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Collision Avoidance in Model Predictive Control using Velocity Damper

Arthur Haffemayer1,2,3, Armand Jordana4, Ludovic de Matteı̈s1, Krzysztof Wojciechowski1,
Florent Lamiraux1, and Nicolas Mansard1,2

Abstract— We propose an advanced method for controlling
the motion of a manipulator robot with strict collision avoidance
in dynamic environments, leveraging a velocity damper con-
straint. Unlike conventional distance-based constraints, which
tend to saturate near obstacles to reach optimality, the velocity
damper constraint considers both distance and relative velocity,
ensuring a safer separation. This constraint is incorporated
into a model predictive control framework and enforced as a
hard constraint through analytical derivatives supplied to the
numerical solver. The approach has been fully implemented
on a Franka Emika Panda robot and validated through experi-
mental trials, demonstrating effective collision avoidance during
dynamic tasks and robustness to unmodeled disturbances. An
efficient open-source implementation along examples are pro-
vided here: https://gepettoweb.laas.fr/articles/
haffemayer2025.html.

I. INTRODUCTION

Collision avoidance with dynamic obstacles is a long-
standing goal in robotics and has potential application in a
variety of fields [1], [2]. Over the past few decades, various
methods have been proposed to address this issue. Early
approaches, such as motion planning, primarily relied on
geometric techniques[3], [4]. However, those techniques are
challenging to deploy online, especially during dynamic mo-
tion [5]. On one hand, neural networks have been employed
to enhance motion planning [6], [7] or to learn policies with
reinforcement learning [8] and imitation learning [9]. On the
other hand, predicting the future robot motion avoiding the
obstacle opens the way to safe control with guarantee, much
needed in the industry or in human-robot interactions. This
is the way we explore here.

Model Predictive Control (MPC)[10] is an appealing
framework to efficiently plan online dynamic collision free
motions. By formulating the collision avoidance as a hard
constraint in the optimal control problem (OCP), MPC can
ensure safety with the predicted trajectory serving as an
explicable guarantee. Towards that goal, optimization-based
technique have been explored to solve collision avoidance.
Trajectory Optimization (TO) was used to filter the solution
given by the motion planner [11] or could be directly
used to generate optimal trajectories. [12] utilized covariant
Hamiltonian solvers to address collision avoidance, while
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Fig. 1: Collision Avoidance in real time on a torque con-
trolled manipulator arm using Model Predictive Control and
the velocity damper constraint.

[13] introduced a cost-based formulation of the collision
constraint, solved using sequential-quadratic programming.

As discussed in [14], the difficulty is to build a proper
barrier function to avoid self-collision with the stake of
obtaining both a satisfactory behavior of the robot and an
efficient solver performance to reach real-time implementa-
tion. From the first historical approach [15] of using potential
fields, which still remains active [16], several formulations
have been tried. The first milestones have been reached
with gradient-free solvers, combining a gradient-free Model
Predictive Path Integral Control (MPPI) [17] with Graphics
Processing Units (GPU) to perform online collision avoid-
ance. While this approach is capable of solving complex
problems in real time, the absence of gradient information
in the solver can be less efficient compared to gradient-
based methods in a well-defined environment [18]. Several
gradient-based OCP have also been proposed, either with
soft [19], [20] or hard [21] constraints, but none reaching
real-time capabilities able to unleash the MPC.

In our previous work [22], we used a distance-based
constraint to perform collision avoidance using MPC. This
constraint ensures that the distance between the robot and any
obstacle remains greater than a predefined safety distance.
While effective, this method can be overly conservative,
leading to suboptimal trajectories, particularly in environ-
ments with dynamic obstacles or complex robot geome-
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tries. Additionally, as the solver seeks optimal paths, it
tends to saturate the constraint, meaning that the robot may
approach obstacles at high speeds, posing potential risks
also observed in [12], [13]. To address these limitations,
the velocity damper constraint, introduced by [23], offers
a more flexible alternative. Rather than imposing a strict
distance threshold, the velocity damper adjusts the robot
speed as it nears obstacles, allowing for smoother and more
efficient motion while maintaining safety. This approach is
particularly beneficial in confined spaces, allowing the robot
to navigate closer to obstacles without sacrificing safety or
performance. It has also been widely applied in motion
planning [24], [25], aerial robotics [26], or even in humanoid
locomotion [27]. However, it had yet to be implemented in
an MPC framework, which implies to efficiently evaluate it
and its derivates.

