
HAL Id: hal-04704943
https://laas.hal.science/hal-04704943v1

Submitted on 21 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer Linear Programming for Automated Guided
Vehicles Path Planning in Container Terminals

Karim Terfasse, Ghassen Cherif, Marie-José Huguet

To cite this version:
Karim Terfasse, Ghassen Cherif, Marie-José Huguet. Integer Linear Programming for Automated
Guided Vehicles Path Planning in Container Terminals. International Conférence on Control, Decision
and Information Technologies (CoDIT 2024), Jul 2024, Valleta, Malta. �hal-04704943�

https://laas.hal.science/hal-04704943v1
https://hal.archives-ouvertes.fr


Integer Linear Programming for Automated Guided Vehicles Path
Planning in Container Terminals

Karim Terfasse1, Ghassen Cherif1,2 and Marie-José Huguet1,3

Abstract— Port automation has emerged as a transformative
solution enabling seaport management to efficiently handle the
escalating volume of operations, driven in part by the advance-
ments in low-cost long-distance maritime transport. In this
context, the use of Automated Guided Vehicles for the loading
and unloading of ships creates a need to optimize the conflict-
free routing of these vehicles, in order to guarantee the safe
transportation of goods within automated container terminals.
In this work, we propose an Integer Linear Programming
model to address the problem of collision-free path planning
of Automated Guided Vehicles in container terminals where
each vehicle is associated to one routing request. Numerical
experiments are performed to evaluate the proposed method’s
performances. Conclusions are drawn regarding its efficiency,
and future avenues of research to address the problem are
proposed.

I. INTRODUCTION

Automating port operations is key to improve its compet-
itiveness regarding the challenge of handling the expanding
amounts of port operations due to the lucrative aspect of
maritime logistics. In this work, we focus on improving
the loading and unloading of ships, through the automation
of container transport within a specific type of container
terminals. For this objective, a specific category of au-
tonomous vehicles known as Automated Guided Vehicles
(AGVs) is employed. Effective utilization of these resources
necessitates a careful planning of their movements, ensuring
both safety and efficiency. This leads to the challenge of
devising collision-free path planning strategies for AGVs for
automated container terminals.
The collision-free routing of autonomous vehicles has been
extensively studied in the literature, using various ap-
proaches. Classic shortest path algorithms, adapted to treat
collisions, have been proposed to address the problem in
different environments [1], [2]. The graph-like architectures
commonly employed in the study of this problem make ap-
proaches of this type highly convenient. However, they have
been demonstrated to be most effective for small instances,
which involve a relatively limited number of vehicles in
compact networks. Another category of approaches consists
of leveraging Integer Programming (IP) or Mixed Integer
Programming (MIP) to address the problem in various en-
vironments, including typical vehicle traffic setups [3], [4]
and automated seaport container terminals [5], [6]. Here, the
problem is modeled as an IP or MIP problem and usually

1 are members of the ROC team within the Laboratory for Analysis
and Architecture of Systems (LAAS-CNRS), University of Toulouse, 31013,
Toulouse, France {kterfasse,gcherif,huguet}@laas.fr

2 is with Paul Sabatier University, 31062 Toulouse, France
3 is with INSA Toulouse, 31400 Toulouse, France

solved using standard solvers. Decomposition methods have
also been proposed to treat the solving aspect of this type
of approaches [7]. While these solution methods are widely
used, they also face scalability challenges when applied to
large instances of the studied problem. Other approaches
proposed in the literature include the use of Petri Nets [8],
[9] which provide a compact modeling of the architectures
considered for conflict-free AGV routing problems. Addi-
tionally, multi-objective optimization methods have also been
suggested to treat the problem in small to medium-sized
container terminals [10], and architecture-specific heuristics
are commonly developed for particular setups of the problem,
like in [11] where four different heuristics are proposed to
treat the problem in the context of automated warehousing.
In conclusion, exact and heuristic methods have been pro-
posed to address the problem of collision-free routing of
autonomous vehicles in various environments. While most of
these methods are very efficient when solving small instances
of the considered problem, scalability challenges are faced
with the increase of the number of vehicles involved, and
the size of the architecture considered.
The main contributions of this work lie in the following.
First, we propose an Integer Linear Programming (ILP)
model adapted from the ones formulated in [5] and [6].
Then, we perform an extensive experimental study that aims
to evaluate the model’s performance and validate its results,
as we believe that the tests presented in the aforementioned
articles are not sufficiently representative.
The paper is organized as follows. Section II presents a
description of the studied problem. In Section III, an ILP
model is detailed as a solution method for the studied
problem. Numerical experiments and results are presented
in Section IV, followed by conclusions in the final section.

