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Impulsive thrust collision avoidance for

long-term space encounters

Matthieu Masson1, Christian Artigues1, Denis Arzelier1,
Fabrizio Dabbene2, Mioara Joldes1, Martina Mammarella2,

Federica Paganelli Azza3 *��§

Abstract

This paper investigates how chance-constrained optimization tech-
niques can be applied to the problem of collision avoidance between an
active satellite and a passive space debris. The goal is to minimize the
fuel consumption needed to perform evasive maneuvers reducing the
collision probability below a given threshold. Specifically, we focus on
the long-term collision avoidance problem and we propose two different
methods, i.e., a scenario approach and a novel direct convex relaxation
approach, to optimize the avoidance maneuvers while enforcing con-
straints on the cumulative probability of collision. The performances of
these approaches are compared with a risk-selection method, and the
results highlight that the direct approach is competitive with the exist-
ing methods for long-term encounters while the scenario-based method
is promising for future applications in the field of spacecraft collision
avoidance.
Keywords: Aerospace, Collision avoidance maneuver, Optimization,
Uncertain systems

1 Introduction

The rapid expansion of human activity in space raises multiple concerns,
mainly related to the accumulation of space debris and the impelling need
to establish some “norms of behavior” for satellite Collision Avoidance Ma-
neuvers (CAM), as discussed in [1]. According to the Space debris mitigation
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guidelines [2], during the operational (launch, mission and disposal) phases
of spacecraft, the probability of accidental collision with known objects dur-
ing the orbital lifetime should be estimated and limited, and whenever a
potential collision is detected from available orbital data, on-orbit avoid-
ance maneuvers should be considered.

The uncertain nature of the data collected to assess the risk of a collision
has urged the Owners/Operators of space assets to rely on the probability
of collision as the main parameter of decision. When its value is above some
tolerance threshold (typically 0.001 or 0.0001), a plan of evasive maneuvers
has to be decided and performed. However, the nature of the forthcoming
conjunction has to be precisely characterized in order to design the most
relevant series of maneuvers. Two main models — the short-term and the
long-term encounters — have been widely accepted and utilized in the field
of Space Situational Awareness [3].

The long-term encounter model, studied in this paper, is classically de-
fined in the literature as an encounter between two Residents Space Objects
(RSOs) for which the time interval of close approach is significant enough
when compared to their corresponding orbital periods [4], [5]. Typically,
long-term encounters occur at low relative velocity, inducing an additional
complexity for the risk evaluation used in the CAM computation. Moreover,
unlike the so-called short-term encounters [6], the relative motion during the
conjunction can no longer be assumed to be rectilinear (a straight line) and
the event is not supposed to be instantaneous.

If several approaches for the systematic synthesis of CAM exist for the
wider class of short-term encounters, the literature is relatively poor con-
cerning the other class. Indeed, one may mention the references [7] and
[8] which end up respectively with a linear programming and a mixed inte-
ger linear programming formulation of different kinds of collision avoidance
problems. In particular, the last reference recasts the CAM problem as a
chance-constrained fuel minimization problem and replaces the cumulative
(or joint) non collision constraint by a conjunction of individual constraints
based on instantaneous collision probabilities enforced on a time grid. Fi-
nally, the authors use a risk selection relaxation to obtain a deterministic
mixed integer linear programming problem solved by a classical big-M tech-
nique.

Starting from this same initial setting for the CAM problem, we pro-
pose, first, a new direct approach that allows to circumvent the conservative
risk selection convexification by computing explicit expressions of the prob-
abilistic constraints and of their gradients. This result is obtained at the
expense of a well-chosen polyhedral approximation of the forbidden region.
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The obtained CAM problem can then be tackled with standard numerical
tools of convex optimization. Secondly, the standard scenario approach [9]
is applied to the selected problem by sampling also the time parameter and
properly convexifying the collision avoidance region using a rotating hyper-
plane tangent to the forbidden region.

Notation Given integers a ≤ b, we denote by Ja, bK the set of integers

{a, . . . , b}. The function erf(x) = 2√
π

x∫
0

e−s2ds defines the Gauss error func-

tion while the function

1t≥t1(t) =

{
0 if t < t1
1 if t ≥ t1

is the indicator function of the subset [t1,+∞).