In this work, we present a rigorous way to write the
velocity damper constraint with its derivatives necessary
to solve the problem. We then implement this formulation
into a numerical solver to optimize the robot trajectory
while dynamically avoiding collisions in real-time on an
MPC scheme. We validate the effectiveness of our con-
troller through hardware experiments on a torque-driven
manipulator, performing pick-and-place tasks in an obstacle-
rich environment while responding to physical perturba-
tions introduced by a human operator. To the best of our
knowledge, this is the first experimental demonstration of a
torque-controlled manipulator utilizing nonlinear MPC with
collision avoidance based on the velocity damper constraint,
formulated as a hard constraint and solved in real time
on a Franka Emika Panda robot. The results highlight the
practical significance of this approach: the robot exhibits
strong adaptability to dynamic perturbations, achieves pre-
cise target-reaching, and ensures compliance, particularly
when interacting with a human operator, all while effectively
avoiding obstacles and slowing near them if need be and not
saturating the distance between the obstacle and the robot at
high speed.

II. FORMULATION OF OBSTACLE AVOIDANCE PROBLEM

A. OCP formulation

The OCP formulation of the problem is the same as the
one described in the paper [22]:

min
x,u

T−1∑
t=0

ℓt(xt,ut) + ℓT (xT ) (1a)

subject to xt+1 = ft(xt,ut) ∀ 0 ≤ t < T, (1b)
ct(xt,ut) ≥ 0, ∀ 0 ≤ t < T, (1c)
cT (xT ) ≥ 0, (1d)

where xt = (qt,vt) is the state of the robot (joints config-
uration qt and joints velocity vt = q̇t), and ut = τt are the
torques of the joints; ft is the transition function representing
the discretized robot dynamics along the horizon of length T ,
given an initial state x0 (e.g. measured state). The variables
of the OCP are the state trajectory x = (x1, ...,xT ) and

Fig. 2: Velocity damper con-
straint

Fig. 3: Tangent ellipsoids at
the closest points of two
smooth collision geometries

the control trajectory u = (u0,u1, ...,uT−1). The functions
to be optimized are the running cost ℓt and the terminal
cost ℓT . Functions ct and cT represent the hard (inequality)
constraints at each time step. On the robot, this OCP is solved
at each control cycle along a receding horizon.

B. Distance-based collision avoidance constraint

As mentioned in Sec. I, collision avoidance is typically
enforced through inequality constraints that ensure a safe
distance between the robot and any obstacles in the environ-
ment. For each relevant pair of objects Bi, Bj , that may be in
collision and for each time discretization step t ∈ {1, · · · ,T}:

ct,i,j(xt) = dij(xt)− ϵ ≥ 0 , (2)

where dij(xt) is the distance between Bi and Bj when the
robot is in configuration qt, and ϵ is the safety margin.

Such formulations are effective in static environments but
may become overly conservative for fear of constraint satu-
ration or not adapted when dealing with dynamic obstacles.

III. VELOCITY DAMPER CONSTRAINT

A. Definition of the Constraint

The velocity damper constraint, introduced in [23] is a
method specifically designed to prevent collisions by modu-
lating the robot velocity as it approaches an obstacle. Unlike
the distance-based collision avoidance constraint defined in
Sec. II-B, the velocity damper constraint takes the speed of
the robot with regard to the obstacles and dynamically adjusts
the robot speed based on its proximity to them. This ensures
that the robot slows down as it nears a potential collision,
effectively ”damping” its velocity to zero when the distance
to the obstacle reaches a critical threshold.

