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CLEO: Closed-Loop kinematics Evolutionary Optimization
of bipedal structures

Virgile Batto1,2,∗, Ludovic De Matteı̈s1,3,Thomas Flayols1,4, Margot Vulliez2, Nicolas Mansard1,4

Abstract— Progress in hardware design is crucial for achiev-
ing better artificial locomotion. There is a significant ongoing ef-
fort in the community to leverage dynamic capabilities of serial-
parallel architectures in the design of humanoid legs. However,
designing such systems involves addressing high-dimensional,
complex, and multi-objective challenges, where conventional
optimization approaches may encounter limitations or rely on
additional know-how of the human designer.

In this paper, we propose a general approach to assist the
design of serial-parallel humanoid legs using an evolutionary
optimization strategy. The optimization problem incorporates
design constraints and locomotion-task requirements as ob-
jective functions. It uses parallelized trajectory evaluation for
efficient exploration of the design space. The effectiveness of
the design methodology is shown by optimizing a new leg
architecture, that fully exploits the capabilities offered by
kinematic closure. The optimized leg design meets practical
constraints related to foot position, joint placement, and force
transmission, ensuring stability and locomotion performance.
We improve our design robustness by including several criteria
that increase structural stiffness. The optimized leg exhibits
desirable properties and matches the required simulation design
constraints. Furthermore, we compare 3D-printed prototypes
and experimentally validate the impact and choice of the design
criteria.

I. INTRODUCTION

The development of novel, robust, and high-fidelity hard-
ware is critical for more powerful control algorithms to be
effective on real robots, especially in humanoid robotics.
The integration of parallel mechanisms in modern humanoid
robot legs is becoming increasingly common, particularly
for the ankle joints [1], [2], [3]. Parallel mechanisms offer
superior dynamic performance by reducing the leg effective
inertia [4]. However, parallel leg architectures are more
difficult to model and design due to their inherent trade-off
between workspace and specific singularities [5], [6].

To address these challenges, codesign methods have
emerged as promising approaches to the development of
more sophisticated and efficient robotic legs. Codesign in-
volves the simultaneous design of both the robot mechatron-
ics and the control systems [7], to ensure optimal integration
and performance. This approach has been successfully ap-
plied to the design of simple leg mechanisms [8], [9]. By
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designing the control algorithm alongside the mechanical
structure and its actuation, the viability and performance of
the robot can be significantly enhanced.

Fig. 1. A 3D view of the bipedal robot kinematics, featuring a novel
serial-parallel architecture optimized through the CLEO algorithm.

A first challenge in codesign is to compute a dynamic
movement for the targeted architecture [10]. Early works
have demonstrated the feasibility for less complex robot
codesign [11]. The emergence of efficient modeling libraries,
such as Pinocchio [12], facilitates the incorporation of the
contact constraints of parallel-kinematic chains, addressing
the modeling difficulty [13]. While the computational com-
plexity remains high, it can simulate any parallel architecture.

A second challenge is to properly define the design
requirements by formulating an optimization problem. A bi-
level optimization algorithm can be implemented for both the
robot trajectory and the design parameters [14]. This method
requires an efficient motion generation method that is yet
to be developed for bipedal robots. We, therefore, propose
to write a single-level formulation that can be solved as a
gradient-free optimization. It decides the design variables
without having to compute the sensitivity of the motion
generator. Recent genetic algorithms and computational hard-
ware advances make it possible to solve high-dimensional
optimization problems, including those with complex Pareto
fronts [15]. These methods have effectively solved various
mechanical design optimizations [16]. Ranging from single-
objective optimization of 6-DOF manipulators [17] to multi-
objective optimization of parallel robots [18], they use perfor-
mance objectives to determine the optimal design parameters.
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Fig. 2. Overview of the proposed architecture. The upper part allows for
a range of rotational movements typically associated with the hip, yet with
a serial-parallel structure. The lower part of the leg (3 DOF) is composed
of 3 parallel branches actuating the knee and the roll and pitch of the ankle

However, applying such methods on complex humanoid leg
structures, for which the locomotion tasks impose specific
capabilities and strict constraints, has not been done yet.

This paper introduces CLEO, a gradient-free (evolution-
ary) optimizer for closed-loop kinematics biped codesign.
The algorithm can optimize any generic architecture (serial
or parallel) and decide the location of the motors and joints,
as well as the actuation capability, with respect to several
performance criteria and constraints. These requirements and
design constraints must be appropriately chosen to meet the
need of high-dynamic locomotion tasks [13]. While the shape
of the different parts could also be considered a decision
variable [19], topological optimization is too complex to be
directly included within a codesign process. We decided to
leave this topological work to the mechanical designer.

