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Efficient Evaluation of 2-D Collision Probability

Derivatives for Uncertain k-scaled Covariances: A

PcMax Case Study

Denis Arzelier*, Mioara Joldes�, and Matthieu Masson�

Abstract

This paper focuses on efficiently evaluating derivatives of the 2-D col-
lision probability, treated as a function of parameters, which appear as
linear forms in the entries of the covariance matrix. This boils down to
computing moments of the associated Gaussian measure restricted to a
disk. Specifically, we propose an optimization-based solution to comput-
ing the maximum collision probability when the covariance data is un-
reliable, implementing an alternative method to the traditional k-scaled
covariance approach. Preliminary results indicate our method’s potential
for improving the understanding of Pc’s validity as a measure of conjunc-
tion likelihood.

1 Introduction

The rapidly increasing number of near-earth Resident Space Objects (RSOs),
including a large proportion of space debris has been a strong incentive for the
development of Space Surveillance and Tracking (SST) applications. Indeed, the
last years have witnessed a great deal of effort on satellite conjunction risk anal-
ysis and reliable orbit collision risks assessment procedures are particularly vital
for maintaining the safety and sustainability of space operations in the future.
The data collected for these procedures (namely, relative positions of the two
objects involved in a conjunction) are uncertain leading the Owners/Operators
(O/O) of space assets and space agencies or organizations, to rely on the Prob-
ability of Collision (PoC) as a quantifiable metric of decision. When its value
exceeds some tolerance threshold, a maneuver is performed. As a consequence,
methods that incorporate a probabilistic representation of orbital uncertainties
and provide estimates of the collision likelihood were developed in the literature
in the last 20 years1–11 depending on the assumptions defining the encounter
model.
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Among those, the two-dimensional (2D) probability of collision (Pc) com-
putation is presently a fast, primarily analytical standard tool used by the vast
majority of conjunction assessment practitioners to estimate the likelihood of a
collision. Under the following three main assumptions: 1-) the collision dura-
tion is short enough to allow for a rectilinear relative motion; 2-) their relative
position uncertainty follows a 3d multivariate Gaussian distribution; 3-) the ve-
locities are not uncertain implying that the relative position covariance matrix is
time-invariant during the encounter, the Pc computation boils down to the inte-
gration of a two-dimensional Gaussian Probability Density Function (PDF) on
a disk of radius R (the spherical objects’ combined hard-body radius), centered
at 0. Besides their simplicity of formulation, the numerical methods1–7 designed
for the integration are computationally very fast and practical, explaining the
intense enthusiasm of its use by decision-makers in the space industries. Never-
theless, the accuracy of this computation heavily relies on a proper knowledge
of the parameters (i.e. the hard-body radius R, the 2 entries of the mean rel-
ative position vector and the entries of the 2 × 2 relative position covariance
matrix projected in the encounter plane) entering the final formula of the Pc.
For various reasons detailed in the literature12–15 and mainly related to the ac-
tual limitations of the orbit determination process of the covariance matrices,
these parameters may not completely characterize the uncertainty and errors
involved in the estimation of Pc.This situation is particularly illustrated by the
so-called dilution of the probability phenomenon for which detailed explanations
may be found in the references13,15,16 . In short, it may be observed that the
collision risk measured by Pc counter-intuitively decreases when the uncertainty
level (measured by the ratio of the covariance size over the miss distance, see
Figure 2 in15) is beyond some given value for which Pc reaches a maximum
PcMax, separating the robust region in which Pc is increasing from the dilution
region where Pc is decreasing. This can be interpreted as the maximum value
of the aforementioned integral Pc, when some of the parameters involved in its
calculation are poorly known or unreliable.