The velocity damper constraint can be expressed as:

ḋ ≥ −ξ
d− ϵ

di − ϵ
, for d ≤ di (3)

Fig. 2 describes the different parameters. di is the influence
distance, the range within which the velocity damper con-
straint becomes active. As the robot approaches an obstacle
and enters this influence distance, the velocity damper begins
to slow down the robot to prevent high-speed approach near
the obstacle. ϵ is the security distance at which the robot must
stop, and ξ is a passive coefficient for adjusting convergence
speed. ϵ can be much smaller than the security margin ϵ of



the distance-based collision constraint because the constraint
allow the robot to go arbitrarily near the limit d = ϵ in a
finite time, but the component of the velocity normal to the
obstacle gets very small. Appendix II in [23] proves that
enforcing constraint (3) implies that Bi and Bj will never
collide.

B. Time derivative of the distance

For efficiency, we need to provide to the numerical solver
the derivative of the constraint with respect to the state x
of the robot. First, let us write the distance as the norm of
the vector linking the two closest points (x1,x2) belonging
respectively to two convex objects B1 and B2:

d(x1,x2) = ||x1 − x2|| (4)

The time derivative of the distance can be written as [23]:

ḋ = nT (vx1 − vx2) (5)

where n is the normal vector of the direction of the closest
points and vx1 and vx2 are the velocities at the points x1

and x2. Note that [23] mostly gave an intuition of the proof
of (4) based on geometric arguments, and a side development
below will give it analytically.

C. Differentiation of the constraint

Formulating (3) in OCP (1) implies to obtain its derivatives
with respect to q and v. As ḋ only depends on the normal
to the collision objects, we make the hypothesis that the
derivatives of ḋ only add a dependency to the collision object
curvatures around the closest points. We then proceed to the
differentiation by considering the tangent ellipsoids at the
closest points of each objects (see Fig. 3).

min
x1,x2

f(x1,x2) =
1

2
∥x1 − x2∥2 (6a)

s.t.
1

2
(x1 − c1)

TA1(x1 − c1) =
1

2
(6b)

1

2
(x2 − c2)

TA2(x2 − c2) =
1

2
(6c)

Matrices A1 and A2 are the matrices defining the rotation and
the lengths of the semi-axes of the ellipsoids. They can be
written as: Ai = RiDiR

T
i , i ∈ {1, 2}, where the matrices Di

are the constant diagonal matrices defining the shapes of the
ellipsoids and Ri belong to SO(3) and define the orientation
of the ellipsoids with regard to the world frame. Points x1

and x2 lie, respectively, on the boundary of ellipsoids 1 and
2. Points c1 and c2 are the centers of the ellipsoids. We write
θ = (c1, c2,R1,R2) and y = (x1,x2, λ1, λ2) For the given
problem, the Lagrangian is defined as:

L(y,θ) = 1

2
∥x1 − x2∥2

+
1

2
λ1

(
(x1 − c1)

TA1(x1 − c1)− 1
)

+
1

2
λ2

(
(x2 − c2)

TA2(x2 − c2)− 1
) (7)

where λ1 and λ2 are the Lagrange multipliers associated with
the constraints (6b) and (6c). Before discussing the limiting
assumptions of (6), we first present the expression for ḋ and
its corresponding derivatives.

In the case of equality constraints, the Lagrange conditions
are equivalent to the following conditions: Lx1(y

∗,θ) =
Lx2(y

∗,θ) = Lλ1(y
∗,θ) = Lλ2(y

∗,θ) = 0, or

(x1 − x2) + λ1A1(x1 − c1) = 0 (8a)
(x2 − x1) + λ2A2(x2 − c2) = 0 (8b)

(x1 − c1)
TA1(x1 − c1)− 1 = 0 (8c)

(x2 − c2)
TA2(x2 − c2)− 1 = 0 (8d)

where λ1 and λ2 are the Lagrange multipliers associated with
the constraints (6b) and (6c).

Note that, at optimality,

L(y∗,θ) =
1

2
d2. (9)

To obtain ḋ the time derivative of the distance, we assume
that both ellipsoids are moving: Ri and ci are time varying
values, and that xi minimize (6) for any time t. Let us
derivate the Lagrangian with respect to time. We note ḟ the
derivative of f with respect to time.