Section II proposes a novel bipedal architecture, mixing
some features inspired by Tello [20] and Kangaroo [21]. If
the proposed architecture is suitable for locomotion tasks,
the behavior of such parallel mechanisms makes it quite
counter-intuitive to decide the design parameter. They should
be specifically optimized to obtain sufficient load capability
on a large workspace. We then introduce CLEO, our main
contribution, to optimize the design of the new architecture,
in section III. Implementation details are given in section IV.
We then describe the optimization results for the architecture
in section V and compare the resulting flexibility on two
physical prototypes of the lower part of the leg.

II. LEG ARCHITECTURE

We propose a serial-parallel architecture that combines
the advantages of the two parallel mechanisms: an upper
parallel bar mechanism generates the roll-pitch motion of
the hip, and a lower 3-RRS parallel structure provides the
knee displacement and the roll-pitch motion of the ankle.
The hip z axis is serially actuated since it is the less loaded
articulation of a biped robot. The x and y axes are set in
parallel to increase torque capability around the y-axis, one
of the most torque-demanding directions. The last 3 degrees
of freedom are set in parallel, within an architecture that
aims at maximizing the z-axis force that the robot foot can
produce, similarly to [22]. The kinematic diagram of this
structure is presented in figure 2. While it offers structural

benefits, its effective capability mostly relies on properly
arranging the joint orientation and bar length. Given the
complexity to optimize such a morphology, we develop an
algorithm that can automatically select design parameters.

III. OPTIMIZATION ALGORITHM

A. Algorithm overview

CLEO’s primary objective is to optimize architectures of
bipedal legs, by determining the parameters of the kine-
matic structure and the placement of the motors. These
optimization parameters are denoted by the variable X . This
includes variables that define joint positions, orientations,
and motorization selection. By systematically adjusting these
parameters, CLEO aims at identifying the optimal set of
design parameters of the leg that maximizes performance cri-
teria while satisfying all design constraints. We first present
the optimization generic principles before providing details
about the selected optimization criteria and constraints.

The optimization process employs the NSGA-III genetic
algorithm [15], which is well-suited for handling high-
dimensional, multi-objective optimization problems. This ap-
proach can simultaneously optimize multiple criteria, such as
minimizing the leg inertia, maximizing its range of motion,
and ensuring sufficient structural stiffness. By leveraging this
genetic algorithm, CLEO efficiently explores the complex
design space of bipedal leg architectures, and ultimately
converges to a design configuration that provides superior
performance. The optimized leg designs generated by CLEO
are then validated through simulation and prototyping, ensur-
ing their practical applicability in real-world scenarios.

B. Algorithm authority

The algorithm decides the motor models and placements,
along with the linkage sizing and relative placement.

1) Motor Selection: The motor selection is a discrete
variable denoted as Xm. Each value will refer to a motor
from a range, noted MR of actuators, that will select :

• Weight: The mass of the motor, which impacts the
overall weight distribution of the leg.

• Inertia: The moment of inertia of the motor, which
affects the dynamic response of the leg.

• Size: The physical dimensions of the motor, ensuring it
fits within the design constraints.

• Reduction Ratio: The gear reduction ratio, which will
change the inertia of the motor axis.

• Nominal Torque: The continuous torque that the motor
can deliver.

• Peak Torque: The maximum torque that the motor can
deliver for a short period.

These parameters together form Xm ∈ MR6, as the leg needs
to have 6 actuated degrees of freedom.

2) Kinematic Structure: The kinematic structure is de-
fined by a tree of joints with additional loop-closure con-
straints. Each joint is defined by its placement relative to
its parent joint. The mass (mlink) of the linkage attached to a
joint is proportional to its length (Llink), scaled by two factors
respectively depending on the number of children (Nchildren)



Fig. 3. We evaluate the design properties along 13 trajectories featuring
pure translation or rotation, 3 of them being represented here (top row:
vertical movement, mid row: forward movement, bottom row: offset vertical
movement). Each of these trajectories is sampled with 60 points.

and reflecting the material. Here 0.3 is chosen to model the
mass of an aluminum rod with a diameter of 10mm:

m = Nchildren ×Llink ×0.3 (1)

The inertia is computed from a homogeneous mass distri-
bution, representing the segment as a tube. The motor masses
are later added to obtain the final mass distribution.

