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ABSTRACT

This technical brief reports about an experimental setup
whose objective is the acquisition of relevant data for learning
a RUL estimation model for spindles in rotary machine tools
that are available in BOSCH-Rodez manufacturing site. Two
classical machine learning methods have then been used to
evaluate the quality of the acquired data. First results indicate
that such a setup could be effective for building interpretable
models to be embedded in the global strategy for the predic-
tive maintenance of machine tools on site.

1. INTRODUCTION

BOSCH-Rodez plans to improve the maintenance of its fleets
of machine tools by instrumenting them in order to acquire
data to implement a predictive maintenance strategy over the
site. Machine tools are complex systems composed of mo-
tors, spindles, chucks, oil pumps. Predictive maintenance
consists in optimally deciding when to replace a component
in the machine tool so that the machine tool is always operat-
ing properly. It also helps to prevent manufacturing waste.

To get such a predictive maintenance strategy, the objective is
to add relevant sensors in the machine tools, to measure data
at operating time and use a prognostic model to check the
current health and predict the Remaining Useful Life (RUL)
of every component of the machine at any time based on the
current set of measured data. To reach that goal, a first step
is to investigate how to design such a prognostic model for a
specific component of the machine tools: a spindle. Indeed,
the most critical parts of such a system are the spindles, as
there are the ones that are the most frequently replaced. This
technical brief reports about an experimental setup to acquire
data and use machine learning techniques to learn a prog-
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nostic model on a specific type of spindles called UVA6011
based on vibration signals (Sassi, Badri, & Thomas, 2007).

Some Machine Learning (ML) methods have been devel-
oped that learn the degradation behavior of bearings (Riley,
Debray, Moons, Schaar, & Hemingway, 2019) and synthe-
size predictive models (Rao, Pai, & Nagabhushana, 2012).
For instance, ML methods like K-Nearest-Neighbours and
Support Vector Machine have been used for RUL prediction
through classification models (Chelmiah, McLoone, & Ka-
vanagh, 2022). Amongst these ML methods, Neural Network
approaches are more and more used as they can handle large
and complex computations to produce efficient models. How-
ever, even if already proposed ML methods greatly improve
RUL prediction and more generally solutions for Prognostic
and Health Management (PHM), further investigations about
the effective quality of the models are required, especially
their interpretability. At present, most of the models used for
prediction are set up based on accuracy score and computa-
tional speed rather than on the human ability to understand
them (Rudin, 2019). Models obtained by deep learning tech-
niques are known to be black-boxes, meaning that they cannot
be open to understand their decisions as interpretable. Some
previous works have reached a certain level of explainabil-
ity like (Lundberg & Lee, 2017) but these results do not give
the full insight about how interpretable the effective model’s
choices are. However, it is important for a human operator to
understand how an algorithmic model determines a mainte-
nance decision with respect to human-interpretable physical
laws and quantities: how and why such a model plans the de-
cision. In fact, interpretability give operators the confidence
needed towards trained models (Marcinkevics & Vogt, 2020).

This paper is organized as follows. Section 2 describes the
experimental setup and details the type of dataset that is ac-
quired. Section 3 details two machine learning techniques
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that have been applied on this dataset. The first one is a Neu-
ral Network (NN) approach, detailed in Section 3.1. By im-
plementing this approach, the objective is to firstly ensure that
acquired data have good quality and the proposed experimen-
tal setup is relevant: indeed a classification method like neu-
ral networks, that is known for having good performance with
complex problems and non-linearity, should confirm that the
acquired data are relevant as soon as it synthesizes a model
that is highly accurate. The second reason is to confront its
performances to an interpretable approach, the Decision Tree
(DT) approach, detailed in Section 3.2. DT are known to be
simple to implement and easy to interpret. However, these
models reach high performance only if the relations between
input features and the output are simple. The aim of this ap-
proach is to provide a prognostic model that is more inter-
pretable than the NN and to check whether such a simpler
model can reach the same performance as the NN while re-
maining interpretable with the proposed dataset. A compar-
ative analysis of both methods applied on the dataset is then
proposed in Section 4.