II. PROBLEM DEFINITION

We consider the same container terminal presented in
[5], [6], [8], which is organized into blocks and crossroads,
connecting the docks of the seaport to a storage area.
An example of this type of structure is shown in Fig. 1,
where storage areas at the top are connected to docking
stations at the bottom, through blocks represented in blue,
and crossroads represented in orange. A Terminal Operating
System (TOS) provides loading and unloading orders, and
a service provider is responsible for assigning container
transport missions to the AGVs, to fulfill these orders.
Essentially, a mission is defined as a travel order from a
block within a docking station to a block within the storage
area, or vice versa. These missions must be carried out safely,



following a path provided by a routing engine, ensuring that
collisions between the AGVs are avoided. A collision is
defined by the presence of two or more AGVs on the same
block or crossroad at the same time. The objective is to find
a set of collision-free routes, which consist of an alternating
succession of blocks and crossroads, that minimize the total
time needed to perform all the assigned missions. The
network and problem exhibit additional features, outlined
below:

- A crossroad is a connection node between several
blocks.

- A block is connected, at most, to two crossroads.
- Two blocks/crossroads cannot be directly connected.
- Each block and crossroad has a crossing duration.
- Each AGV (mission) has an origin and a destination that

are necessarily blocks of the storage or docking areas.
- Only one AGV can be in a block or a crossroad at a

time.
- An AGV cannot cross a block or a crossroad twice for

a given mission.
- An AGV can wait only in a block

In this work, we focus on a particular case of the problem
addressed in [5] and [6], where a unique mission is assigned
for each AGV. We propose to call it the one-mission-per-
AGV problem, denoted by 1MA. In this setup, each AGV
fulfills a unique mission defined by an origin block and
a destination block, following collision-free paths provided
by the routing engine. The purpose of this consideration is
to provide a basis for solving the more general problem
of multiple-missions-per-AGV in a sequential manner, using
ILP-based heuristic methods.

III. INTEGER LINEAR PROGRAMMING FOR THE 1MA
PROBLEM

In this section, we propose an ILP model adapted from
the two models presented in [5] and [6].

A. Network Topology Notations

We consider an environment where AGVs can circulate in
a network consisting of connected blocks and crossroads. In
the following, we describe these two types of components,
as well as the relationship that connects them.
Blocks Blocks are the main component of the network that
AGVs use to travel from the origin to the destination of their
assigned missions. We denote by B = {b1, b2, . . . , bB} =
{bi}i∈[1,...,B] the set of blocks with B being its cardinal
number. Each block bi ∈ B has a crossing duration dbi ∈ N+.
We also define ABi the set of blocks accessible from block
bi and

←−
ABi the set of blocks from which block bi could be

accessed. The AGVs are allowed to wait in blocks to avoid
collisions.
Crossroads Crossroads are the second components of the
network that connect blocks to each other. Crossing from
one block to another implies the use of a crossroad. We
denote by C = {c1, c2, . . . , cC} = {cp}p∈[1,...,C] the set of
crossroads, with C being its cardinal number. Each crossroad
cp ∈ C has a crossing duration dcp ∈ N+. We also define Ci

the set of crossroads accessible from block bi,
ABp

i the set
of blocks accessible from block bi through crossroad cp and
←−
ABp

i the set of blocks from which block bi could be accessed
through crossroad cp. Additionally, for each block bi ∈ B
and each block bj ∈ ABi, there exists a unique crossroad cp
such that bj ∈ ABp

i . This crossroad is denoted icj . Unlike
blocks, the AGVs are not allowed to wait in crossroads to
avoid collisions.

B. Missions and AGV

A mission consists of transporting a container from a block
in the docking area to a block in the storage area or vice
versa. A mission m is defined by its origin block denoted
sm, and its destination block denoted tm. We denote M the
set of missions, T the set of destination blocks, and S the
set of origin blocks. In the 1MA problem, only one mission
is assigned to a given AGV. The set of AGVs is denoted
A = {a1, a2, . . . , aA} = {am}m∈[1,...,A] with A being its
cardinal number.

