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Dense polynomial optimization

NP-hard NON CONVEX Problem f,,, = inf f(x)

(Primal) ‘&] (Dual)

inf /fdy

with u proba = INFINITE-DIM <with f-02>0
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NP-hard NON CONVEX Problem f,;, = inf f(x)

(Primal Relaxation) @ (Dual Strengthening)

moments /x”‘ du f — b = sum of squares

finite number = FINITE-DIM <« fixed degree

[Lasserre '01] HIERARCHY of CONVEX PROBLEMS 1 fiin E’bﬂ,\
Based on representing positive polynomials [Putinar 93] t:ﬁ ¥

V" Attracted a lot of attention in optimization, applied
mathematics, quantum computing, engineering, theoret-
ical computer science
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Sparse polynomial optimization

Structure exploitation with “SPARSE” cost f and constraints
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Sparse polynomial optimization

Structure exploitation with “SPARSE” cost f and constraints
Correlative sparsity: few variable products in f

~ f = x1X0 + X2X3 + - - - + X99X100

Term sparsity: few terms in f

~ f =132 4 112300

Ideal sparsity: constraints
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Sparse polynomial optimization

Structure exploitation with “SPARSE” cost f and constraints

Correlative sparsity: few variable products in f
~ f = x1X2 + X2X3 + -+ + X99X100

100

Term sparsity: few terms in f !
~ f = x?gxz + x1%,

Ideal sparsity: constraints
~r XX = XpX3 = 0

PERFORMANCE == Vs ACCURACY

Tons of applications: computer arithmetic, deep learn-
ing, entanglement, optimal power-flow, analysis of dy-
namical systems, matrix ranks
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Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity
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Moment-SOS hierarchies: an example

NP hard General Problem: f.,i, := mi)r(1f(x)
Xe

Semialgebraic set X = {x € R" : g;(x) > 0}
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Moment-SOS hierarchies: an example

NP hard General Problem: f.,i, := mi)r(1f(x)
Xe

Semialgebraic set X = {x € R" : g;(x) > 0}
X=[012={xeR?:x(1—x1) =0, x(1—2x) >0}

f
=
X1Xp =
70 (%] (%}
> = 81 P 82
1 1 1 1~ "1 —"—
gyt n-35) + 5 x1(1—x1) + > x2(1 = x2)

Sums of squares (SOS) o;

Quadratic module: M(X); = { 00+ ¥ 0;8j, dego; g < 2d }
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Moment-SOS hierarchies

Hierarchy of SDP relaxations:
Ag = sup{)t f—-Ae M(X)d}
A

Victor Magron Sparse polynomial optimization 6/25



Moment-SOS hierarchies

Hierarchy of SDP relaxations:
Ag = sup{)t f—-Ae M(X)d}
A

v Convergence guarantees A; T fmin [Lasserre '01] when
N — Y x? € M(X) for some N >0

Victor Magron Sparse polynomial optimization 6/25



Moment-SOS hierarchies

Hierarchy of SDP relaxations:
Ag = sup{)t f—-Ae M(X)d}
A

v Convergence guarantees A; T fmin [Lasserre '01] when
N — Y x? € M(X) for some N >0

v Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

Victor Magron Sparse polynomial optimization 6/25



Moment-SOS hierarchies

Hierarchy of SDP relaxations:
Ag = sup{)t f—-Ae M(X)d}
A

v Convergence guarantees A; T fmin [Lasserre '01] when
N — Y x? € M(X) for some N >0

v Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

X “No Free Lunch” Rule: ("**!) SDP variables
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Correlative sparsity

s Exploit few links between variables [Lasserre, Waki et al. '06]
X2X5 + X3X6 — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

Chordal graph after adding edge (3,5) //
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Correlative sparsity

s Exploit few links between variables [Lasserre, Waki et al. '06]
X2X5 + X3X6 — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