2. SYSTEM AND DATA ACQUISITION

This section reports about the experimental setup to acquire
and process real data in near-real conditions for learning a
prognostic model for a set of UVA6011 spindles that are
available at BOSCH-Rodez manufacturing site.

2.1. Prognosis and predictive maintenance of a spindle

A spindle itself is a complex system and, by experience, the
critical element of the spindle is the bearing as it is the first
component of a spindle to become defective and therefore
the first component to make the overall spindle failing. In
this context, predictive maintenance then consists in decid-
ing when to replace such bearings in the spindles so that the
spindles are always operating properly. The following ex-
perimental setup proposes to acquire vibration data from the
spindle’s bearings and to learn from them a prognostic model
that can be used afterward at operating time.

2.2. Experimental setup

To initiate the experiment and get first training measured data,
an available set of five spindles has been installed on a test-
bed in a closed chamber that simulates the real operating con-
ditions (see Figure 1). Each spindle is connected with cooling
oil inlet and outlet for cooling down the spindle (lubrication
of the bearings). Then a VSA 005 sensor (the accelerometer)
has been screwed on the front part of the spindle as it would
be inside a machine tool using this type of spindle at operating
time. This vibration sensor is thus located between the pair
of bearings of the spindle. It measures the vertical accelera-
tion just on the top of these bearings. As the space between
the pair of spindle bearings is too close, the sensor is placed

between them and acquires a single vibratory signal from the
pair of bearings. This is not a problem as bearings are always
both replaced if a maintenance action is required. The cable
of the VSA sensor is connected to an IFM VSE 100 mod-
ule that contains the software allowing to record the vibratory
signals, a module that is used at operating time. The objective
is to acquire data at 9K RPM so that frequency measurements
are within the range of the available VSA sensor.

Figure 1. The experimental test-bed

The five spindles that have been used in this experiment have
been selected by a maintenance operator. Based on the opera-
tor’s expertise, these five spindles are in five distinct degrada-
tion modes (or classes), denoted Cm with m ∈ {0, 3, 4, 7, 9}.
Mode Cm means that the spindle’RUL is m months. When
m = 9, the spindle’s bearings are new, when m = 0 they are
worn out (see Table 1).

Degradation Class CRUL RUL (months) RUL(%)
C9 9 100
C7 7 77
C4 4 44
C3 3 33
C0 0 0

Table 1. Labeling of the degradation class of a spindle asso-
ciated with the RUL

2.3. Data acquisition and processing

The IFM VSE 100 module is the interface between the sen-
sor and the computer and is able to record raw signals. The
sampling is set to the frequency 100kHz (100K values per
seconds). No signal filters have been applied. For each spin-
dle, raw signals have been recorded during 16 minutes. From
each raw signal, 10000 signals of one second each have been
extracted (as a set of sliding time windows with a sliding step
of 0.1 second). Then, for each of the 10000 signals, it has
been converted as a frequency spectrum by applying a Fast
Fourier Transform (FFT). The bandwidth set of the full spec-
trum is from 0 to 9985Hz to remain in accordance with the
range of the vibration sensor, which is fixed to a maximum



of 10kHz. This spectrum is then discretized to get F = 409
frequency amplitude values for each FFT signal with a fre-
quency resolution of 24.414Hz. Finally, the available training
dataset X is a set of N = 50000 individuals, an individual is
composed of F = 409 features that are frequency amplitude
values. Formally, the dataset is:

X =

x1

...
xN

 =

x1,1 · · · x1,F

...
...

xN,1 · · · xN,F


Each individual xi is associated with a label li = Cm ∈
CRUL, where Cm corresponds to the degradation class of the
spindle that produces xi. Let L = [l1 . . . lN ]T denote the
labels associated with individuals X , by construction, each
degradation class is then represented by 10000 individuals in
X .