C. Decision variables

For the proposed ILP, we define the following decision
variables :

• Xi,j
m : binary variable that identifies if AGV am moved

from block bi to block bj .
• Y i

m : binary variable that identifies if AGV am crossed
the block bi.

• Zp
m : binary variable that identifies if AGV am crossed

the crossroad cp.
• αi

m and βi
m: integer variables that define the arrival time

of AGV am to block bi and its departure time from bi,
respectively.

• ϕpm and ψp
m: integer variables that define the arrival time

of AGV am to crossroad cp and its departure time from
cp, respectively.

• ϵim : integer variable that defines the waiting time by
AGV am in block bi.

• Bi
m,n and Cp

m,n : binary variable that defines the
crossing order in the block bi (resp. crossroad cp) for
each pair am and an of AGVs.

The main difference between our set of variables and that
of the models presented in [5] and [6] is that, here, the arrival
and departure from a block or a crossroad are defined for an
AGV as a whole, whereas, in the other studies, they are
defined for both the front and the back of the AGV. This
eliminates two types of variables, which subsequently creates
differences between the formulated constraints.

D. The objective function

We consider the same objective function as the one
presented in [6], which aims at minimizing the total time
required to perform this set of missions. It takes into con-
sideration, for each AGV, three types of durations involved
in our problem ; the block crossing duration, the crossroad
crossing duration and the waiting time at blocks. Despite



minimizing the same quantity, our formulation of the objec-
tive function utilizes different variables from those employed
in [6]. This is presented as follows :

min
∑

am∈A

∑
bi∈B

dbiY
i
m +

∑
am∈A

∑
cp∈C

dcpZ
p
m +

∑
am∈A

∑
bi∈B\(T ∪S)

ϵim

(1)

E. The constraints

The constraints of the proposed ILP model are presented
through the following blocks:
Pre-computations. Some binary variables are trivially null.
Constraint (2) indicates that Xi,j

m is null if block bj is not
accessible from block bi. Constraint (3) indicates that a block
bi can never be accessed from itself:

∀ am ∈ A,∀ bi ∈ B,∀ bj /∈ ABi, Xi,j
m = 0 (2)

∀ am ∈ A,∀ bi ∈ B, Xi,i
m = 0 (3)

Origins and destinations. Each AGV has to leave its
assigned mission’s origin. Constraint (4) indicates that AGV
am leaves sm one time, and one time only, and cannot access
it again.

∀ am ∈ A,
∑

bj∈B\{sm}

(Xsmj
m −Xjsm

m ) = 1 (4)

Similarly, constraint (5) indicates that AGV am enters tm
one time, and one time only, and does not leave it.

∀ am ∈ A,
∑

bj∈B\{tm}

(Xtmj
m −Xjtm

m ) = −1 (5)

Constraints 4 and 5 were each initially separated into two
distinct constraints in [5], but were reformulated as presented
here by the same authors in [6]. We have opted to select
the more compact version for integration into our ILP
model. Additionally, the Y i

m binary variable that identifies
the crossing of a block bi by AGV am needs to be set to 1 for
both the origin and destination blocks of all missions, since
it is trivial that AGVs cross these blocks when performing
their assigned missions.

∀ am ∈ A, Y sm
m = 1 (6)

∀ am ∈ A, Y tm
m = 1 (7)

It is important to note that constraints (6) and (7) are
redundant, and their intended purpose could be achieved and
verified through the combination of constraints (4), (5), (9)
and (10). However, it is always best practice to set trivial and
known values as initial constraints in mathematical models,
as this usually helps improve solving efficiency.
Routing constraints. Constraint (8) indicates that AGV am
can only move to a unique accessible block from its current
block bi. The use of the inequality allows all variables Xi,j

m

to be null in case the AGV does not visit block bi.

∀ am ∈ A, ∀ bi ∈ B,
∑

bj∈B\{bi}

Xi,j
m ≤ 1 (8)

Furthermore, an AGV am moving from block bi to block bj
means that am has used both blocks, which translates to :

∀ am ∈ A, ∀ bi ∈ B \ {tm},
∑

bj∈ABi

Xi,j
m = Y i

m (9)

∀ am ∈ A, ∀ bj ∈ B \ {sm},
∑
bi∈B

Xi,j
m = Y j

m (10)

Indeed, if AGV am moves from bi to bj , the sum in the
left-hand sides of the equations in (9) and (10) will be equal
to 1. This equality imposes the same value on the Y i

m and
Y j
m variables.