2 A chance-constrained formulation of the impul-
sive collision avoidance problem

2.1 Linearized orbital dynamics for long-term encounters

This section focuses on the mathematical description of the framework re-
lated to a (possible) encounter between an active satellite, called primary
(p), and a (passive) debris, called secondary (s), over a time interval I =
[t, t̄].

Formally, to describe the dynamics of the two RSOs during the maneu-
ver, the following simplifying assumption is made.

Assumption 1 (Linearized relative dynamics) During the time inter-
val I defining the encounter, the relative distance between p and s with
respect to a given reference orbit is small compared with their respective dis-
tance to Earth.

Assuming that the ballistic motion of the two RSOs is Keplerian, their
equations of motion can be linearized around the Keplerian primary’s refer-
ence orbit, and formulated via the usual Cartesian coordinates in a moving
Local Vertical Local Horizontal (LVLH) orbital frame centered in the pri-
mary object, rotating with its angular velocity and such that the z-axis
points towards Earth, the y-axis is orthogonal to the orbital plane and op-
posite to the angular moment, and the x-axis completes the right-hand triad
[10].
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The set of linearized equations of motion are known as the standard
Tschauner-Hempel (or Lawden) equations [11], with the corresponding Yamanaka-
Ankersen’s state transition matrix [12] for elliptic orbits.

Let us consider the state vector Xp/s(t) ∈ R6, containing the position
rp/s(t) ∈ R3 and velocity vp/s(t) ∈ R3 of the primary (or secondary) body
in the LVLH frame, and let us introduce the state transition matrix Φ(·, ·).
Then, the orbital dynamics of the secondary body can be defined as

(1) Xs(t) = Φ(t, t)Xs,

where Xs
.
=Xs(t) is the initial condition for the secondary.

Unlike the secondary, the primary is actuated and can use a high-thrust
propulsion to modify its trajectory. We rely on the following assumption
[13] to define its orbital dynamics.

Assumption 2 (Impulsive approximation of high-thrust) The primary
satellite performs impulsive maneuvers, relying on a high-thrust propulsion
system, generating at pre-specified time instants ti ∈ I an instantaneous
velocity increment ∆Vi ∈ R3 expressed in the LVLH frame, assuming that 6
orthogonal thrusters are aligned to the LVLH frame axis [14], such that the
primary orbital dynamics over the time interval I can be formulated as

Xp(t
+
i ) = Xp(t

−
i ) +B1∆Vi, with B1 =

[
03×3 I3

]T
.

Let us assume that m impulsive evasive maneuvers are performed at the
instants t ≤ t1 ≤ · · · ti ≤ · · · tm ≤ t. Then, for a given t ∈ I and after k
maneuvers, the state vector of the primary can be defined as typically done
in the rendezvous framework (see e.g., [8], [15]) by:

(2) Xp(t) = Φ(t, t)Xp +
∑

i∈{1,...,k}

Φ(t, ti)B1∆Vi,

where t is such that t ≤ tk ≤ t ≤ tk+1 ≤ tm = t.
As discussed later on, the definition of the collision involves the relative

position r(t) of the primary p with respect to the secondary s. It is therefore
natural to express their relative state vector in terms of the transition matrix
and of the sequence of m impulsive controls as follows

(3) X(t) = Xp(t)−Xs(t) = Φ(t, t)X + C(t)∆V,

with X
.
= X(t), ∆V = [∆V T

1 . . . ∆V T
m ]T and

C(t) = [1t≥t1(t)Φ(t, t1)B1 . . . 1t≥tm(t)Φ(t, tm)B1].
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Even though the dynamics of p and s are assumed to be perfectly known,
various sources of inaccuracies (e.g., limitations of the ground-based sensors
and of the orbital propagators, neglected orbital perturbations) prevent a
perfect prediction of their state kinematic vectors at time t. A usual way to
partially capture this uncertainty is to assume that the initial state vectors(
Xp

.
= Xp(t), Xs

.
= Xs(t)

)
follow independent 6-dimensional Gaussian dis-

tributions, i.e., Xp/s ∼ N6(µXp/s
,ΣXp/s

) [16]. Then, from Assumption 1 it

follows that ∀ t ∈ I, Xp(t) and Xs(t) are Gaussian vectors:

(4)
Xp(t) ∼ N6(µXp(t),ΣXp(t)),
Xs(t) ∼ N6(µXs(t),ΣXs(t)),

with mean vectors and covariance matrices given by

(5)

µXp(t) = Φ(t, t)µXp
+ C(t)∆V,

µXs(t) = Φ(t, t)µXs
,

ΣXp(t) = Φ(t, t)ΣXp
Φ(t, t)T ,

ΣXs(t) = Φ(t, t)ΣXs
Φ(t, t)T .