Each degree of freedom (DoF) is either a revolute joint
(conventionally around the z-axis) or a spherical joint. The
algorithm determines the relative placement of each joint
with respect to its parent: translation (3 parameters) and
orientation (3 parameters using log representation). We also
let the algorithm decide the orientation along the joint axes
(either the z-axis for the revolute or the 3D orientation for
the spherical joint) to get the mounting robot configuration.
We sometimes want to inject additional designer knowledge
by constraining some placement parameters. This should
be considered at the constraints level. The motivation for
introducing such knowledge is discussed in section III-G.9.
We effectively implement it by clamping decision variables.
Note that the decision variable defines movement around the
base axis defined in the non-optimized architecture. Then,
the joint orientation needs to be carefully chosen during the
initial design of the architecture.

C. Decision variable

The kinematic parameters Xk = [Xk1 , . . . ,Xkn j ] modify the
robot’s kinematic structure, while Xm modifies its motoriza-
tion. Together, they form the complete optimization param-
eter set X = [Xm,Xk].

D. Workspace Evaluation

Ideally, the leg should be evaluated on a full locomo-
tion trajectory. In practice, it is hardly possible as (i) the
computational cost of generating such a movement remains
too high to be integrated inside a genetic algorithm, and

(ii) the robustness is insufficient to handle 100% of the
candidate generated by the algorithm. We rather rely on a
batch of 13 simpler trajectories, denoted RTi, i ∈ [1,13], that
are representative of the difficulty of walking (see Fig. 3).
We evaluated a posteriori that this simplification produces
designs that can walk, as shown in the result section V.

E. Cost Function

We exploit our previous work [13] to define a multi-
objective optimization problem that minimizes locomotion-
based costs to get the Pareto front of optimal solutions.

1) Occupency volume: The leg’s convex hull is the min-
imal convex shape that includes all its joints. Its volume
v must be minimal to prevent the architectures from being
unable to climb stairs or go through doors.

2) Foot inertia: To obtain a dynamic robot, the foot inertia
is optimized. As the foot will mainly move in the sagittal
plane, we minimize the foot inertia projected in this plane.
Thus, with ΛA ∈R6 the foot effective inertia, the criteria to
minimize can be written as:

g2 = [⃗z,⃗0]ΛA [⃗z,⃗0]T × [⃗x,⃗0]ΛA [⃗x,⃗0]T (2)

3) Impact mitigation: As we want the leg to withstand
impact, we also aim for a high-impact mitigation factor
projected on the z-axis [23]. This criteria compares how the
entire floating system reacts to external forces and how it
reacts when the base is fixed. We compute the foot effective
inertia when the base is non-fixed ΛA f ree and when the leg is
locked ΛAlock . We minimize the ratio projected on the z-axis
to obtain a structure that will efficiently mitigate the impact.

g3 =
[⃗z,⃗0]ΛA f ree [⃗z,⃗0]

T

[z,0]ΛAlock [⃗z,⃗0]T
(3)

The second and third criteria are linked, as a low effective
inertia will help mitigate the impact.

F. Multi-objective optimization

CLEO is developed as a tool to help robot designers to
optimize their designs. A multi-objective problem is formu-
lated rather than an arbitrary weighted sum. It provides a
3D Pareto front where designers can explore non-dominated
solutions. The optimization problem is then written as:

cost1 = ∑
RT

∑
qi∈RT

v(X ,qi)

min
X

cost2 = ∑
RT

∑
qi∈RT

g2(X ,qi)

cost3 = ∑
RT

∑
qi∈RT

g3(X ,qi)

(4)

G. Constraints

A total of 9 constraints must be satisfied, primarily fo-
cusing on the foot position Pf ∈ SE(3), with its translation
denoted Pft ∈R3 and the Jacobian matrix Ja ∈R6×6 that links
the foot velocity to the actuator velocities.



1) Closed Loop Respect: In a closed-loop system, the
loops within the architecture must remain unbroken. This
requirement is enforced as a contact constraint condition,
where the contact error Ck ∈ R3 must not exceed 5 cm:

∀q ∈ RTi,∀qi ∈ q,∀k = 1 : nk, ||Ck(qi;X)||< εc (5)

where Ck is the characteristic function of each of the nk loop-
closure constraints. The tolerance ε = 5cm accommodates
minor numerical integration errors along the trajectory. Here,
we choose 5cm as the threshold value to trigger it only when
the loop-closure constraints are no longer respected.