L̇ = Lx1
ẋ1 + Lx2

ẋ2 + Lλ1
λ̇1 + Lλ2

λ̇2

+ Lc1
ċ1 + Lc2

ċ2 + LR1
ω1 + LR2

ω2

(10)

The partial derivative with respect to a rotation matrix should
be understood as the tangent application, i.e. if f(R) is a
mapping from SO(3) to a vector space, for any time varying
rotation R(t),

ḟ = fR ω

where the angular velocity ω ∈ R3 is such that Ṙ = [ω]× R
with [ω]× the skew-symmetric matrix i.e. for any z [ω]× z =
ω × z. See [28] for a nice and rigorous introduction about
derivation on Lie groups from which we follow most of the
notations.

From the optimality condition, at y∗, we have Lx1
=

Lx2
= Lλ1

= Lλ2
= 0. Thus,

L̇ = Lc1
ċ1 + Lc2

ċ2 + LR1
ω1 + LR2

ω2 (11)

From (7) and (8b), we get

Lc1
= −λ1(x1 − c1)

TAT
1 = (x1 − x2)

T (12a)

Lc2
= (x2 − x1)

T (12b)

Recalling that A1 = R1D1R
T
1 and using the differentiation

rule on SO(3), we get

LR1
= λ1(x1 − c1)

T (A1 [x1 − c1]× − [A1(x1 − c1)]×)
(13)

Using again Property (8b) and the Jacobi Identity uT [v]× =
−vT [u]×, the expression simplifies to:

LR1
= cT1 [x2 − x1]× + xT

2 [x1]×

LR2
= cT2 [x1 − x2]× + xT

1 [x2]×
(14)



(a) Scene 1: Simple collision avoidance (b) Scene 2: Goal reaching in a box (c) Scene 3: Contact-to-contact task

Fig. 4: Simulation scenes. Yellow cubes are from the velocity damper, blue spheres are from the distance-based constraint.

Finally, differentiating (9) and using (11), we obtain

ḋ =
L̇
d
(y,θ) =

1

d
((x1 − x2)

T (v1 − v2)

+ (cT1 [x2 − x1]× + xT
2 [x1]×)ω1

+ (cT2 [x1 − x2]× + xT
1 [x2]×)ω2)

(15)

Reformulating, we find exactly the same form as (5):

ḋ =
(x1 − x2)

T

d
(ċ1 − ċ2)

− (x1 − c1)× ω1 + (x2 − c2)× ω2)

= nT (vx1 − vx2)

(16)

This corresponds to a complete analytical proof of the results
of [23].

D. Using the sensitivity to obtain the derivative of the speed
with respect to robot state

Although θ belongs to a Lie group, for simplicity, we
will refer to its time derivative as θ̇ = (ċ1, ċ2,ω1,ω2) and
denote the corresponding differential ∂θ. The derivative of
the velocity with respect to the state x = q,v of the robot
can be written as:

∂ḋ

∂q
=

∂ḋ

∂θ

∂θ

∂q
+

∂ḋ

∂θ̇

∂θ̇

∂q
(17)

where ∂θ/∂q is the concatenation of the Jacobians of B1

and B2 and ∂θ̇/∂q is the derivative of the body velocities
with respect to the robot configuration q. These Jacobians
are computed by forward kinematics, in our implementation
by using the Pinocchio library [29].

Let us denote by y∗(θ) the value of y that solves (7) and
L∗ the optimal value of L. Then, from (9), we have

L(y∗(θ),θ) = L∗(θ) =
1

2
d2

and by differentiating:

Lyy
∗
θ θ̇ + Lθθ̇ = dḋ = Lθθ̇

since from (8), Ly = 0, the velocity is simply ḋ = 1
dLθθ̇.

The derivatives of ḋ with respect to θ̇ can thus be formulated
as:

∂ḋ

∂θ̇
=

1

d
Lθ. (18)

and differentiating ḋ = L∗
θ/

√
2L we obtain

∂ḋ

∂θ
=

L̇θ

d
− L̇

d2
dθ =

1

d
L∗
θθθ̇ − 1

d2
Lθḋ. (19)

with:

L∗
θ =


x1 − x2

−(x1 − x2)
−(x1 − x2)× (x1 − c1)
(x1 − x2)× (x2 − c2)

 (20)

The Hessian L∗
θθ arises from the derivative of Lθ at y = y∗:

L∗
θθ = Lθyyθ + Lθθ|y=cst (21)

where:

Lθθ|y=cst =


0 0 0 0
0 0 0 0

− [x1 − x2]× 0 0 0
0 [x1 − x2]× 0 0

 (22)

and:

Lθy =


I −I 0 0
−I I 0 0

−X + XC1 −XC1 0 0
−XC2 X + XC2 0 0

 (23)

with X = [x1 − x2]×, XC1 = [x1 − c1]×, XC2 =
[x2 − c2]×. The two last columns being 0, we don’t need the
full yθ but only the derivatives with respect to the ellipsoids
centers. To obtain those derivatives, we use the results of
[30], [31] on the sensitivity analysis. Applying the implicit
function theorem on the problem, we obtain:

∇θy(θ) =

[
∇θx(θ)
∇θλ(θ)

]
= −(Lyy(θ)

−1Lyθ(θ)) (24)

where:

Lyy(θ) =


α −I3 γ 0

−I3 β 0 δ
γ 0 0 0
0 δ 0 0

 (25)

with α = I3 + λ1A1, β = I3 + λ2A2, γ = A1(x1 − c1),
δ = A2(x2 − c2). And:

Lyθ(θ) = Lθy(θ)
T (26)



Fig. 5: Scenario 2: Distance to the obstacle (velocity damper
constraint on the top and distance-based constraint on the
bottom).

Finally, using (26), (24) and (18), (19), we obtain the
derivatives of ḋ with respect to q. The derivative dḋ

dq̇ = dd
dq

is taken from [22].
Here, we have followed the intuition that the damper

for any smooth collision geometries can be obtained from
only considering the normal and the curvatures around the
closest points. Future work is to formally demonstrate this
intuition and to exploit it for geometries that only are approx-
imately smooth, like meshes of smooth objects. Extension
to nonsmooth or nonconvex objects is another active avenue
of research [32] which is out of the scope of this paper.
We have already empirically validated that computing the
damper from the tangent ellipsoids is effective by solving our
OCP with capsules. Another second limitation is to consider
equality constraints in (1), which only accurately capture the
distance when the objects are not penetrating each other. It
is sufficient when the OCP solver is guided by a third party
(e.g. a motion planner or a memory of motion). If the solver
also needs to explore candidate trajectories with colliding
objects, then problem (1) needs to be extended to signed
distance, e.g. using min-max optimization [23], which we
also let for a future research.

IV. EXPERIMENTATION

A. Setting up the OCP and the scenarios

To compare the two collision avoidance constraints, three
different tasks of goal reaching were devised with different
obstacle numbers and positions. The OCP costs are com-
posed of:

• State regularization cost:

ℓx(xt) = (xt − xt=0)
TQx(xt − xt=0) , (27)

• Goal reaching task cost:

ℓee(xt) = || log(T−1
goal · Tee(qt))||2 , (28)

Fig. 6: Scenario 3: Normal velocity of the robot to the
obstacle on the top and distance to obstacle on the bottom.

• Control regularization cost:

ℓu(xt,ut) = (ut − ugrav(qt))
TQu(ut − ugrav(qt)) ,

(29)
with Qx and Qu are the coefficients matrices of the state
and control penalization (hand-tuned diagonal matrices) and
Tgoal is SE(3) pose of the target.

The three scenarios are the following: a simple collision
avoidance, a bin-picking task-like in a box and a contact-to-
contact task. Fig. 4 provides an illustration of each setting.
The three scenarios have the same OCP where only the
weights of the costs and the pose of the target differ.

B. Comparison with distance-based Collision Avoidance

As mentioned before, a notable drawback of the distance-
based collision avoidance constraint is its tendency to satu-
rate, resulting in the robot staying very close to the collision
threshold defined in the OCP, without accounting for the
robot speed as it approaches the obstacle.

Through the different scenarios, we examine the collision
risk between the robot end-effector and an obstacle. Fig. 4
shows the trajectories generated by the two different con-
straints in the different scenarios. The blue spheres represent
the positions of the end-effector at each node of the trajectory
found by the OCP solver with the distance-based constraint,
while the yellow cubes, correspond to positions of the end-
effector through each node of the trajectory found using the
velocity damper constraint. The yellow ellipsoids depicted
on the robot represent the shapes used to compute the
collision constraints with the obstacles. To facilitate a clear
comparison, the safety threshold ϵ for the distance-based
constraint (2) was set to zero.