Several works12–15,17,18 addressed the problem of covariance realism and the
associated dilution phenomenon by resorting to variations of the ”k-scaling” (see
for instance the ”kp-ks method”17,19 implemented by Centre National d’Etudes
Spatiales) approach for covariance dilation and computation of PcMax. The
combined covariance matrix in the conjunction plane (alternatively the primary
and secondary covariance matrices or only the secondary covariance14) is scaled
by a set of factors belonging to some closed interval defined by a minimum and
a maximum value (typically 0.25 and 4 for the reference17) and the resulting
PcMax is computed and compared to a threshold for mitigation decision. The
numerical methods which aim at computing the PcMax roughly fall into two
categories. In 2005 S. Alfano proposed a closed-form approximation of the
PcMax by reducing the overall size of the covariance while maintaining its aspect
ratio and the event’s nominal miss distance. An implementation is reported for
the STK/CAT tool20 . It was pointed out in15 that operational experience
suggests that the underlying assumptions for this method may not be satisfied
in practice.
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Another approach (the so-called kp-ks method17,18), which takes into ac-
count the reshaping of the joint covariance via two scaling factors on the pri-
mary and secondary covariance matrices, is reportedly implemented by Cen-
tre National d’Etudes Spatiales (CNES) in the European Space Surveillance
and Tracking (EU SST) Support Framework19 . The impact of covariance un-
certainty on the probability of collision is analyzed by a brute force gridding
technique. A similar way of dealing with the dilution effect was implemented
also in the Conjunction Assessment and Risk Analysis Software Development
Kit (CARA SDK) of NASA1, by performing a logarithmic grid on the scaling
factors values which are then multiplied by the original covariance reported at
the Time of Closest Approach (TCA) for both objects (before the projection on
the encounter plane). An alternative14 method, dedicated to conjunction events
for which only one covariance matrix is known, is also implemented in CARA’s
software.

However, according to the present CARA’s best practices recommenda-
tions21 , ”no single set of best practices has emerged to govern how to address
conjunction events in this region.[...] Maximum Pc methods might be deployable
with current event densities but could not be sustained with the expected in-
creases that the Space Fence radar will bring;[...] As such, it is CARA’s present
recommended practice to treat the Pc, regardless of dilution region positioning,
as a durable assessment of collision likelihood for the purposes of considering
and selecting remediation actions”. Our main objective is to provide more sound
and well-grounded mathematical tools which allow for a deeper understanding
of what should be the best practices in these cases. Keeping these key points in
mind, the first contribution of this article is to show that the partial derivatives
of Pc, seen as a function of some parameters, which appear as linear forms in
the entries of the covariance matrix, can be efficiently computed. These deriva-
tives are expressed in closed-form as a linear combination of some moments
of the associated Gaussian measure restricted to the disk of radius R. If their
evaluation is needed in practice, one accurate (i.e. not using the basic finite
difference methods) evaluation of a partial derivative is roughly equivalent to 4
Pc evaluations, while the second order derivative accounts to 8 Pc evaluations.
Furthermore, we show that the methods6,22 based on the theory of so-called
holonomic or D-finite functions can be easily adapted to the evaluation of mo-
ments and by consequence to the derivatives evaluation. The second objective
is to show how the efficient evaluation of the Pc derivatives of first order (and
possibly of second order) can be used to leverage the numerical solving of opti-
mization problems involving the Pc such as the computation of PcMax.

We proceed by briefly recalling the notations and the basic assumptions
relevant to the Pc computation and to our analysis.

1The implementation is available in the distributed code https://github.com/nasa/CARA_
Analysis_Tools
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2 The 2D collision probability Pc between spher-
ical objects

The short-term encounter model for the computation of the probability of colli-
sion Pc between two objects (a primary object p, typically an active spacecraft,
and a secondary object s) considered as spheres of combined radius R is now
precisely defined and well understood in the literature.1–7,10,11 The derivations
of the various formulations of Pc rely on four main ingredients: 1) a list of
simplifying assumptions5,6 defining the type of encounter dealt with and the
possible mathematical derivations, 2) the encounter frame characterizing the
encounter plane at TCA (orthogonal to the relative velocity vector assumed to
be invariant in direction and module during the encounter), 3) the volume swept
out by the combined spherical object (a cylinder with its axis aligned along the
relative velocity vector), 4) an approximation based on the extension of the
swept volume allowing to compute Pc as the evaluation of the integral of the
a two-dimensional normal Probability Density Function (PDF) within a circle,
which is the projection of the hard-body on the encounter plane, instead of the
integral of a three-dimensional normal PDF evaluated within the initial swept
volume. These essential features and notations required for the derivations of
the formulation of the probability of collision Pc, relevant to the next section,
are now quickly recalled.