2) Compactness: We explicitly set boundaries to avoid
generating leg architectures that cannot walk. The first con-
straint ensures that the foot is below any leg articulation.

∀q ∈ RTi,∀qi ∈ q,∀ j = 1 . . .n j, p j(qi,X).⃗z < Pft .⃗z+ε f (6)

where p j is the position of the n j joint and ε f = 0.02 a
safety margin. This enforces the foot to be ε f = 2cm lower
than any other joint to account for joint occupancy. A similar
boundary ensures the leg to remain oriented in the sagittal
plane. Each articulation must be between εl = 15cm left and
εr = 10cm right of the hip from the leg center:

∀q ∈ RTi,∀qi ∈ q,∀ j = 1 . . .n j, εr < p j(qi,X).⃗y < εl (7)

Here, an asymmetry in the boundary gives more freedom
while ensuring that the two legs can be placed 20 cm apart.

3) Static Capability: Each leg must sustain the robot’s
weight and produce sufficient force for walking to ensure
stability. The absolute value of the Jacobian is used to
accommodate worst-case force direction.

∀q ∈ RTi,∀qi ∈ q, |JT
a |Fwalk < τmot (8)

The force set Fwalk is defined to produce 110% of the robot
weight P = mg on the z-axis and 10% on the x and y-
axes. The torque needed is chosen based on the torque
generated on the foot of the robot Talos during stair climbing
experiments, then scaled to the robot [24]:

Fwalk = (0.1P , 0.1P , 1.1P , 0.02P , 0.02P ,0.01P) (9)

4) Dynamic Capability: To enable running, the leg must
simultaneously produce significant forces on the z and x-axes
and torque around the y-axis of the foot. The leg can use the
peak motor torque τpeak :

∀q ∈ RTi,∀qi ∈ q, |JT
a Frun|< τpeak (10)

The force set Frun is:

Frun = (0.5P , 0 , 2P , 0 , 0.01P , 0) (11)

5) Kinematics Singularities: For every tested configu-
ration, 1 rad/s on the actuators must generate at least 1
mm/s or 10−3 rad/s on the foot. The value has been chosen
quantitatively to trigger kinematics singularities :

∀q ∈ RTi,∀qi ∈ q,
1

min(|Ja · [1,1,1,1,1,1]T |)
< 1000 (12)

Fig. 4. Equivalent torque transmission on an ideal leg

6) Forces Singularities: A combination of 1 N and 1
Nm of force and torque in any direction on the foot must
not generate more than 10 Nm of torque on the actuators.
The value has been chosen quantitatively to trigger force
singularities:

∀q ∈ RTi,∀qi ∈ q, max
(
|JT

a · [1,1,1,1,1,1]T |
)
< 10 (13)

The previous two criteria ensure non-proximity to singular-
ity in the tested workspace.

7) Constraint Singularities: Constraint singularities [29]
are inherent to parallel structures and lead to uncontrollable
degrees of freedom. Being close to these singularities causes
joint peak forces, leading to flexibility. To avoid this, we
compare the force transmission on the joints between the
parallel architecture and an ideal serial architecture. An ideal
serial architecture is a simple bar touching the ground at the
same point as the parallel one. A representation is shown
in Fig 4. A force field is applied on the foot of both
architectures. This force field will generate joint torques.
We compare the torques applied to each joint of the parallel
structure to the torque applied at the same height on the ideal
leg. As we want the parallel structure to be stiffer, each joint
on parallel mechanism should transmit less torque than the
equivalent joint of the ideal leg. Here, we want the parallel
leg to be at least 25% stiffer than the serial one. Thus, the
norm of the torque generated on each joint needs to be 25%
less.

∀q ∈ RTi,∀ j = 1 . . .n j, 1.25|τ j(q0,X)|< |τserial | (14)

This calculation is computationally intensive, as the forces
must be propagated inside a parallel structure. Thus, only the
first point of each trajectory is evaluated. With 13 different
trajectories, each with different starting points concentrated
around the walking pattern, we ensure the stiffness of the leg
during its lifecycle.

8) Joint Intersection: To obtain a buildable structure,
joints or motors must not be too close. Each joint requires
either a sphere of r j = 2cm radius, as it has been determined
to be the minimal occupancy volume of the real mechanical
joint, or a sphere of the motor radius r j = rmot that doesn’t



intersect with any other sphere of other joints.

∀q ∈ RTi,∀qi ∈ q,∀ j1 = 1 . . .n j,∀ j2 = j1 +1 . . .n j

||p j1(qi,X)− p j2(qi,X)||> r j1 + r j2
(15)

Figure 4 presents the occupancy of the actuated joint, with
each joint sufficiently far from the others.