3. PROGNOSTIC MODEL LEARNING: FIRST RESULTS

This section now reports on the application of two classical
machine learning algorithms on the labeled dataset (X,L).
The objective is to learn the function:

fRUL : x → Ct (1)

Given any new individual x (frequency spectrum as defined in
Section 2.3) that is acquired on UVA6011 spindles at operat-
ing time, fRUL maps the individual x to one of the classes Ct

defined by the maintenance expert. If fRUL(x) = Ct then it
means that the corresponding spindle has a RUL of t months.

The first stage of the learning process is the construction of a
training set and a testing set out of (X,L). As a lot of data are
available (about 50K individuals), the training set consists of
70% of the individuals from the dataset and the testing set is
composed of all the individuals of (X,L) not selected by the
training set (30% of the individuals). The training set will be
used to train the prognostic model to recognize a label li in
function of xi. The testing set is used to validate the accu-
racy of the prognostic model and detect potential overfitting.
Indeed, if accuracy metrics used to evaluate the prognostic
model show on the testing set a lesser score than the training
set, then the prognostic model is overfitting and is failing to
generalize, so that it is unable to correctly recognize a class
on data it has never seen.

The analysis of the performance of the learning algorithms
on this dataset relies on the use of an accuracy score and
a multi-class confusion matrix, as the data in X are well-
balanced (Grandini, Bagli, & Visani, 2020). Any correctly
classified individual is defined either as a True Positive (TP)
or a True Negative (TN) and any incorrectly classified indi-
vidual is defined either as a False Positive (FP) or a False
Negative (FN). The accuracy is then defined by:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

A multi-class confusion matrix M can also perform evalua-
tion of any predictive model based on its classification score.
The element Mij of the matrix is the number of individuals
that are predicted in class j while its real class is i. True Pos-
itive individuals then appear in the diagonal of the matrix.

3.1. Neural network approach

For the first training, it has been decided to use a simple
neural network (NN) approach because it can produce effi-
cient models on nonlinear data with a large number of inputs.
Moreover, trained NN models do not require much time to
produce predictions once in use.

Let NN be the learning Neural Network function such that:

NN : X,L → fNN (3)

with X be the matrix of FFT signals, L be the label vector
associated with X and fNN be the prognostic model that is
learned by NN . Function fNN is therefore the approxima-
tion of fRUL learned by the proposed NN approach. To train
fNN , 2 hidden layers have been used. The first one is defined
with 16 neurons and the second with 32. A Rectifier Linear
Unit (ReLU) is chosen as an activation function. The output
has 5 neurons, one for each class of CRUL with a softmax
activation function. Categorical cross entropy loss has been
chosen as it is one of the most used for multi-class classifi-
cation problems and for its capacity to converge faster than
other loss functions. Finally, ADAM optimizer has been cho-
sen for the stochastic gradient descent because it is computa-
tionally efficient and well suited for large data sets with a lot
of parameters (Kingma & Ba, 2014).

The accuracy score is firstly used to measure the potential
overfitting of the prognostic model fNN during the learning
phase. When the training starts, 10% of the training set is au-
tomatically extracted as a new dataset called a validation set.
This dataset is used to observe the performance evolution of
the prognostic model during the learning phase. Indeed, at
the end of each learning iteration (epoch), the accuracy of the
prognostic model is evaluated both on the training set and the
validation set, which produces two curves showing the evolu-
tion of its evaluation based on the selected metrics (accuracy
score in this case). By comparing both curves, it is possible to
understand the behavior of the predictive model performance
during its training. If the curves converge, the model is gen-
eralizing. In case of divergence, the training can be failing to
get a proper classification, or it can be overfitting. In the lat-
ter case, methods preventing overfitting can be applied, like
early stopping or regularization (Ying, 2019).