A similar constraint is formulated for the use of crossroad
icj that links blocks bi and bj :

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi, Xi,j
m ≤ Z

icj

m (11)

The constraint is formulated with an inequality, which is
justified by the fact that the crossroad icj could also be the
link between another pair of blocks bk and bl (icj = kcl).
In this case, using an equality constraint would impose the
crossing from bi to bj when icj is used for the unrelated
crossing from bk to bl.
Additionally, an AGV can only cross a block in a unique
direction for a given mission, meaning that U-turns are
forbidden in the considered topology. This constraint is
formulated as follows:

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi, Xi,j
m +Xj,i

m ≤ 1 (12)

Finally, constraint (13) makes sure that an AGV am leaves
the block bj once it has accessed it. It also verifies that if
am leaves the block bi, it should have previously accessed
it.

∀ am ∈ A,∀ bi ∈ B \ {sm, tm},
∑

bj∈B\{bi}

(Xi,j
m −Xj,i

m ) = 0

(13)

In reality, (13) is an equality constraint between sums∑
bj∈B\{bi}X

i,j
m and

∑
bj∈B\{bi}X

j,i
m . The first sum being

equal to 1 means there is a block bj such that Xi,j
m = 1.

The equality constraint imposes that AGV am leaves bj in
that case. In case one of the sums is null, the other is too,
meaning that am does not visit bj .
The following two sets of constraints define block and
crossroad occupation time intervals. Since we proposed to
use 5 time variables instead of the 7 defined in [5] and [6],
most of the constraints are modified to fit the new variable
choice.
Block occupation time intervals. Constraint (14) defines
occupation time intervals of blocks crossed by AGVs. If
AGV am crosses block bj , its departure date is equal to
its arrival date, to which we add the crossing duration of bj
and the parking time of AGV am on bj if any.

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi \ {sm},
(Xi,j

m = 1) ⇒ βj
m = αj

m + ϵjm + dbj (14)



This constraint is linearized using big M constraints (15) and
(16).

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi \ {sm},
βj − αj − ϵj − dbj ≤M(1−Xi,j

m ) (15)

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi \ {sm},
αj + ϵj + dbj − βj ≤M(1−Xi,j

m ) (16)

When Xi,j
m = 1, the right-hand sides of both inequalities

are equal to 0, which corresponds to the intended result
of the implication in (14). However, when Xi,j

m = 0, both
inequalities are trivial and don’t affect solution feasibility,
considering that we take a sufficiently great constant value
M . This linearization method will be used for all constraints
of this type presented in this model.
Now, as the origin blocks are excluded from constraint (14),
it is important to add a constraint that verifies this condition
for this type of blocks.

∀ am ∈ A, βsm
m = αsm

m + ϵsmm + dbsm (17)

Additionally, the arrival date of am to sm is trivially set to
0.

∀ am ∈ A, αsm
m = 0 (18)

Following the same logic as in constraints (6) and (7), we
can set the occupation time intervals of unused blocks as
initial constraints to potentially improve solving efficiency.
It is done by establishing the following implication between
the value of Y i

m and the values of αi
m and ϵim :

∀ am ∈ A,∀ bi ∈ B, (Y i
m = 0) ⇒

{
αi
m = 0

ϵim = 0
(19)

To finish off this block of constraints, it is important to
guarantee the logical succession of crossed blocks regarding
occupation time intervals. This constraint is formulated as
follows :

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi,

(Xi,j
m = 1) ⇒ αj

m = βi
m + dcicj (20)

Crossroad occupation time intervals. We start off by
formulating the constraint that sets the arrival date of an
AGV to a crossroad, which should be equal to the departure
time from the previously crossed block :

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi, (Xi,j
m = 1) ⇒ ϕ

icj

m = βi
m

(21)

Once the arrival time to the crossroad is defined, we need
to formulate a constraint to calculate the departure time
from said crossroad. This is achieved through the following
implication :

∀ am ∈ A,∀ bi ∈ B,∀ bj ∈ ABi,

(Xi,j
m = 1) ⇒ ψ

icj

m = ϕ
icj

m + dcicj (22)