9) Manufacturability: The orientation of some joints
should be limited to ensure the leg is easy to manufacture.
Manufacturing a part supporting a motor or axis wholly mis-
aligned from the parent axis is complicated. Thus, completely
fixing the joint’s orientation makes the part easy to make.
Making the joint able to rotate only around the x or y axis
(defined from his parent joint) doesn’t add such complexity
to the manufacturing part of the pieces, as intermediate
pieces oriented with centering pins can be machined. As
explained in Sec III-B.2, this constraint can be seen as a
restriction of the parameter spaces. Then the joint can be let
free, with half free rotation, or with fixed orientation, free
translation. The designer chooses to ensure or not easier
machining.

IV. ALGORITHM IMPLEMENTATION

The problem with hard constrain is finally written :

cost1 = ∑
RT

∑
qi∈RT

v(X ,qi)

min
X

cost2 = ∑
RT

∑
qi∈RT

g2(X ,qi)

cost3 = ∑
RT

∑
qi∈RT

g3(X ,qi)

subject to (4) to (14) = 0

(16)

Given the complexity of the problem and the difficulty of
producing the derivatives of the cost function and constraints,
a gradient-free method is used. We employ the NSGA-
III genetic algorithm [25], which supports high-dimensional
cost functions and provides a good approximation of the
Pareto front. For computational efficiency, the evaluation
of the cost function is parallelized, with each trajectory
RTi, i ∈ [1,13] evaluated separately. This approach enables
better workspace mapping without increasing computation
time. The function is minimized when all constraints are
equal to zero. It has been experimentally determined that
the genetic algorithm converges better when the constraints
are relaxed as penalties function and added as additional
costs. The optimization problem is then implemented with
3 main costs and 4 additional penalties, each penalizing the
violation of a constraint and which should be equal to zeros
at convergence. The extra costs are :

cost4 = ∑
RT

∑
qi∈RT

(c(4)+ c(5))

cost5 = ∑
RT

∑
qi∈RT

(c(6)+ c(7))

cost6 = ∑
RT

∑
qi∈RT

c(10)

cost7 = ∑
RT

∑
qi∈RT

c(11)

(17)

where c(k) is a linear penalty that penalizes the violation
of the constraint (k) The generated Pareto front will be 3-
dimensional when the constraints are respected.

V. OPTIMIZATION RESULT

A. Optimization parameter

The following degrees of freedom are allowed for the
joints:

• All the spherical joints (7) are let free
• All the motor joints (6) are let half free rotation
• All the other joints (5) are let fixed orientation, free

translation.
Each translational parameter can vary between [−0.2m,0.2m]
(allowing each joint to move 20cm in any direction), and
each rotational parameter can vary between [−1.5π,1.5π]
(allowing free rotation). To represent the closed kinematic
loop, we need to place a pair of frames to replace 5 spherical
joints and impose 3D contact between them. Thus, we have
10 frames plus 2 joints left free. Furthermore, as stated in
Sec III-B.2, the base orientation of each joint is left free, and
the direction of the rotation for the fixed orientation, free
translation joints (either x or y-axis) is left free thus, the
dimensionality of the variable representing the kinematics
is as follows: dim(Xk) = 12× 6+ 6× 6+ 5× 4 = 128 We
have chosen the 10 most relevant motors for our application
from the range offered by the manufacturer ”My Actuator”
[26]. Each motor will change the mass, occupancy, inertia,
and armature of the joint with the value given by the manu-
facturers. There are six motors, so dim(Xm) = 6. A total of
dim(X) = 134 parameters defines the leg structure. To avoid
excessive iterations where the genetic algorithm searches
for a feasible architecture, a feasible initial configuration
vector X is provided to warm start CLEO, as in the base
design, all axes are parallel or perpendicular, making the
initial architecture singular. The genetic algorithm aims to
improve this warm-start configuration vector, though it does
not guarantee a global minimum will be reached. The opti-
mization is performed on a population of 84 individuals, with
the algorithm running for 800,000 iterations, corresponding
to 40h of computation with 14 CPU cores of Intel Xeon
E5-2695 v4 used.

B. Analysis of the Pareto front

On the Pareto front (Fig 5), all solutions are quite similar.
To exhibit the similarity, we select two extreme cases, the one
with minimal foot inertia (named Lightfoot) and oppositely
the one with maximal foot inertia (named Heavyfoot).