In this experiment, the prognostic model has been trained by



Figure 2. Accuracy - Neural Network Approach

Figure 3. Confusion matrix - Neural Network Approach

setting 25 learning iterations, but it has actually converged
after the second learning iteration as shown in Figure 2: this
figure represents the fNN prognostic model trained on dataset
X after each epoch, and results are finally 100% accurate.

Secondly, to see how efficient the trained models are after
the learning phase and to verify the quality of the predictions
for each class, multi-class confusion matrices on test sets are
computed as well as the overall accuracy. No overfitting has
appeared. The confusion matrix in Figure 3 shows the distri-
bution of the individuals from the testing sets with respect to
their predicted class and their true class: no individual has a
wrong prediction.

This shows that a simple NN model trained with few param-
eters and few iterations can produce a prognostic model that
is already able to get high accuracy scores and determine a
class Ct of a spindle bearing based on the data acquired by
the proposed experimental setup.

3.2. More interpretable prognostic model: Decision-Tree
approach

With fNN , high accuracy scores are obtained. However, a
problem remains: fNN is a black-box model. Such a predic-
tive model cannot be interpreted, which is a big issue in a lot
of work fields like manufacturing. Indeed, an operator must
understand why an advisor model takes a maintenance deci-
sion. As the NN approach is very performant on the dataset
(X,L), it motivates the use of another learning approach that
is known to be less performant but that increases the level of
interpretability: a decision-tree approach (DT).

DT : X,L → fDT (4)

One of the strength of a DT approach is its capacity to pro-
vide a prognostic model fDT (i.e. approximation of fRUL)
that is an interpretable decision tree, but its drawback is that
this type of predictive model is known for having lower per-
formance than NN and the learning process can be slower
(Kim, 2008). In fact, a DT method is efficient only if the in-
trinsic relations between input data and their respective out-
put decisions are simple and general. The way the NN ap-
proach converges on the dataset (X,L) (see Figure 2) leads
to the conclusion that (X,L) could be simple enough for a
DT-approach to perform well.

For this approach, it has been decided to train without tuning
hyperparameters. There is no max depth for this tree, and the
quality of a node of the decision tree is measured through the
Gini index. The Gini index has been chosen for its computa-
tional speed compared to entropy. Its purpose is to indicate
the probability that a given node of the tree makes a wrong
decision to classify an individual. Let n be the current node
of the decision tree. Let Xn ⊂ X be the set of individu-
als that are passing through this node. Let Xt,n be the set
Xt,n = {x ∈ Xn, x ∈ Ct} the impurity of the node n is
given by the following Gini index Gn:

Gn =

|CRUL|∑
t=1

pt,n × (1− pt,n) = 1−
|CRUL|∑
t=1

p2t,n (5)

with pt,n being the estimation of the probability that any in-
dividual x passing through the node n has a class Ct, that
is:

pt,n =
|Xt,n|
|Xn|

.

For each node, the Gini index gives a score between 0 and
0.5 with 0.5 being the highest level of impurity. This means
that an individual has a random probability of being wrongly
classified in the node. A node reaching a Gini index of 0
means that every individual x in it belongs to one class only.
Thus, this node becomes a leaf node displaying a unique class
Ct.



Figure 4. Confusion matrix - DT Approach

Figure 4 shows the confusion matrix of the learned prognos-
tic model fDT on the dataset (X,L). From this matrix, it
follows that fDT performs with 99.96% of overall accuracy.
The confusion matrix shows few miss-classed individuals for
C9, C7 and C0. As expected, the dataset (X,L) is easy to
model and that is why the trained model performs with a high
accuracy score. However, the interest here remains in the un-
derstanding of why and how the predicted class Ct has been
chosen by fDT . The strength of DT remains in its capability
of providing an interpretable flow chart as a decision tree.