Chordal graph after adding edge (3,5) //

L ={1,4}
maximal cliques I L ={1,2,3,5}

I3 =1{1,3,56}

Dense SDP: 210 vars
Average size « ~ k24 vars Sparse SDP: 115 vars
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Correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques Iy, I,
Q¢ = 0 with nonzero entries at edges of G
= Q¢ = PTQ1P; + P,TQ,P; with Q; 3= 0 indexed by I,
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Correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques Iy, I,
Q¢ = 0 with nonzero entries at edges of G
= Q¢ = PTQ1P; + P,TQ,P; with Q; 3= 0 indexed by I,

Sparse f = f1 + f» where f; involves only variables in I

Theorem: Sparse Putinar’s representation [Lasserre '06]

f>00n{x:gjx) >0} f:‘701+‘702+2‘7jgj
chordal graph G with cliques I, — !

. oo “varsin I
ball constraints for each x(1I) SC‘)‘S 0k "S€ES Vars In J
o; “sees” vars from g;
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Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x;,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)
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Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x;,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 + x3)?

GooD NEWwS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar *78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

f =Y fr fr depends on x(I;) =Y (siisei + Y ti"gjtii)
f>00n{x:gj(x) >0} ki j€Jk
chordal graph with cliques Iy = s;; “sees” vars in I

ball constraints for each x(Ij) t;; “sees” vars from g;
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + X6) = XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + X6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5
Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
VI = {x1, %2, X3, X4 3}
level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + X6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
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level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756

3 0.2508754 (1 day)

Victor Magron Sparse polynomial optimization 10/25



Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + x6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
VI — {x1,x2,x3, X3}

level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756

3 0.2508754 (1 day)

4 0.2508917

Victor Magron Sparse polynomial optimization 10/25
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f = xl(x4 + x5 + X6) -+ XQ(X4 + X5 — x6) + X3(X4 — X5) — X1 —2X4 — X5

Maximal violation levels — upper bounds on A, of f on
{x:x? = x;, xxj = xjx; if i € {1,2,3},j € {4,5,6}}
VI — {x1,x2,x3, X3}

level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)
PERFORMANCE j’%ﬁ" Vs ACCURACY
N
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Term sparsity: unconstrained

— Ayha6 g 42 2, .2
f = 4x7x3 4+ x7 — x1x5 + x5

spt(f) = {(4,6),(2,0),(1,2),(0,2)}

Newton polytope % = conv (spt(f))

Squares in SOS decomposition C % NIN"
[Reznick ’78]

X1

X2

f:<x1 Xp  X1X2 xlx% x%x%) Q | x1xo
=0 X1X%

X3

Victor Magron Sparse polynomial optimization 11/25



Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC *@OPS

f=x —2xyx0 + 323 — 2x3x0 + 2x3x% — 2xox3

+ 633 + 9x3x3 — 45x9%3 + 142x5x3 1
[Reznick 78] — Newton polytope method X1
X
f= (1 X1 Xp X3 XoXp X3X2) Q xi
~ 87 = 21 “unknown” entries in Q 20| xix
X2X3
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Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC *@OPS

f=x —2xyx0 + 323 — 2x3x0 + 2x3x3 — 2xox3

+ 633 + 9x3x3 — 45x9%3 + 142x5%3 1
[Reznick 78] — Newton polytope method X1
X2

=(1 x1 x x3 xox1 x3x3) QO
67 f=0 x1 x2 x x ) s
X

~~ 857 = 21 “unknown” entries in Q 20| x1x7

O, @‘@

Victor Magron Sparse polynomial optimization 12 /25
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Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC *@OPS

f=x —2xyx0 + 323 — 2x3x0 + 2x3x3 — 2xox3

+ 633 + 9x3x3 — 45x9%3 + 142x5%3 1
[Reznick 78] — Newton polytope method X1
X2
=(1 x1 X2 x3 x2Xx1 X3X
f=( 1 X2 X3 XoX1 X3Xp) \(%/ s
~~ 857 = 21 *unknown” entries in Q 70| xyx0
GO
V¥ Term sparsity pattern graph G
+ chordal extension G’
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Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC Q@OPS

f=x2 —2x1x + 3x3 — 2x3xp 4+ 2x3x3 — 22013

+ 633 + 9x3x3 — 45x9%3 + 142x5%3 1
[Reznick 78] — Newton polytope method X1
X
f = (1 X1 X2 X3 XoX1 X3XZ) Q 2
~— | *
~~ 857 = 21 *unknown” entries in Q 70| xyx0
G
V¥ Term sparsity pattern graph G
+ chordal extension G’