Ultimately, these last two constraints determine the oc-
cupation time intervals of each crossroad by the AGVs
performing a set of given missions. However, these intervals
could be pre-computed for unused crossroads in order to
potentially improve solving efficiency. For that, we formulate
the following constraint :

∀ am ∈ A,∀ cp ∈ C, (Zp
m = 0) ⇒ ϕpm = 0 (23)

Safety constraints This final block of constraints allows
the routing engine to generate paths for the AGVs, while
maintaining safety by eliminating all potential collisions.
First, we need to formulate two constraints that determine
the crossing order of a block (resp. crossroad) by a pair of
AGVs, using the Bi

m,n (resp. Cp
m,n) variables. We remind

that Bi
m,n = 1 (resp. Cp

m,n = 1) means that AGV am crosses
block bi (resp. crossroad cp) before AGV an:

∀ am ̸= an ∈ A,∀ bi ∈ B, Bi
m,n +Bi

n,m = 1 (24)

∀ am ̸= an ∈ A,∀ cp ∈ C, Cp
m,n + Cp

n,m = 1 (25)

These two constraints are used to make sure that, for every
pair of AGVs using the same block (resp. crossroad), one
and only one vehicle will cross before the other. Then, we
impose the constraint that will prevent collisions between
AGVs using the same block while performing their assigned
missions. This is formulated as follows :

∀ am ̸= an ∈ A,∀ bi ∈ B,∀ cp ∈ Ci, βi
m + ω

∑
j∈
←−
ABp

i

Xj,i
n

≤ αi
n +M.(4− Y i

m − Y i
n −Bi

m,n −
∑

j∈ABp
i

Xi,j
m ) (26)

The purpose of the constraint is to make sure that, in the
returned solution, if two AGVs use the same block, the
departure date of one of them is never equal to the arrival date
of the other. To better understand the formulation, it could be
seen as a big M constraint that imposes the aforementioned
date difference when three conditions are met :

(i) A pair of AGVs (am, an) use the same block bi which
translates to Y i

m = Y i
n = 1.

(ii) AGV am crosses block bi before AGV an which
translates to Bi

m,n = 1.
(iii) AGV am is leaving block bi while AGV an is entering

the same block, which translates to
∑

j∈ABp
i
Xi,j

m =∑
j∈
←−
ABp

i

Xj,i
n = 1.

When all these conditions are verified, the constraint is
equivalent to βi

m + ω ≤ αi
n, with ω being a strictly positive

value that behaves similarly to M as detailed earlier.
We formulate the same collision avoidance constraint for
crossroads, following exactly the same logic :

∀ am ̸= an ∈ A,∀ cp ∈ C,
ψp
m + ω ≤ ϕpn +M.(3− Zp

m − Zp
n − Cp

m,n) (27)

A complete ILP model was presented. It provides, for each
AGV performing a unique assigned mission, a succession



of blocks and crossroads that should be followed to travel
from the mission’s origin to its destination. Additionally, the
solved model returns, for each AGV, the arrival and departure
dates to and from all the blocks and crossroads that constitute
its route, and any potential parking durations in a block in
order to avoid collisions. In the next section, we propose to
perform numerical experiments using the formulated model
and present an analysis of the provided solutions.

IV. NUMERICAL EXPERIMENTS †

A. The FACT and FACT2 networks

For our experimental study, we consider the FACT and the
FACT2 networks proposed in [6]. The FACT network (Fig. 1)
is composed of 101 blocks linked through 36 crossroads. We
also note that the network contains 6 docking stations at the
bottom and 4 storage areas at the top. In the FACT2 network,
two similar FACT networks are placed side by side. However,
there is no detail in [6] on how to connect the two FACT
networks, so we choose to add 3 additional blocks to link the
external crossroads. Thus, the FACT2 network contains 205
blocks linked through 72 crossroads, 12 docking stations and
8 storage areas. In our experiments, the crossing durations are
discrete values randomly chosen between 10 and 15 seconds
for blocks and between 3 and 8 seconds for crossroads.