While the distance-based constraint is sufficient to prevent
collision, we see that the solver produces safer trajectories
with the velocity damper constraint, with non-zero distances
to the obstacle. It is also clear that disregarding the distance



Fig. 7: Distance of the end-effector robot to the obstacle (on
the top) and to the target (on the bottom).

to the obstacle leads to evident collision, as exhibited in Fig.
5.

Fig. 5 illustrates the distance between the end-effector
and the obstacles composing the box over the course of
the trajectory for the second scenario. In that case, we have
4 pairs of possible collisions. When only considering the
distance, the optimal motion saturates the collision, as shown
on the top of Fig. 5 while the velocity damper naturally leads
to a motion with a nice security margin, as shown on the
bottom of the Fig. 5.

Fig. 6 presents two metrics for Scenario 3: the velocity
of the end-effector normal to the closest points (top) and
the distance to the obstacle (bottom). In this scenario, the
robot begins its motion near the obstacle and must reach
a target that is also positioned close to the obstacle. As a
result, the trajectory starts and ends with a minimal clearance
between the robot and the obstacle. The path under the
distance constraint stays near the obstacle surface (which is
impractical), while the velocity damper approach allows the
robot to reach the target without significantly decreasing the
initial distance to the obstacle, maintaining safer clearance.

In the various scenarios tested, the distance-based con-
straint effectively prevents collisions, but exhibits the sat-
uration issue discussed earlier. Moreover, Fig. 5 highlights
the fast approaching velocity of the end-effector toward the
obstacles. In contrast, the velocity damper constraint not
only ensures collision avoidance but also allows the robot
to maintain a safer distance from obstacles. Additionally,
Fig. 6 shows that the velocity damper significantly reduces
the robot approach speed when nearing obstacles, enhancing
overall safety during operation.

C. Experimental Validation on the Real Robot

We implemented the velocity damper constraint on a real
7-degree-of-freedom torque-controlled Franka Emika Panda
robot, operating in real-time using an MPC framework. The

experimental setup is described as follows:
1) Experimental Setup: The experiment utilized a Franka

Emika Panda robot with 7 degrees of freedom, controlled
via torque inputs. The setup mirrors the one used in [22].
The MPC was implemented in C++ and executed on an
AMD Ryzen 9 5950x processor running at 3.4 GHz. For
constraint handling, we employed mim-solvers [33] with
crocoddyl [34], as used in the simulations presented
in Sec.IV-B. The robot dynamic model was characterized
using the inertial parameters from [35]. Control inputs were
computed at a frequency of 1 kHz, while the OCP was solved
at a frequency of 100 Hz.

2) Experimental validation: The setup of the OCP is the
same as the one presented in Scene 2. The end-effector of the
robot has to go in and out of the box while avoiding its walls.
To ensure sufficient computational margin during the solving
of the OCP, the collision avoidance constraint was applied
exclusively between the end-effector and the right side of
the wall. This selective constraint application was chosen
to balance efficiency with safety while maintaining real-
time performance. The motion is illustrated in Fig. 1. Fig.
7 plots the distance of the end-effector to the obstacle. The
video included highlights the highly dynamical and efficient
collision avoidance while remaining compliant to external
disturbance, along with movements in more complex and
dynamic scenes.

V. CONCLUSION

In this paper, we revisit the velocity damper constraint
in the context of MPC. Analytical derivatives were pro-
vided and implemented to ensure efficient integration with
numerical solvers. The approach was deployed on a torque-
controlled Franka Emika Panda robot. Experimental results
confirm the advantages of the velocity damper constraint
compared to the traditional distance-based control. More
specifically, the proposed approach maintains safer distances
from obstacles during dynamic tasks. This work reaffirms the
practical value of the velocity damper constraint in modern
robotics, bridges the gap with MPC and offers an updated
open-source implementation for the research community.

Future work will aim to extend this approach to all convex
primitives and to more complex environments, including
multiple dynamic obstacles and more intricate geometries,
while optimizing solver performance to manage the compu-
tational complexity of challenging scenarios efficiently.
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