 4.1
then implies the result.

Proposition 4.4: If the following conditions are satisfied:

1) there exists a set K of sets of faults Fk ⊆ FSY S , |Fk| ≥
2, such that the Wronskians Wi(Fk) ̸≡ 0 over the
time interval [t0, T ], i.e., are of full rank, and

⋃
k Fk =

FSY S ,
2)
⋂

k Fk ̸= ∅,

then the system (1) is functionally diagnosable over [t0, T ],
i.e., all the faults in FSY S are functionally diagnosable over
[t0, T ], as well as any subset of faults within this set.

Proof- From Proposition 4.3, condition 1) implies that the
set of faults in the Fk’s, k ∈ K, are functionally diagnosable
over [t0, T ] and that the Fk’s cover all the faults in FSY S .
Condition 2) guarantees the same property for all the pairs of
faults of FSY S that are not covered by the Fk’s, hence the
result.

Note that the Wronskians Wi(−) of Propositions 4.3 and 4.4
are differential expressions with respect to inputs, outputs,
parameters, and faults of system (1). They can be estimated
using the function "Determinant" in Maple 19. The result
indicates whether the determinant is identically equal to zero
or not.

Interestingly, Propositions 4.3, and 4.4 allow to deal natu-
rally with uncertain systems and unbounded or bounded faults
because the Wronskians are calculated in a formal way.

Example 4.1: Consider again the Bernouilli equation exam-
ple where f = (f1, f2). To test if f1 and f2 are functionally
diagnosable over the time interval ]4.6, 10], we consider the
functional signatures FSig(f1) and FSig(f1) that have, in
this simple example, only one component, and form the
following Wronskian for the only possible set of faults of
cardinal superior or equal to 2 F = {f1, f2}:

W1(F) =

∣∣∣∣ FSig(f1) FSig(f2)
FSig(f1)

′ FSig(f2)
′

∣∣∣∣ = ∣∣∣∣ f1 y f2 y
2

f1 ẏ 2 f2 ẏ y

∣∣∣∣ .
W1(F) is equal to f1f2ẏẏ

2 ̸≡ 0. Therefore, by Proposition
4.4, the model is functionally diagnosable over ]4.6, 10].

V. EXAMPLE: TWO-WATER-TANK MODEL

Consider the two coupled water tanks shown in Figure 2
and modeled by:

ẋ1(t) = p1 (u(t) + f1)− p2 (1− f4) z1(t),
ẋ2(t) = p3 (1− f4) z1(t)− p4 z2(t),
z1(t)

2 = x1(t), z2(t)
2 = x2(t),

y1(t) = p5 (1− f4) z1(t) + f2,
y2(t) = p6 z2(t) + f3,

(6)

where p = (pi)i=1,...,6, pi ̸= 0, is the parameter vector, x =
(x1, x2)

T represents the state vector and corresponds to the
level in each tank, z1(t) =

√
x1(t) and z2(t) =

√
x2(t) are

auxiliary variables introduced to rewrite the model in the form
(1) and u ̸≡ 0 is the input vector. The water level in the tanks
can vary between 0 and 10.

f1 denotes an unknown additive fault on the actuator signal,
f2 and f3 are additive faults referring to the two sensors on
the output of each of the water tanks, and f4 is a clogging
fault.

Fig. 2: Two coupled water tanks

According to the Rosenfeld-Groebner algorithm, the two
ARRs are:

w1(ỹ, ũ, f, p) = w0,1(ỹ, ũ, p)− w1,1(ỹ, ũ, f, p)
w2(ỹ, ũ, f, p) = w0,2(ỹ, ũ, p)− w1,2(ỹ, ũ, f, p)

(7)

where:

w0,1(ỹ, ũ, p) = −up1p
2
5 + (p2p5 + 2ẏ1)y1,

w1,1(ỹ, ũ, f, p) = 2 ẏ1 f2 − (f2
4 p2 p5 − 2 f4 p2 p5) y1

−(−f2
4 p1 p

2
5 + 2 f4 p1 p

2
5)u

+f2
4 f2 p2 p5 + f2

4 f1 p1 p
2
5 − 2 f4 f2 p2 p5

−2 f4 f1 p1 p
2
5 + f2 p2 p5 + f1 p1 p

2
5,

w0,2(ỹ, ũ, p) = 2p5ẏ2y2 − p3p
2
6y1 + p4p5p6y2,

w1,2(ỹ, ũ, f, p) = 2 ẏ2 f3 p5 + f3 p4 p5 p6 − f2 p3 p
2
6.