As a consequence, the relative state vector X(t) is also a Gaussian vector
X(t) ∼ N6(µX(t),ΣX(t)) with mean value µX(t) = µXp(t)− µXs(t) and co-
variance matrix ΣX(t) = ΣXp(t)+ΣXs(t). Analogously, the relative position
vector r(t) is defined by a Gaussian vector as

(6)

r(t) ∼ N3(µr(t),Σr(t)),

µr(t) = B2µX(t),

Σr(t) = B2ΣX(t)BT
2 ,

with B2 =
[
I3 03×3

]
.

2.2 Probabilistic characterization of the collision

Checking a priori if a collision occurs at a certain time t requires a geomet-
rical criterion based on the shape and the orientation of both p and s. First,
we state a conservative but standard assumption [16, 3] that enables us to
neglect the attitude (orientation) of both objects.

Assumption 3 (Spherical bodies [3]) Both the primary and the secondary’s
shape are approximated by spheres of known radius Rp and Rs, respectively.

Remark 1 Note that Assumption 3 is usually necessary also because the
geometry of s is often poorly known.
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Based on Assumption 3, we can introduce a first general definition of a
collision between p and s.

Definition 1 (Collision) A collision between the primary body p and the
secondary body s occurs in the interval of interest I if there exists a time
t ∈ I such that their relative distance r(t) is lower than the so-called hardbody
radius, defined as Rc = Rp +Rs, i.e., ∥r(t)∥2 ≤ Rc.

From Definition 1 and given the stochastic characterization of the rel-
ative vector r(t) in (6), we have that the collision event considered in this
framework is a random event characterized as such by a probability of colli-
sion.The objective is to optimize the sequence of impulsive maneuvers while
upper-bounding the probability of collision or, equivalently, enforcing a con-
straint on the collision probability for the primary object to stay below a
given threshold ε. Such constraint can be captured by chance constraints of
the form

(7) P
(
sup
t∈I

g(t,∆V,X) ≥ 0
)
≤ ε,

with g(t,∆V,X)
.
=R2

c −∥r(t)∥22. Let us now introduce the concept of forbid-
den region.

Definition 2 (Forbidden region) For a selected time interval I, the for-
bidden region V is defined as the set of initial conditions X leading to a
collision for some t ∈ I, i.e.,

(8) V =
{
X ∈ R6 | ∃t ∈ I such that ∥r(t)∥22 ≤ R2

c

}
.

From Definition 2, the chance constraint (7) becomes:

(9) Pc
.
=P (X ∈ V) =

∫
V
N6

(
X;µX ,ΣX

)
dX ≤ ε.

The probability Pc is known as the cumulative collision probability [17],
which can be reformulated as a 3D integral under few restrictive assumptions
on the encounter as detailed in [16], and by relaxing the most stringent
assumptions involved in the classical short-term formulation (see e.g., [3],
[5], [18]).

Remark 2 Note that the formulations (9) and (7) are equivalent and both
will be used thereafter to describe the non-collision constraint.
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2.3 The collision avoidance optimization problem

In this section, we define the collision avoidance problem as a chance-
constrained optimization problem. When designing a collision avoidance
maneuver, several factors come into play. The reduction of fuel consump-
tion is of paramount importance in order to extend as far as possible the
operational lifetime of the active asset.

Assuming 6 ungimbaled impulsive thrusters rigidly mounted on each
face of the primary, the fuel consumption required to perform m evasive
maneuvers is defined as in [19] by the 1-norm of ∆V , i.e.,

(10) J =
m∑
i=1

∥∆Vi∥1.

This will be the cost function of the chance-constrained optimization prob-
lem. Moreover, we have to consider the degradation of the mission due to
the correction maneuvers since they will force the primary object to leave
its reference orbit. For this reason, a return of the primary to its Keplerian
orbit at the end of the time interval I [8] is imposed as an additional con-
straint of the control design problem. Hence, the collision avoidance problem
is restated as a minimum-fuel chance-constrained optimization problem:

min
∆Vi

m∑
i=1

∥∆Vi∥1

s.t. P (X ∈ V) ≤ ε,(11a)

µXp(t) = 0.(11b)

Remark 3 As previously mentioned, the chance constraints involved in Prob-
lem (11) can be equivalently reformulated using (7). Consequently, we can
rewrite Problem (11) as follows

(12)

min
∆Vi

m∑
i=1

∥∆Vi∥1

s.t. P
(
sup
t∈I

g(t,∆V,X) ≥ 0
)
≤ ε,

µXp(t) = 0.