The so-called short-term encounter model, applies to cases with high relative
velocities assumed to be precisely known and the relative motion is approxi-
mated as linear and the position vectors of the primal and secondary follow a
constant Gaussian multivariate distribution at TCA (assumed to be 0) defined
as:

x0
p ∼ N3

(
µ0
p,Σ

0
p

)
, x0

s ∼ N3

(
µ0
s,Σ

0
s

)
. (1)

The above assumptions motivate the choice of introducing the so-called en-
counter frame, which has one axis along the relative velocity and is centered on
the mean position of one of the two objects. The plane containing the origin,
located at the mean position of the primary object p at TCA, orthogonal to the
relative velocity v0r = v0s − v0p is called the encounter plane. The basis vector
ez̃ is oriented along the relative velocity. The basis vector ex̃ belongs to the
encounter plane: it points towards the orthogonal projection of the mean rela-
tive position µ0

r of the relative vector r0 = x0
s − x0

p within the encounter plane.
Finally, the basis vector eỹ completes the right-handed system and thus belongs
to the encounter plane as well. In summary, one has

ez̃ =
v0r
∥v0r∥

, eỹ =
v0r × µ0

r

∥v0r × µ0
r∥

, ex̃ = eỹ × ez̃. (2)

The statistical characteristics (mean position vectors and covariance matrix)
of both objects at TCA are then expressed in this basis (encounter frame) via
a linear transformation which preserves the normal nature of their distribution.
The distribution of the relative vector r̃0 (at TCA, in the encounter frame) is
easily deduced as:
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r̃0 ∼ N3

(
µ̃0
r, Σ̃

0
r

)
,

µ̃0
r = µ̃0

s − µ̃0
p,

Σ̃0
r = Σ̃0

p + Σ̃0
s.

(3)

Let (x̃m, 0, z̃m) be the coordinates of the mean relative position µ̃0
r in the

encounter frame (where the ỹ coordinate is zero by construction). It is worth
noticing that, since the relative trajectory is rectilinear, x̃m is in fact equal
to the mean miss distance. Furthermore, since the relative motion is assumed
to be rectilinear along v0r during the conjunction, the calculation of the colli-
sion probability reduces to the integration of the aforementioned 3-dimensional
multi-normal distribution over a right circular cylinder domain (swept-volume
by the hard-body) and then reduced by integration on R with respect to the v0r
direction to the calculation of a 2-D integral in the encounter plane: the domain
of integration is a closed disk B̄((0, 0), R) centered at the origin of radius R.
The 2-D PDF involved in the probability of collision describes the distribution
of the relative position in the encounter plane, as illustrated on Figure 1.

x

y

combined
xm

level sets

R

disk

~

~~

Figure 1: Illustration of 2-D projection of the the hard-body and combined
covariances ellipsoids in the encounter plane.

Let Σ̃x̃ỹ be the covariance matrix of the relative coordinates in the encounter

plane (obtained by the first two lines and columns of the matrix Σ̃0
r). The

probability of collision can then be written as:

Pc =
1

2π
√
|Σ̃x̃ỹ|

∫
B̄((0,0),R)

exp

(
−1

2
[x̃− x̃m ỹ] Σ̃−1

x̃ỹ [x̃− x̃m ỹ]
T

)
dx̃dỹ. (4)

Equation (4) is one of the classical formulations commonly used in the liter-
ature for computing the short-term collision probability and several numerical
algorithms have been proposed for its evaluation2–7 . In Equation (4), the inte-
gral Pc clearly depends on the 5 parameters R, x̃m and the three independent
entries of the covariance matrix Σ̃x̃ỹ. The values affected to these parameters
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are the direct outputs of RSO tracking problems for which a proper represen-
tation of uncertainty is at stake. For instance, it is well-known that position
covariance matrices at TCA of the two RSOs may not accurately represent the
actual dispersion of position errors due to imperfect knowledge of the dynamic
behaviour of the debris or to oversimplifying assumptions used for the propa-
gation of uncertainty for instance. The next section focuses on characterizing
the sensibility of Pc to uncertainty affecting the covariance matrix Σ̃x̃ỹ in the
framework of k-scaled covariances and the computation of PcMax.