B. Experiment description

1) Instance generation: In order to test the performance
of the ILP model on the FACT2 network, we create an in-
stance generator that works as follows. To generate a mission,
a free block is firstly chosen within a docking station/storage
area. It represents the origin block of the mission. Then, a
destination block is randomly and exclusively chosen within
the four nearest docking stations/storage areas at the opposite
side of the origin block. This restriction is justified by
the fact that the service provider would make the same
realistic choices when assigning transportation orders to the
AGVs. Additionally, we restrict the instances to contain a
maximum of two (resp. three) mission origin blocks from
the same docking station/storage area, for examples involving
up to 16 AGVs (resp. examples involving 18 AGVs). This
is done in order to provide a realistic distribution of the
missions within the FACT2 network. The proposed instance
generator is used to create two types of instances, X u and
X d, where X represents the number of AGVs, u indicates
that the vehicles are following the same unique direction
between the docking stations and the storage areas or vice
versa, and d indicates that missions are performed following
both directions between the two. For our experimental study,
we generate 50 instances of each type X u and X d, with
X ∈ {4, 8, 10, 12, 16, 18}. This is done in order to enhance
the genericity and the quality of the numerical experiments
performed in [5] and [6]. The previous studies did not
comprehensively test the model across a wide range of
instances, including those with 10, 12, and 18 AGVs.

†The networks and the instances used for the experiments can be found
at: https://gitlab.laas.fr/roc/ghassen-cherif/integer-linear-programming-for-
automated-guided-vehicles-path-planning-in-container-terminals

TABLE I
RESULTS OF THE PROPOSED ILP MODEL

Instances % Opt Avg Cost Avg Runtime (s)
4 u 100% 482.7 9.81
4 d 100% 498.4 12.03
8 u 82% 902.3 388.39
8 d 86% 1019.8 234.93

10 u 52% 1167.8 739.30
10 d 62% 1288.9 1123.33
12 u 6% 1487.9 1824.06
12 d 12% 1392.3 1429.17
16 u 0% 2078.3 3600
16 d 0% 2235.8 3600
18 u 0% 2405.8 3600
18 d 0% 2627.1 3600

2) Experimental setup: The computational experiments
are conducted on a computer cluster composed of 11 nodes,
totaling 444 cores and 2 TB of RAM, with 32 GB of RAM
allocated for this experimental study. The various instances
are solved using IBM CPLEX version 22.1.1, accessed via
the DOcplex modeling library for optimization using Python
3.8.10. The runtime limit is set to one hour. For each set of
50 instances of the same type, we track the percentage of
instances solved to optimality, their average objective value
and their average runtime. It is important to note that the aim
here is to assess the maximum number of AGVs the problem
can be solved for, rather than to compare the quality of the
obtained solutions to those of [5] and [6].

C. Results and analysis

The results of our experimental campaign are shown in
Table I. The first column indicates the instance sets, while
the second presents the percentage of the 50 instances
solved to optimality. The third and fourth columns give,
respectively, the average cost and the average runtime (over
the instances solved to optimality for instances with 4, 8, 10
and 12 AGVs). For instances involving 16 AGVs or more,
the average cost is calculated over the feasible solutions
obtained, as no instance was optimally solved. Their results
are separated from the rest of the table using a dashed
line. For instances of both types X u and X d involving 4
AGVs, the solver is able to optimally solve 100% of the
considered examples. However, this percentage gradually
diminishes as the number of AGVs increases, reaching
only 6% (resp. 12%) for the 12 u (resp. 12 d) instance set,
while no instance involving 16 or 18 AGVs was optimally
solved. We note that X d instances present, on average, a
31.02% advantage over X u instances regarding the %Opt
metric. It’s also important to highlight that if an optimal
solution isn’t obtained, it means that either the instance
remains unsolved or a feasible solution is provided within
the maximum runtime for instances with up to 18 AGVs.
In terms of average runtime, we observe that it gradually
increases according to the number of AGVs, going from
9.81 s (resp. 12.03 s) for instances 4 u (resp. 4 d) to 1824.06
s (resp. 1429.17) for instances 12 u (resp. 12 d), with no
discernible advantage for an instance type over the other. In



Fig. 1. The FACT network [6]

comparison to the numerical experiments conducted in [6]
and [5], our experimental campaign utilized a larger set of
instances. This expansion adds depth and significance to
the results obtained from the numerical study. Additionally,
we were able to provide solutions for instances involving
up to 18 AGVs, whereas no solutions are provided for
instances involving more than 8 AGVs in [6], when using
the same solution method. Based on these results, we can
conclude that the proposed ILP approach is very efficient
when solving smaller instances of the 1MA problem, but is
increasingly challenged as instances’ sizes are increased.
As seen earlier in the introduction section, this struggle
is very common when using IP and MIP approaches to
solve combinatorial optimization problems, usually due to
the complexity and combinatorial explosion aspects that
characterize this type of problem.