In Problem (11), V and µXp depend on the relative position vector r(t)
and, given (2)–(6), they also depend on ∆Vi, i ∈ J1,mK, which are the
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decision variables of the optimization problem. We notice that the constraint
(11b) is an affine equality constraint with respect to the decision variables
∆Vi, i ∈ J1,mK. In addition, unlike constraint (11b), the chance constraint
(11a) bounding the risk of collision is in general difficult to evaluate and
optimize against, without any simplifying assumptions. This is mainly due
to the joint nature of the chance constraints (11a) compared to individual
probabilistic constraints [20].

Moreover, the computation of Pc as a function of the control variables
∆Vi, i ∈ J1,mK is still an open problem. Typically, the computation of Pc

can be performed via Monte-Carlo simulations, by propagating the relative
trajectories and checking if a collision occurs during the encounter. How-
ever, this method is computationally expensive and, without any additional
assumption concerning the encounter, there exists no closed-form to assess
the value of Pc. In particular, the computational burden is extremely heavy
because these methods rely on high-order quadrature for the evaluation of
multi-dimensional integrals. Additionally, the numerical computation de-
pends on the underlying assumptions on the dynamics as described in [16]
or on the distribution laws. In the next section, different approximations
of Problem (11), for which efficient numerical solutions are available, are
proposed.

3 Approximated solutions for the collision avoid-
ance problem

Two approaches to approximate the solution of Problem (11) are presented.
Firstly, a novel method called direct convex relaxation replaces the proba-
bilistic constraint defining Pc by the instantaneous collision probability [3]
and computes in closed-form the gradient of the new probability with re-
spect to the decision variables ∆Vi. Secondly, we present an application of
the well-known scenario approach [21] to the context of collision avoidance
maneuvers, thus providing probabilistic guarantees to the solution of the
chance-constrained optimization problem.

3.1 Direct convex relaxation of collision probability

A simple way to tackle joint chance constraints in Problem (11) is to enforce
pointwise-in-time probability constraints by replacing the cumulative colli-
sion probability with the instantaneous collision probability [3], which is a
lower bound for the cumulative collision probability [17, 22]. It is defined as
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the probability Pi(t) that a collision occurs at a given instant t ∈ I. Conse-
quently, the new individual chance constraints involving the instantaneous
collision probability are

Pi(t) = P (∥r(t)∥2 ≤ Rc) ≤ ε′, ∀ t ∈ I,(13)

where the computation of Pi(t), for each given t ∈ I, can be reduced to
the integration of a three-dimensional Gaussian density over the hardbody
sphere as in [3]. Efficient numerical methods have been recently proposed
to compute this integral (see e.g., [23], [24], and references therein). This
approximation has already been used in [8] where a risk selection approach
[25] was applied to a similar collision avoidance problem. Moreover, in
practice, we set the threshold ε′ = ε/(t− t).

Remark 4 It is important to highlight that the new individual chance con-
straints (13) do not guarantee the satisfaction of the original joint chance
constraint (9) even though their number is infinite. To be numerically
tractable, only a finite number of individual instantaneous constraints (13)
will be enforced on a pre-specified time grid of N time instants, i.e., t < t̂1 <
· · · < t̂N−1 < t̄,N ∈ N⋆.

In the approach we propose in this paper, in order to get differential
constraints for which analytical expressions of the instantaneous constraint
and of its gradient are available, the geometry of the hardbody is slightly
modified.

Assumption 4 (Polyhedral approximation of the hardbody) The spher-
ical hardbody is approximated by a cubic polyhedron Ξ(t) centered at the
origin and containing B(0, Rc), with faces normal to the eigendirections of
Σr(t).

Since B(0, Rc) ⊂ Ξ(t), this approximation is conservative and conse-
quently ∀k ∈ J1, NK we have that

P(r(t̂k) ∈ Ξ(t̂k)) ≤ ε′ ⇒ Pi(t̂k) ≤ ε′.