(8)

Hence,

FSig(f1) = (f1 p1 p
2
5, 0)

T

FSig(f2) = (2 ẏ1 f2 + f2 p2 p5,−f2 p3 p
2
6)

T

FSig(f3) = (0, 2 ẏ2 f3 p5 + f3 p4 p5 p6)
T

FSig(f4) = (−y1 f
2
4 p2 p5 + 2 y1 f4 p2 p5

+u f2
4 p1 p

2
5 − 2u f4 p1 p

2
5, 0)

T .

(9)

For the subset of faults F1 = {f1, f2, f4} and the first
component of FSig(F1) we obtain the following expression
for the Wronskian W1(F1):

2f1f4(f4 − 2)p1p
3
5(ÿ1(üp1p5 − ÿ1p2)−

...
y 1(u̇p1p5 − ẏ1p2)).



Using Maple 19, we verify that this determinant is not iden-
tically equal to zero. Thus, by Propositions 4.3, the faults f1,
f2 and f4 are functionally diagnosable.

For the subset of faults F2 = {f2, f3} and the second
component of FSig(F2) we obtain the following expression
for the Wronskian W2(F2):

2f2f3p3p5p
2
6ÿ2

and assess that it is not identically equal to zero. Thus,
by Propositions 4.3, the faults f2 and f3 are functionally
diagnosable. We can verify that F1 ∪ F2 = FSY S and that
F1 ∩F2 ̸= ∅, hence the two conditions of Proposition 4.4 are
satisfied and the system (6) is functionally diagnosable.

The above theoretical results are confirmed numerically
for faults valued by the interval [0.4, 0.6] and introduced at
t = 20s. Fig. 3 shows the trajectory envelopes of bounded
fault functional signatures computed by means of interval
analysis [15]. These are obviously zero before t = 20s. After
t = 20s, time intervals in which their intersections are empty
can be identified, hence indicating functional diagnosability.
For the first component of the fault functional signatures (left
figure), empty intersection of pairs of envelopes for faults in
F1 = {f1, f2, f4} is visible on ]20.8,28.7[, while the other
ones remain zero. For the second component (right figure),
there is empty intersection of pairs of envelopes for faults in
F2 = {f2, f3} until the end of the simulation, while the other
ones remain zero.

Note that in the classical sense, System (6) is not diagnos-
ticable because the signatures of f1 and f4 are both equal to
(1, 0)T .
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Fig. 3: First (left) and second (right) component of the fault
functional signatures of f1, f2, f3, and f4 identified by
different colors. Note that FSig(f3) and FSig(f1), FSig(f4)
in the left and right figure, respectively, are constant at 0.

VI. CONCLUSION

In this paper, an operational sufficient condition for the
functional diagnosability of nonlinear dynamical systems is
proposed. The condition is based on the functional linear
independence of fault functional signature vectors which is
brought back to a rank condition. A two-water-tanks example
is used to illustrate the approach and confirm the relevance of
this result.

Following this work, it would be of interest to determine
theoretically the intervals of time on which faults are dis-
criminable or undiscriminable based on the time at which
the Wronskians of Proposition 4.3 and 4.4 in section IV
vanish or the opposite. This could be done by evaluating
them on small subsequent time intervals [t, t + γ], by using,

for example, contractors that avoid wrapping effects but still
provide guaranteed results, i.e., that enclose all real results [4].
In this way, one would be able to identify the time intervals
for which the system is functionally diagnosable or not.

REFERENCES

[1] S. Audoly, G. Bellu, L. D’Angio, M. P. Saccomani, and C. Cobelli.
Global identifiability of nonlinear models of biological systems. IEEE
Trans. Biomed. Eng., 48:55–65, 2001.