C. Validation in simulation

CLEO analyzes the design capability with a simplified
trajectory RTi. Here, we cross-validate the relevance of the
trajectory set by showing that it leads to a design capable
of executing very dynamic movements such as walking
fast, climbing stairs, or even jumping. Here, we analyze a
fast-forward walk generated by trajectory optimization. A
bipedal robot is generated by adding the symmetry of the
leg (see Fig 1). We formulate a whole-body optimal control



Fig. 5. Resulting Pareto front obtained using CLEO. (a) foot inertia against
impact mitigation factor, and (b) foot inertia against Convex Hull Volume.
We can see from (a) that the two criteria are quite equivalent

Fig. 6. Torque differences between 2 different legs on the Pareto front on
a dynamics walking pattern

problem following the cost and constraints of [24] and using
the complete dynamics model of the serial/parallel design
using the differentiable dynamics described in [27],[28]. The
walking speed is set to 1.5 m/s The resulting movement
is presented in the companion video. It is smooth thanks
to the singularity and generated forces cost in CLEO. The
motor placement can be seen in Fig 4. In Fig 6, we display
motor torques during a walking cycle for the two selected
designs, Light and Heavy foot. Both designs have quite
similar behavior, particularly minimal variation of torque
demand during the swing phase, as the obtained leg inertia
is very low. The torque needed during the support phase is
higher for the LightFoot solution, which can be explained by
a lower motor reduction chosen by CLEO to reduce the foot
inertia. The algorithm has chosen a powerful motor for the
exterior of the hip (joint 3), which can produce up to 30Nm,
and we can see that it is needed to walk. The same OCP
has been used to generate several gaits at different speeds
and various configurations. The max torque does not show
significant variation, particularly for higher dynamics. These
movements are displayed in the companion video1.

1https://peertube.laas.fr/w/kA9nDwcasftEk6mNntVEAd

Fig. 7. The two prototypes compared in the study. (a) is the design resulting
from complete optimization, (b) the result from partial optimization without
constraint singularities cost. (c) The stiffness associated

D. Experimental validation of real hardware

The novelty of this design is the knee-ankle parallel
mechanism, and no evidence of such a mechanism being
used in humanoid legs has been found. While a design is
not yet mature enough for a complete assembly, we seek
to demonstrate its feasibility, particularly by investigating
its stiffnesses (which is very difficult to do in simulation).
Again, we selected two different designs for comparison.
Both are chosen on the Pareto front to minimize foot inertia.
The first results from a full optimization of CLEO (named
fully-optimized design, seen in Fig 7).a), the second from a
variation of CLEO where we remove the constraint related
to constraint singularity c(7) (name partially-optimized, seen
on Fig 7.a) In both cases, we only assembled the lower part
of the leg with the 3-DoF corresponding to the knee and the
ankle. We chose the solution maximizing the leg occupancy,
as it is more straightforward to manufacture. Although they
should have been assembled similarly, we printed the fully-
optimized version with 10% infiltration and the partially
optimized version with 40% infiltration. This error will be
corrected later but will not prevent a relevant experimental
analysis. The fully optimized design exhibits a much stiffer
behavior, as shown in Fig 7.c. On the partially optimized
design, 5N force on foot generates significant displacement
(despite stiffer plastic pieces). With the c(7) active, the leg
is much stiffer. This proves that the constraint singularities
criterion enabled the generation of a stiffer architecture and
that the genetic algorithm provide manufacturable results.

VI. CONCLUSION

In this work, we presented an effective approach to op-
timize serial-parallel leg architectures of a humanoid robot.
It uses a gradient-free optimization method to manage the
high-dimensional design space. By converting constraints
into objective functions and leveraging parallelized trajec-
tory evaluations, we identified optimal configurations that
ensure practical viability. Simulation and hardware valida-
tions confirmed that the optimized leg meets all constraints,
demonstrating robust performance under realistic conditions.

https://peertube.laas.fr/w/kA9nDwcasftEk6mNntVEAd


Key results highlighted the preference for designs achiev-
ing a balance between volume and inertia. The integration of
a whole-body control algorithm confirmed the leg’s ability
to support the robot’s weight and execute dynamic walking
motions. Additionally, incorporating singularity constraints
significantly improved the structural stiffness of the leg.

This study underscores the importance of considering both
kinematic and inertial factors in leg design and shows the
potential of genetic algorithms for complex robotic design
tasks. Future work will aim to enhance the optimization pro-
cess by including advanced dynamic models and expanding
the approach to other robotic subsystems.
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