Then, the new chance-constrained optimization problem is

(14)

min
∆Vi

m∑
i=1

∥∆Vi∥1

s.t. Pi(t̂k) ≤ ε′, k ∈ J1, NK,
µXp(t) = 0.
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Remark 5 The motivation to choose such an approximation is twofold.
First, due to the separability and linearity properties of the individual chance
constraints, Problem (14) is a smooth convex optimization problem, which
can be solved using efficient numerical tools [26]. Secondly, this approxima-
tion allows us to derive an analytical expression of the collision probability
and of its gradient with respect to the decision variables ∆Vi. Indeed, for
k ∈ J1, NK, let σ2

l (l = 1, 2, 3), be the eigenvalues of Σr(t̂k), and let Pk be the
transformation matrix to the orthogonal frame, composed of corresponding
eigenvectors with unit norm. Then, at any time t̂k, k ∈ J1, NK, the random
vector Yk = Pkr(t̂k) follows a Gaussian law, whose mean and covariance
matrix are µYk

= Pkµr(t̂k)
and ΣYk

= PkΣr(t̂k)
P T
k , respectively. Hence, the

linear separable chance constraints Pi(t̂k) ≤ ε′, k ∈ J1, NK are equivalently
redefined as

(15) P
(
Yk ∈ [−Rc, Rc]

3
)
≤ ε′, k ∈ J1, NK,

where the probability P
(
Yk ∈ [−Rc, Rc]

3
)
, with respect to the l-th compo-

nents µ
(l)
Yk

of µYk
(with l ∈ J1, 3K) is given by

P
(
Yk ∈ [−Rc, Rc]

3
)

=
(2π)−

3
2

3∏
l=1

σl

+Rc∫
−Rc

+Rc∫
−Rc

+Rc∫
−Rc

exp

(
−

3∑
l=1

(yl − µ
(l)
Yk
)2

2σ2
l

)
dy1dy2dy3

=

3∏
l=1

1√
2πσl

+Rc∫
−Rc

exp

(
−
(yl − µ

(l)
Yk
)2

2σ2
l

)
dyl

=

3∏
l=1

1

2

(
erf

(
µ
(l)
Yk

−Rc√
2σl

)
+ erf

(
µ
(l)
Yk

+Rc√
2σl

))
.

Applying the chain rule, the gradient of P
(
Yk ∈ [−Rc, Rc]

3
)
with respect to

the decision variables ∆Vi is

∂P
(
Yk ∈ [−Rc, Rc]

3
)

∂∆Vi
=

∂P
(
Yk ∈ [−Rc, Rc]

3
)

∂µYk

· ∂µYk

∂∆Vi
,
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where the partial derivative of µYk
with respect to ∆Vi is

(16)
∂µYk

∂∆Vi
=

{
Pk[I3 03]Φ(t̂k, ti)B if ti ≤ t̂k,
03 otherwise.

Furthermore, for each l ∈ J1, 3K, we have

(17)

∂

∂µ
(l)
Yk

P
(
Yk ∈ [−Rc, Rc]

3
)

=

exp

(
−
(

µ
(l)
Yk

−Rc
√
2σl

)2
)

+ exp

(
−
(

µ
(l)
Yk

+Rc
√
2σl

)2
)

√
πσl

(
erf

(
µ
(l)
Yk

−Rc
√
2σl

)
+ erf

(
µ
(l)
Yk

+Rc
√
2σl

)) ·

·
√
2P
(
Yk ∈ [−Rc, Rc]

3
)
.

In this way, we obtain a convex optimization problem characterized by a par-
ticular cubic polyhedral approximation, which can be solved using standard
numerical tools.

3.2 Scenario-based collision probability

The scenario optimization approach has been introduced in [9, 21] to solve
robust or chance-constrained optimization problems in which constraints are
imprecisely known. In particular, it presumes a probabilistic description of
the uncertainty characterized through a set ∆ describing the set of admis-
sible situations, and a probability P over ∆. Then, the scenario approach
allows to obtain a convex optimization problem where the initial chance
constraints are replaced by deterministic constraints for a set of scenarios
δ = {δ(1), . . . , δ(Ns)} ∈ ∆Ns , where each of the Ns scenarios is independently
extracted from the probability measure P∆. In detail, given an uncertainty
set ∆, if P∆ is the probability on ∆ and ε ∈ (0, 1) is an acceptable risk of
constraint violation, the uncertain chance-constrained problem is defined as

(18)

min
x∈X

cTx

s.t. P
(
f(x, δ) > 0

)
≤ ε, δ ∈ ∆,

where x ∈ X is the optimization variable, X is a compact and convex set,
and the function f(x, δ) : X ×∆ → R is convex in x for all δ ∈ ∆. The sce-
nario approach aims at redefining the uncertain problem as a deterministic
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problem taking into account only a finite set of Ns constraints, randomly
chosen among the possible constraint instances of the uncertain problem. In
this way, it is possible to bound the probability of the original constraints
that are possibly violated by the randomized solution. Formally, the scenario
problem is stated as follows.