V. CONCLUSION

Automating seaport operations has been a major lever
for improving their efficiency and competitiveness. This is
particularly true for the loading and unloading of ships,
where autonomous vehicles are increasingly being used for
transport operations within container terminals. In this work,
we proposed an ILP approach for the optimal collision-free
path planning of AGVs in container terminals organized
in blocks and crossroads. Thorough numerical experiments
involving various instances of the studied problem showed
that, while the method is efficient in solving small in-
stances, it struggles to scale for larger ones. Based on this
study, several avenues of research can be explored. These
may involve investigating decomposition methods to tackle
the combinatorial nature of the problem, devising heuris-
tic techniques for handling larger instances, or exploring
alternative approaches such as constraint programming. In
our future works, these methods will be implemented and
comprehensive comparative analyses of their effectiveness
will be carried out. Another research perspective would be
to investigate the more realistic problem of multiple missions
per AGV. For that, we intend to explore heuristic methods

where the problem is decomposed into multiple instances of
the 1MA problem, which will be sequentially solved using
the studied ILP model.

REFERENCES

[1] D. Liu, X. Wu, A. Kulatunga, and G. Dissanayake, “Motion co-
ordination of multiple autonomous vehicles in dynamic and strictly
constrained environments,” in 2006 IEEE Conference on Cybernetics
and Intelligent Systems. IEEE, 2006, pp. 1–6.

[2] Z. Zhang, Q. Guo, J. Chen, and P. Yuan, “Collision-free route planning
for multiple AGVs in an automated warehouse based on collision
classification,” IEEE Access, vol. 6, pp. 26 022–26 035, 2018.

[3] S. A. Fayazi and A. Vahidi, “Mixed-Integer Linear Programming for
Optimal Scheduling of Autonomous Vehicle Intersection Crossing,”
IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 287–299,
2018.

[4] T. Miyamoto and K. Inoue, “Local and random searches for dispatch
and conflict-free routing problem of capacitated AGV systems,” Com-
puters & Industrial Engineering, vol. 91, pp. 1–9, 2016.

[5] N. Danloup, B. Trouillet, T. Bourdeaud’huy, and A. Toguyéni, “Opti-
misation de tournées de véhicules dans un environnement portuaire,”
in GOL 2018 - International Conference on Logistics Operations
Management, Apr 2018, Le Havre, France., 2018.

[6] N. Danloup, B. Trouillet, A. Toguyéni, and T. Bourdeaud’Huy, “Ges-
tion d’une flotte de véhicules automatisés dans un environnement
portuaire,” in MSR 2019-12ème Colloque sur la Modélisation des
Systèmes Réactifs, Nov 2019, Angers, France, 2019.

[7] T. Nishi, Y. Hiranaka, and I. E. Grossmann, “A bilevel decomposition
algorithm for simultaneous production scheduling and conflict-free
routing for automated guided vehicles,” Computers & Operations
Research, vol. 38, no. 5, pp. 876–888, 2011.

[8] G. Cherif, B. Trouillet, and A. K. Toguyeni, “Modeling and routing
problems of automated port using T-TPN and Beam search,” in 2022
8th International Conference on Control, Decision and Information
Technologies (CoDIT), vol. 1. IEEE, 2022, pp. 1201–1206.

[9] T. Nishi and Y. Tanaka, “Petri net decomposition approach for
dispatching and conflict-free routing of bidirectional automated
guided vehicle systems,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 42, no. 5, pp. 1230–
1243, 2012.

[10] M. Harrison, Z. Yang, T. Nguyen, S. Kavakeb, J. Wang, and S. Bonsall,
“A TOPSIS method for vehicle route selection in seaports—a real
case analysis of a container terminal in North West Europe,” in 2015
International Conference on Transportation Information and Safety
(ICTIS). IEEE, 2015, pp. 599–606.

[11] M. Croucamp and J. Grobler, “Metaheuristics for the robot part se-
quencing and allocation problem with collision avoidance,” in Progress
in Artificial Intelligence: 20th EPIA Conference on Artificial Intelli-
gence, EPIA 2021, Virtual Event, September 7–9, 2021, Proceedings
20. Springer, 2021, pp. 469–481.