3 A Case Study - Covariance Scaling and Pc-
Max computation

In the so-called kp-ks approach developed by CNES (a variation around this
method is also implemented in CARA SDK), it is assumed that the covariance
Σ̃0

p, Σ̃
0
s ∈ R3×3 in Equation 3 are not precisely numerically known and, models

the distribution of the relative vector r̃0 (in the encounter frame) by:

r̃0 ∼ N3

(
µ̃0
r, Σ̃

0
r

)
,

µ̃0
r = µ̃0

s − µ̃0
p,

Σ̃0
r = kpΣ̃

0
p + ksΣ̃

0
s, kp > 0, ks > 0,

(5)

where (kp, ks) ∈ I are user-defined parameters, belonging to a specific range I.
Usually in practice one sets I = [0.25, 4] × [0.25, 4]19 . It follows that the 2-D
calculation of the collision probability now depends on these two parameters:

Pc(kp, ks) =
1

2π
√
|Σ̃x̃ỹ(kp, ks)|

∫
B̄((0,0),R)

exp

(
−1

2
ξΣ̃x̃ỹ(kp, ks)

−1
ξT

)
dx̃dỹ,

(6)
where ξ = [x̃− x̃m ỹ].

Assuming a uniform distribution of values for these two parameters in the
interval I, a grid of Pc values is then built and a PcMax may be identified which
is compared to the Pc threshold defining the activation of a mitigation action
from the active asset. Different variations revolving around this very same idea,
may be found in the CARA SDK and in the references13,14 . Formally, the
problem of computing PcMax in this context resorts to solving the following
optimization problem:

max
(kp,ks)∈I

Pc(kp, ks). (7)

In this work, we propose a new tractable mathematical reformulation, which
allows for an efficient numerical solving of Problem (7) by standard numeri-
cal methods. The key observation is that the partial successive derivatives of
the function Pc(kp, ks) with respect to these two parameters can be efficiently
computed. In the next subsection we show how the gradient of the function
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Pc(kp, ks) can be efficiently numerically evaluated. Firstly, we provide a closed-
form formula which depends on few moments (4) of the Gaussian measure re-
stricted to the disk corresponding to Equation (4). Secondly, we briefly discuss
how the theoretical ground laid in our previous work6,22 allows for an efficient
evaluation of the required moments.

3.1 Explicit Gradient Formula for Pc

Firstly, let us fix some notations. The covariance matrix is a real symmetric
positive definite 2-by-2 matrix, whose entries are denoted by

Σ̃x̃ỹ(kp, ks) =

[
kpsp1 + ksss1 kpsp2 + ksss2
kpsp2 + ksss2 kpsp3 + ksss3

]
, (8)

where spi, ssi, i = 1, . . . , 3, are given corresponding entries in the upper 2-by-2
part of the transformed primary and secondary covariance matrices appearing
in Equation (5). Denoting the determinant of Σ̃x̃ỹ(kp, ks) by

D(kp, ks) := −(kpsp2 + ksss2)
2 + (kpsp1 + ksss1)(kpsp3 + ksss3), (9)

and

Sp :=

[
sp3 −sp2
−sp2 sp1

]
, Ss :=

[
ss3 −ss2
−ss2 ss1

]
, (10)

the inverse Q(kp, ks) of Σ̃x̃ỹ(kp, ks) becomes by straightforward calculation

Q(kp, ks) := Σ̃x̃ỹ(kp, ks)
−1

= D(kp, ks)
−1

(kpSp + ksSs) . (11)

Then, for the quadratic form appearing in the exponential of Equation (4),
denoted for simplicity by f : I → R, I ⊂ R2, f(kp, ks) := −(ξQ(kp, ks)ξ

T )/2,
the gradient can be computed in explicit form as follows (the equations omit the
explicit dependence on the parameters for simplicity and the partial derivative
is denoted by ∂):

∇f := D−1/2

[
(∂kp

D)ξQξT − ξSpξ
T

(∂ks
D)ξQξT − ξSsξ

T

]
= −D−1

[
(∂kp

D)f + ξSpξ
T /2

(∂ks
D)f + ξSsξ

T /2

]
,

(12)
and

∇2f = 2D−2f∇D(∇D)T −D−1f∇2D +
D−2

2

[[
ξSpξ

T

ξSsξ
T

]
(∇D)T +∇D

[
ξSpξ

T

ξSsξ
T

]T
]
.