Definition 3 (Scenario problem) Given the violation level ε ∈ (0, 1) and
the confidence level β ∈ (0, 1), if one extracts (at least) Ns i.i.d. samples
δ(1), . . . , δ(Ns) according to probability P∆ such that

(19)

d∑
ℓ=1

(
Ns

ℓ

)
εℓ(1− ε)Ns−ℓ ≤ β,

where d is the number of optimization variables, then under some techni-
cal assumptions and under the convexity of the constraint f(x, δ) in x for
given δ, the condition

P
(
f(x, δ) ≤ 0

)
≥ 1− ε,

holds with probability no smaller than 1− β.

In this specific case study, the only random variable is the initial condi-
tion X ∼ N6(µX ,ΣX). However, choosing X as the uncertain parameter δ
would yield joint constraints with complex feasible sets: for a given initial
state there exists no closed form characterizing the set of all the ∆V lead-
ing to no collision during the whole encounter. Nevertheless, we know that
requiring the same condition for a given instant leads to pointwise-in-time
constraints [27], which are more tractable.

Then, we can observe that the scenario approach presented in [21] is
distribution-free, i.e., the result applies independently of the distribution
of the uncertain parameter. Based on those observations, we choose to
randomize also the time parameter by setting δ = [XT T ]T , where T is a
uniformly distributed random variable valued in I, i.e. T ∈ U(I) (T and X
are assumed to be independent). Consequently, using the function g defined
in (7), the new chance constraint related to the probability of collision is
given as

(20) P∆ (g(T ,∆V,X) < 0) ≥ 1− ε.

Remark 6 The satisfaction of the non collision constraint (20) does not
guarantee the satisfaction of the original joint chance constraint (12), since
the two constraints rely on different constraint functions and different prob-
ability distributions.
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Therefore, the new chance-constrained optimization problem is formulated
as follows

(21)

min
∆Vi

m∑
i=1

∥∆Vi∥1

s.t. P∆ (g(T ,∆V,X) < 0) ≥ 1− ε,

µXp(t) = 0.

The next step consists in convexifying the constraint (20) to properly
apply the scenario approach to Problem (21).

In the collision avoidance literature, a classical convexification method
consists in building an inner approximation of the feasible set based on a
hyperplane tangent to the forbidden region. This implies that, for each con-
straint, the choice of the tangent hyperplane must be consistent with the
dynamics of the problem. For instance, in rendezvous problems with obsta-
cle collision avoidance model predictive control strategies usually rely on a
rotating hyperplane to ensure that the chaser circumvent the obstacle and
reach the target (see e.g., [28]–[29] and references therein). However, the
majority of these methods rely on an stringent assumption on the constant
rate of the rotating hyperplane, which is not applicable in the case study de-
scribed in this paper. Indeed, we rely on the assumption that both primary
and secondary objects remain close to the reference orbit of the primary,
and therefore we propose a relaxation approach based on the construction
of a hyperplane related to the Keplerian orbit.

Assumption 5 The constraint (20), which can be defined in terms of the
relative position vector as

∥r(∆V,X, T )∥22 > R2
c ,

with
r(∆V,X, T ) = B2

(
Φ(T , t)X + C(T )∆V

)
,

is conservatively reformulated as nT r(∆V,X, T )−Rc > 0, where n =
rref

∥rref∥2 ,

and rref = B2Φ(T , t)X is the relative position vector associated with the
reference orbit.

Then, based on Assumption 5, we can finally reformulate Problem (21)
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as a scenario optimization problem as follows

min
∆V

m∑
i=1

∥∆Vi∥1(22a)

s.t. nT
(ℓ)r(∆V,X(ℓ), t(ℓ))−Rc > 0, ℓ ∈ [[1, Ns]],(22b)

where we can guarantee that

P∆ (g(T ,∆V,X) < 0) ≥ 1− ε,

with probability not smaller than 1− β, if we extract Ns samples (X, T )(ℓ)

from P∆, with ∆ = [N6(µX ,ΣX), U(I)].