[2] M. Bôcher. Certain cases in which the vanishing of the wronskian is a
sufficient condition for linear dependence. Transactions of the American
Mathematical Society, 2:139–149, 1901.

[3] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing repre-
sentation for radicals of finitely generated differential ideals. Technical
report, IT-306, Université Lille I, LIFL, 59655, Villeneuve d’Ascq, 1997.

[4] G. Chabert and L. Jaulin. Contractor programming. Artificial Intelli-
gence, 173(11):1079–1100, 2009.

[5] A. Chouchane, M. Ghazel, and A. Boussif. K-diagnosability analysis of
bounded and unbounded petri nets using linear optimization. Automat-
ica, 147:110689, 2023.

[6] M.O. Cordier, L. Travé-Massuyès, and X. Pucel. Comparing diagnos-
ability in continuous and discrete-event systems. In Proceedings of the
17th International Workshop on Principles of Diagnosis, DX’06, pages
55–60, 2006.

[7] J.C. Cruz-Victoria, R. Martinez-Guerra, and JJ. Rincon-Pasaye. On lin-
ear systems diagnosis using differential and algebraic methods. Journal
of the Franklin Institute, 345:102–118, 2008.

[8] L. Denis-Vidal, G. Joly-Blanchard, and C. Noiret. Some effective
approaches to check identifiability of uncontrolled nonlinear systems.
Mathematics and Computers in Simulation, 57:35–44, 2001.

[9] F. Fu, D. Wang, L. Li, W. Li, and Z. Wu. Data-driven method for
the quantitative fault diagnosability analysis of dynamic systems. IET
Control Theory & Applications, 13(8):1197–1203, 2019.

[10] F. Fu, D. Wang, W. Li, D. Zhao, and Z. Wu. Overall fault diagnosability
evaluation for dynamic systems: A quantitative–qualitative approach.
Automatica, 146:110591, 2022.

[11] X. Gu and X. Shi. A review of research on diagnosability of control
systems. Energy Reports, 11:2174–2188, 2024.

[12] F. Hashemniya, B. Caillaud, E. Frisk, M. Krysander, and M. Malandain.
Fault diagnosability analysis of multi-mode systems. In [2024] IFAC
Symposium on Fault Detection, Supervision and Safety of Technical
Processes, arXiv preprint arXiv:2312.14030, 2024.

[13] C. Jauberthie, N. Verdière, and L. Travé-Massuyès. Fault detection and
identification relying on set-membership identifiability. Annual Reviews
in Control, 37:129–136, 2013.

[14] C. Jauberthie, N. Verdière, and L. Travé-Massuyès. Set-membership
diagnosability: definitions and analysis. In Proceedings of International
Conference on Control and Fault-Tolerant Systems, Barcelona, Spain,
pages 1–6, 2016.

[15] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis,
with examples in parameter and state estimation, Robust control and
robotics. Springer, Londres, 2001.

[16] E.R. Kolchin. Differential algebra and algebraic groups. Academic
Press, New York, 1973.

[17] S. Lafortune, F. Lin, and C. N. Hadjicostis. On the history of
diagnosability and opacity in discrete event systems. Annual Reviews in
Control, 45:257–266, 2018.

[18] L. Ljung and T. Glad. On global identifiability for arbitrary model
parametrizations. Automatica, 30:265–276, 1994.

[19] R. Seliger and P.M. Frank. Fault-diagnosis by disturbance decoupled
nonlinear observers. In [1991] Proceedings of the 30th IEEE Conference
on Decision and Control, pages 2248–2253 vol.3, 1991.

[20] Marcel Staroswiecki and G Comtet-Varga. Analytical redundancy
relations for fault detection and isolation in algebraic dynamic systems.
Automatica, 37(5):687–699, 2001.

[21] L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis
based on component-supported analytical redundancy relations. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 36(6):1146–1160, 2006.

[22] N. Verdière, C. Jauberthie, and L. Travé-Massuyès. Functional diag-
nosability and detectability of nonlinear models based on analytical
redundancy relations. Journal of Process Control, 35:1–10, 2015.