(13)

Similarly, for the quotient multiplying the integral in Equation (6), denoted by
g(kp, ks) := D(kp, ks)

−1/2, one has:

∇g := −D−3/2

2

[
(∂kp

D)
(∂ks

D)

]
= −D−3/2

2
∇D, (14)
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and

∇2g =
D−3/2

2

(
3
2D

−1∇D(∇D)T −∇2D
)
. (15)

Using the above equations, one can compute the gradient of Pc(kp, ks) in
Equation (6) with Leibniz rule (since we are allowed to differentiate under the
integral sign):

∇Pc :=
Pc

g
∇g +

g

2π

∫
B̄((0,0),R)

exp(f)∇fdx̃dỹ,
(16)

where the convention that the integral is taken component-wise is made.
The key step is how to efficiently evaluate the integral appearing in Equa-

tion (16). With this in mind, let us analyze only the first integral, involved in
the derivative with respect to kp, since the second one is similar. One observes
in Equation (12) that

∂kpf = D−1/2
(
(∂kpD)ξQξT − ξSpξ

T
)
,

is a bivariate polynomial of total degree 2 with respect to the variables (x̃, ỹ)
, which can be written symbolically using the notations in Equation (4) in the
form:

∂kp
f := cp20(x̃− x̃m)2 + cp02ỹ

2 + cp11(x̃− x̃m)ỹ, (17)

where the coefficients cpij (and similarly csij corresponding to ∂ksf) are identi-
fied as rational fractions depending on the parameters kp and ks.

It follows that the evaluation of ∇Pc (at given values of kp and ks) mainly
depends on the evaluation of the moments of order at most 2 of the bivariate
Gaussian measure (restricted to the disk of radius R) appearing in Equation (4).
Formally, the required moments mij are defined by:

mij :=
g

2π

∫
B̄((0,0),R)

(x̃− x̃m)iỹj exp

(
−1

2
[x̃− x̃m ỹ]Q [x̃− x̃m ỹ]

T

)
dx̃dỹ.

(18)
Finally, Equation (16), becomes

∇Pc :=
m00

g
∇g +

[
cp20 cp02 cp11
cs20 cs02 cs11

]
[m20 m02 m11]

T
. (19)

Following the same lines, an explicit expression for the Hessian matrix of Pc is
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deduced:

∇2Pc :=
Pc∇2g

g
+

1

2π

∫
B̄((0,0),R)

exp(f)∇f(∇g)Tdx̃dỹ + · · ·

∇g

2π

∫
B̄((0,0),R)

(∇f)T exp(f)dx̃dỹ + · · ·

g

2π

∫
B̄((0,0),R)

exp(f)
(
∇2f +∇f(∇f)T

)
dx̃dỹ

=
m00∇2g

g
+ Cm

(∇g)T

g
+

(∇g)

g
mTC + · · ·[

∂C

∂kp
m

∂C

∂ks
m

]
+ C

 m40 m22 m31

m22 m04 m13

m31 m13 m22

CT ,

(20)

where C =

[
cp20 cp02 cp11
cs20 cs02 cs11

]
, m = [m20 m02 m11]

T
, and

∂C

∂∗
is the matrix

which entries are the partial derivatives of the entries of C with respect to kp or
ks. Provided that the required moments can be efficiently evaluated, numerical
values of the gradient are available, which allow for the application of standard
numerical optimization methods to compute a good approximation of PcMax.

Remark 1 Closed-form expressions for the Hessian matrix could be used in
second order optimization methods (quasi-Newton methods for instance).

3.2 Moments Evaluation

Let us now focus on the efficient numerical evaluation of moments of the form (18).
The theoretical framework based on Laplace Transform and the class of so-called
holonomic functions (solutions of linear differential equations with polynomial
coefficients) developed in details in6,22 can also be used in this similar case. For
completeness, we briefly recall the technique and use it for the moment m11:

m11 :=
D−1/2

2π

∫
B̄((0,0),R)

(x̃− x̃m)ỹ exp

(
−1

2
[x̃− x̃m ỹ]Q [x̃− x̃m ỹ]

T

)
dx̃dỹ.