4 Numerical results

The algorithms are tested on two case studies borrowed from [17] (case #1
and case #9) with mean values and covariance matrices expressed at the
Time of Closest Approach (TCA). Their performances are compared with
those obtained by the risk selection approach proposed in [8] with M = 104

(i.e., big-M constant in the Mixed-Integer Linear Programming problem).
The simulations were performed on Matlab R2021b® with a 12th Gen In-
tel®Core(�) i5-1235U 1.30 GHz and 16 GB of RAM. The risk selection
model and the scenario approach were built using Gurobi 11.0.0, whereas
the direct approach problem was solved by the SQP algorithm of the fmin-
con Matlab(�) function with a maximum of 104 iterations and an initial
point chosen after a trial and error procedure. For the whole numerical
study, the maximal number of possible maneuvers in each direction is set

to m = 5, 10, 20 (evenly spaced in I, i.e. ti = t + (i − 1) t−t
m−1 , i ∈ J1,mK).

Similarly, the number of discretization times for a given N is defined as

t̂k = t + k t−t
(N+1) , k ∈ J1, NK1 for N given for each example. By their very

nature, the results obtained from each run of the scenario algorithm may
vary significantly. Therefore, we chose to select the best result (in terms
of fuel consumption) out of 5 successive runs. For the three methods, ∆V
components with magnitude lower than 1e-5 m/s have been set to zero.
Given each maneuvers plan, a table presenting the obtained approximation
J of J⋆ .

= ∥∆V ⋆∥1, the maximum of the instantaneous collision probability
Pmax
i using the algorithm described in [23] and finally, an approximation

P̃c of the cumulative collision probability Pc, obtained via a Monte-Carlo

1For numerical reasons, t and t are not included in the discretization grid.
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(MC) simulation sampling 1 × 108 initial conditions, is given for each test
case. For convenience, the risk selection, the direct approach and the sce-
nario will be respectively labeled ’RS’, ’DIR’ and ’SC’ in the figures and
tables proposed, whereas ’BAL’ will refer to the ballistic orbit. No CPU or
user times have been reported since the used optimization solvers (Gurobi
11.0.0, fmincon) may have computation performances hardly comparable.
Still, roughly speaking, the different experiments suggest that the scenario
is much more demanding in general than the two others which have similar
performances.

4.1 Test case 1 (#1 case of [17])

In this test case, two satellites in geosynchronous orbits (GEO) are involved
in the conjunction where the mean distance at TCA is less than the combined
hardbody radius Rc and the cumulative collision probability is computed as
0.217. This collision probability is the outcome of two different intervals of
accumulation: the first one [−2, 000 s,+2, 000 s] is centered around the TCA
while the second one is shorter and begins around 9,500 s after the TCA. The
number of evenly spread time instants t̂k, k ∈ J1, NK is equal to N = 500,
belonging to the encounter time interval I = [t = −50, 000 s, t̄ = 50, 000 s],
(corresponding to 0.6 orbits before and after the TCA), with a time step
of 199.6s. Regarding the scenario approach, the violation level and the
confidence levels were set to ε = 10−3 and β = 10−3, respectively. The
instantaneous collision probability threshold is set to ε′ = ε

t−t
= 10−8.

Methods

# ∆V RS DIR SC

n = 5 J̄(mm/s) 4.77 3.27 5.94
Pmax
i 4e-20 4e-13 0

P̃c 0 0 0

n = 10 J̄(mm/s) 3.94 3.08 7.18
Pmax
i 4e-19 1e-23 0

P̃c 0 0 0

n = 20 J̄(mm/s) 3.97 2.88 11.88
Pmax
i 4e-18 7e-11 0

P̃c 0 0 0

Table 1: Test case 1 - Fuel consumption, maximal instantaneous collision
probability and MC cumulative collision probability for 5, 10 and 20 ma-
neuvers respectively.
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Figure 1: Test case 1 - mean relative trajectories and forbidden region (in
grey) for m = 5.