The obtained prognostic model fDT is entirely presented in
Figure 5. It is simply composed of 13 nodes. To assign the
class Ct to any newly available individual x, it only consists
in selecting the unique branch from the root node to the leaf
node such that x holds all the conditions in the branch and
assigning to x the class of the leaf node of the branch. The
interpretability of this model relies on the fact that the set of
conditions leading to the leaf node of the selected branch are
physical features (frequency amplitudes from the underlying
FFT signal). Indeed, nodes split according to the amplitude
ai assigned to a frequency i of the FFT spectrum in x.

The model fDT performs with a high accuracy score and is
now easy to interpret as opposed to fNN . Indeed, an operator
can clearly understand that, if the current measured vibratory
amplitude at the frequency 6392 Hz is lesser than 0.826 m/s2

but greater than 0.164 m/s2 for 6368 Hz then the RUL of the
spindle is about 3 months (C3).

Finally, by analyzing the tree produced by the DT approach
(see Figure 5), it can be visually noticed that the classes are
somehow ordered: the shorter the RUL of the class, the fur-
ther to the right the class is on the tree. It results from a de-
cision by fDT that if the amplitude of the signal x at a given
frequency is greater than a predetermined amplitude, the cor-
responding spindle is expected to be more worn out. This
leads to the conjecture that a prognostic model decides not
really by selecting a specific frequency in a FFT signal, but

by selecting over the amplitude differences between individ-
uals.

4. DISCUSSION

This technical brief describes an experimental setup to ac-
quire and process data for learning prognostic models for
bearings in spindles. Previous experimental analyses first
show that the quality of acquired data is correct in the sense
that the tested learning methods reach similar results: on one
hand both methods obtain a model with high accuracy score
and on the other hand these models generalize well and avoid
overfitting. Comparing these two approaches, DT shows that
it could perform as well as NN because the acquired data
hold simple intrinsic relations between the input and the out-
put. DT has the advantage to offer interpretable results to
the maintenance operators that make them understand the de-
cision of the model through the tree. From a maintenance
operator viewpoint, DT should be as simple as possible (not
having too many nodes) to be user-friendly. From a data anal-
ysis viewpoint, the obtained DT fDT leads to the conjecture
that the decision is more a matter of selecting amplitude dif-
ferences than selecting specific frequencies in the spectrum.
Furthermore, this experiment shows that the tradeoff between
precision and interpretability for a prognostic model can be
minimal as soon as the data are well processed and homo-
geneous. This is why it remains important to evaluate this
tradeoff as losing a few percentage of accuracy to bring inter-
pretability gives to the operator more confidence to apply the
maintenance decisions from the prognostic model.

The presented experiment is a seminal study with encourag-
ing results that still needs to be improved. The studied indus-
trial dataset relies on a set of spindles, with every degradation
class Ct being associated with one spindle only. It must be
enriched with data from more spindles associated with the
same classes Ct and spindles associated with other classes Ct

closer to C0 representing the end of life.

Future work will aim at reproducing this experimental setup
for different types of spindles available at BOSCH-Rodez
manufacturing site, to select relevant sensors and deploy them
on the different fleets of machine-tools having multiple spin-
dles. As soon as these sensors will be installed, data will
be regularly recorded and stored in the database, data that
can be also used to enrich the previous prognostic models.
This sensor instrumentation will also allow the acquisition
of run-to-failure data for these spindles, such as data from
the PRONOSTIA platform (Nectoux et al., 2012). These
data would be used to predict their RUL through a regression
method instead of a classification of their degradation state
Ct. A regression method could help to refine the accuracy of
the predicted RUL to hours instead of months, and thus re-
fine the predictive maintenance policy to be more accurate.
Hence, the machine-tool production uptime could be maxi-



Figure 5. fDT : Interpretable Prognostic Model as a Decision Tree

mized. As the data could become more complex, other in-
terpretable methods like Generalized Additive Models (Lou,
Caruana, & Gehrke, 2012) could be tested to ensure that the
tradeoff between generalization and interpretability remains
acceptable.
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