(21)

� Step 0: Perform a rotation to the principal axis of the covariance matrix in
the encounter plane. The new coordinates, denoted (x̂, ŷ), are respectively
along the major and the minor axis of the ellipse defined by the quadratic
form in the exponential function of Equation (21). Furthermore, regard
m11 as a function of R, all the other parameters being fixed. Denote by
σ̂x and σ̂y the standard deviations associated to the new coordinates. The
integral to evaluate is equivalent to the following one:
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h(R) :=
1

2πσ̂xσ̂y

∫
B̄((0,0),R)

(x̂−x̂m)(ŷ−ŷm) exp

(
−1

2

(
(x̂− x̂m)2

σ̂2
x

+
(ŷ − ŷm)2

σ̂2
y

))
dx̂dŷ.

(22)

� Step 1: Laplace Transform. A closed-form expression of the Laplace trans-
form Lh of h(R) := m11(R) may be easily obtained as:

Lh(z) =

∫ +∞

0

exp(−zζ)h(ζ)dζ

=
exp

(
−z

(
x̂2
m

2zσ̂2
x+1

+
ŷ2
m

2zσ̂2
y+1

))
z
√

2zσ̂2
x+1

√
2zσ̂2

y+1
· 4σ̂2

xσ̂
2
yx̂mŷmz

(2zσ̂2
x+1)(2zσ̂2

y+1) , for all Re(z) ≥ 0.

(23)
The reader will identify the first term of the above product with the
Laplace transform of the Pc. This gives the intuition that the Laplace
transform for the moments correspond to the Laplace transform of the Pc
multiplied by a rational fraction.

� Step 2: From the closed-form of the function h, one can infer that h and
therefore m11 are so-called holonomic functions with respect to all the
parameters involved (that is, solutions of sufficiently many linear homo-
geneous differential equations with polynomial coefficients).

� Step 3. At this point, two main ideas for obtaining a numerical approx-
imation may be considered. They were analyzed in detail in6,22 for the
computation of the 2D Pc. Either, the aforementioned Laplace transform
is expanded in a Laurent series on which a term-by-term application of the
inverse Laplace transform provides a convergent power series expansion.
Alternatively, the inverse Laplace transform formula leads to a complex-
variable integral, which is evaluated by the so-called saddle-point method.

It is important to remark that the moments mij are holonomic functions (with
respect to all the parameters involved) and can be evaluated with the same com-
putational complexity as the original integral for the 2D Pc with the methods
proposed in6,22 .

3.3 Optimization Methods for Problem 7

Given that gradient information is available via efficient numerical evaluations
of moments, Problem 7 can be solved with classical gradient descent related
methods. In fact, for the case of holonomic functions, this approach was already
applied in some different statistics problems and it is known under the name
of holonomic gradient method (HGM). For instance, it makes use of holonomic
systems of differential equations for evaluating normalization constants of non
normalized probability distributions23 or it gives a method to find maximal
likelihood estimates in certain cases24 . It uses however rather heavy computer
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algebra machinery so, for the purpose of this work, we focused on a less sharp
technique, by doing pen-and-paper differentiation, since our problem depends
only on two parameters. The preliminary results presented in the next section
solve Problem 7 with the fmincon routine of Matlab©, using an interior point
method to show its feasibility. Nevertheless, the final objective is to go beyond
these preliminary results and to provide an in-house method based on the HGM
approach.

4 Numerical Tests

Table 1 compares the results obtained with the optimization procedure fmincon
(with the default options: interior point algorithm, with optimality tolerance of
1e− 6 and step tolerance 1e− 10) of Matlab©2016a with the available CARA
SDK code, on 5 test cases extracted from the CARA Analysis Tools package1

(one of the 6 cases tested in their code is not publicly available). Firstly, we
consider that only the primary covariance is scaled and report results on rows
4-7 in the table, while only the secondary covariance is scaled for rows 8 to 11.
Finally, we suppose that both the primary and secondary covariance matrices
are scaled.

In our code, the range for the parameters is fixed to (kp, ks) ∈ [0.0625, 4]×
[0.0625, 4], while the results extracted from running the CARADilutionMaxPc.m
code, are initialized with (kp, ks) ∈ [0.25, 4]× [0.25, 4] and a tolerance of 1e− 6.
Note that in the CARA SDK code, the initial parameter range is not fixed
as a constraint, but may be expanded iteratively. We chose to implement the
computation of PcMax as a constrained optimization problem, with a larger
initial feasible box. Furthermore, the current CARA SDK test suite uses the
same coefficient scaling factor for both the primary and secondary to check for
dilution.