The results reported in Table 1 show that the direct approach outper-
forms the two other methods for all chosen m, whereas all the methods
comply with the initial risk requirement measured by Pmax

i or P̃c.
The mean relative trajectories obtained by applying the three approaches

are depicted in Fig. 1, illustrating the differences between the three avoid-
ance strategies. This is more clearly noticeable in Figure 2, which exposes
the three maneuvers plans. Each strategy is based on 4 maneuvers out of the
five possible but the DIR maneuver plan only includes out-of-plane maneu-
vers while the RS and SC strategies are more similar (using all three thrust
directions) with slight differences in the choice of the firing directions of each
maneuver. Note also that the hierarchy of strategies is clearly illustrated by
the mean miss-distance plot in Figure 3: the less consuming plan leading to
a smaller mean miss-distance.

Figure 2: Test case 1 - ∆V components vs firing times for m = 5.
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Figure 3: Test case 1 - Distances between the mean relative trajectories
and the origin of the hardbody for m = 5; harbody radius indicated by the
dotted black line.

4.2 Test case 2 (#4 case of [17])

We consider the case study number 4 in [17], which involves two satellites in
geosynchronous orbits (GEO) where the mean distance at the time of closest
approach (TCA) is greater than the combined hardbody radius Rc and the
cumulative collision probability is approximately 7.31e-2. The main feature
of this example is that the interval of accumulation of the collision probabil-
ity, roughly defined as [3, 000 s, 11, 000 s], is ”offset-from-the-TCA”. There-
fore, a non symmetric encounter time interval, I = [t = −60000 s, t̄ = 120000 s]
has been considered for the computation of avoiding maneuvers. A number
of N = 500 instants is used for the instantaneous collision probability con-
straints, with a time step of 514s and the instantaneous collision probability
threshold is set to ϵ′ = ϵ

t−t
= 2.78.10−09. For this case the violation level

and the confidence levels are respectively set to ε = 5× 10−4 and β = 10−3.
The results reported in Table 2 and the plots of Figures 4 and 5 describe

a different situation compared to the first example. The scenario approach
is more efficient in general and the least expensive one for m = 5 and
m = 10, proving that this approach may be a promising alternative to the
existing RS approach. A noteworthy feature of these results is that all three
methods give very similar avoiding maneuvers plans comprising up to 6 in-
track maneuvers when m = 10. Probably due to the offset of the TCA
with respect to the Pc accumulation interval, the plot of the mean miss
distances does not have the simple and straightforward interpretation as in
the previous example.
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Methods

# ∆V RS DIR SC

m = 5 J̄(mm/s) 2.057 1.956 1.728
Pmax
i 2.01e-12 2.70e-10 2.23e-06

P̃c 0 0 3.84e-6

m = 10 J̄(mm/s) 1.213 1.150 1.025
Pmax
i 1.61e-12 2.99e-10 4.04e-06

P̃c 0 0 6.53e-6

m = 20 J̄(mm/s) 1.126 1.067 1.347
Pmax
i 8.87e-13 2.54e-10 2.03e-23

P̃c 0 0 0

Table 2: Test case 2 - Fuel consumption, maximal instantaneous collision
probability and MC cumulative collision probability for 5, 10 and 20 ma-
neuvers respectively.

Figure 4: Test case 2 - mean relative trajectories and forbidden region (in
grey) for m = 10.

5 Conclusion

The problem of efficient impulsive CAM design for the possible encounter
between an active spacecraft and an orbital debris, already studied in [8], is
considered in this paper for the specific class of long-term encounters. It is
formulated as a joint chance-constrained optimization problem, which is dif-
ficult to solve without additional simplifications. Two different strategies are
presented: a direct convex relaxation and a scenario approach. Then, they
are compared to the risk selection method of [8] on two standard long-term
encounters test cases from [17]. From these preliminary studies, it appears
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Figure 5: Test case 2 - ∆V components vs firing times for m = 10.

Figure 6: Test case 2 - Distances between the mean relative trajectories and
the origin of the hardbody for m = 10.

that both proposed approaches are competitive with the state-of-the-art
methods dealing with long-term encounters. The scenario-based approach
provides an interesting alternative, in terms of tuning parameters (ε and β)
and, despite being more computationally intensive, it lays ground for future
applications of scenario-based methods to spacecraft collision avoidance.

These results have to be consolidated and confirmed on more challenging
and realistic examples of long-term conjunctions. A theoretical analysis of
the probabilistic guarantees of the present scenario-base method compared
to the ones obtained by using the conservative reformulation given by the
Average Value-at-Risk would definitely be an interesting future direction of
research.
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