PcMax, the obtained optimal solutions, as well as number of iterations and
functions evaluations is reported for comparison for each optimization problem.
Similarly to the CARA code, a case is considered diluted if the covariance scaling
is less than 1 and the ratio between the PcMax/Pc is greater than 10−3, which
implies that all the tested cases are representative as diluted ones. One can
observe that solving the formulated constrained optimization method requires
roughly 8 or 9 times less function evaluations and roughly the same number of
iterations in order to reach PcMax that are similar to CARA’s (with one or 2
significant digits) in all cases except for the degenerate case when the optimal
solution converges to 0. For this situation, one is likely to obtain a specific
routine which identifies and excludes it from the general screening by using the
obtained information about the derivatives at zero.

1https://github.com/nasa/CARA_Analysis_Tools, commit no b9a92b6, updated July
2024.
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Test Cases
Case 1 Case 2 Case 3

fmincon CARA fmincon CARA fmincon CARA
Pc 0.4202 3.0218e− 3 2.6515e− 3

PcMax(kp) 0.4555 0.4578 3.0253e− 3 3.0254e− 3 2.7357e− 3 2.7416e− 3
k∗p 0.0625 8e− 6 0.0879 6.75e− 4 0.0627 8e− 6
Iter 11 10 12 10 15 10

FunEval 27 152 28 152 46 152
PcMax(ks) 0.7462 0.7905 0.0169 0.6830 0.0162 0.0867

k∗s 0.0625 4.16e− 7 0.0625 1.33e− 11 0.0625 8.63e− 4
Iter 12 12 14 19 14 8

FunEval 28 184 30 296 30 148
PcMax(kp, ks) 0.8957 1 0.01707 0.999 0.01708 0.0909

(k∗p, k
∗
s) (0.0625, 0.0625) (0.0048, 0.0048) (0.06597, 0.0625) (1.26, 1.26)e− 7 (0.0629, 0.0625) (8.68, 8.68)e− 4

Iter 18 7 23 14 20 9
FunEval 58 132 72 243 68 148

Case 5 Case 6
fmincon CARA fmincon CARA

Pc 0.0017 0.11325
PcMax(kp) 0.0019 0.0019 0.18248 0.1911

k∗p 0.06254 1.82e− 6 0.0625 6.4521e-04
Iter 12 11 11 12

FunEval 29 168 31 184
PcMax(ks) 0.0108 0.02 0.1564 0.1606

k∗s 0.0625 2.16e− 8 0.0625 0.0014
Iter 15 14 11 11

FunEval 35 216 29 168
PcMax(kp, ks) 0.0213 0.999 0.4789 0.9662

(k∗p, k
∗
s) (0.0625, 0.0625) (4.14, 4.14)e− 6 (0.0625, 0.0625) (0.0025, 0.0025)

Iter 24 12 19 7
FunEval 79 213 62 131

Table 1: Results for the test cases available in CARA SDK anal-
ysis tool. Test number k corresponds to CDMs available in the
SampleCDMs/OmitronTestCase Test0k*.cdm.
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5 Conclusion

The focus of this paper was on how to efficiently evaluate derivatives of the
so-called 2D collision probability Pc seen as a function of parameters which ap-
pear linearly in the covariance matrix. We showed that this boils down to the
evaluation of some moments of the associated Gaussian measure restricted to
the disk. This property allows for the efficient numerical evaluation of the gra-
dient of Pc (possibly higher derivatives like the Hessian matrix), which in turn
opens the way for solving associated optimization problems via classical numer-
ical techniques. In particular, we focused on the computation of the so-called
maximum collision probability PcMax, when the covariance information for the
secondary and/or primary objects at TCA is not reliable. We implemented an
optimization-based alternative method for the classical kp-ks method, which is
usually implemented by a brute-force griding approach in operational software
of NASA or CNES. Our preliminary results show the potential of our prototype
method and pave the way for a better understanding of the Pc’s validity as a
measure of conjunction likelihood.
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