Replace Q by Qs with nonzero entries at edges of G’

~» 6 + 9 = 15 “unknown” entries in Qc
Victor Magron Sparse polynomial optimization 12 /25



Term sparsity: constrained

At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree < d
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Term sparsity: constrained

At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree < d
Edges E with

{a,f} € E<= a+ P esuppf| Jsuppg |J 2

|a|<d

An example with d =2
f= x‘lL + x1x% + Xox3 + x%xi
91 :1—x%—x2—x3 P =1—x3x4
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Term sparsity: support extension

o' +p =a+pand (x,f) € E= («/,p') € E

QO OO
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Term sparsity: constrained

At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree < d
Edges E with

{w,p} € E< a+ pesuppf|suppg |J 2

|a|<d

~ support extension ~» chordal extension G’
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Term sparsity: constrained

At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree < d
Edges E with

{a,p} € E= a+ pesuppf| Jsuppgi | J 2

|a|<d

~ support extension ~» chordal extension G’
By iteratively performing support extension & chordal extension

GV=g' c...cgWcgdc...

V" Two-level hierarchy of lower bounds for f,..i, indexed by
sparse order ¢ and relaxation order d
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Term sparsity

v CONVERGENCE GUARANTEES
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Term sparsity

v CONVERGENCE GUARANTEES

‘¥ handles Combo with correlative sparsity
Partition the variables w.r.t. the maximal cliques of the csp graph

For each subsystem involving variables from one maximal
clique, apply the iterative procedure to exploit term sparsity

V" two-level hierarchy of lower bounds for f;,in: CS-TSSOS hierarchy
¥ Julia library TSSOS — solve problems with n = 103

V" choice of the CHORDAL EXTENSION: min / max
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Application to AC optimal power-flow

Minimize active power injections of an alternating current
transmission network under physical + operational constraints

- 63 kv

00 kv
225KV
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Application to AC optimal power-flow

Minimize active power injections of an alternating current
transmission network under physical + operational constraints

00 kv
225KV

Artificial version of the control problem for electricity
transmission network
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Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges ER
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Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges ER
Generators at bus i = G;, with power demand S’f
V; and Sf = voltage at bus i and power generation at generator k

L V:
ohmlaw: | 1) =v; [
m law (I]'i> ij <V]>
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Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges ER
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Network = Graph with buses N, from edges E, to edges ER
Generators at bus i = G;, with power demand S’f
V; and Sf = voltage at bus i and power generation at generator k

L V:
ohmlaw: | 1) =v; [
m law (I]'i> ij <V]>

Relation power-voltage-current: Y. S§ — S¢ = ViI*
~ |leads to power-flow equations
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Application to AC optimal power-flow

mb: maximal block size
gap: the optimality gap w.r.t. local optimal solution

" " CS(d=2) CS-TSSOS (d =2,4=1)
mb time gap | mb time gap
231 3114 0.85% | 39 46.6 0.86%
12 4613 496 — — 31 410 0.25%
4356 18257 | 378 — — 27 934 0.51%
6698 29283 | 1326 — — 76 1886 0.47%
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Ideal sparsity

fmin = min{f(xler) L X1X2 = 0}

= sup{A : f(x1,x2) —A > 0 whenever xjx, =0}

=sup{A: f(x1,0) —A >0, f(0,x)—A =0}

Vreplace f(x1,0) = A > 0 by f(x1,0) — A = o1 (x1) with SOS o

Generalization to ideal constraints {x;x; =0 V(i,j) € E}
~» max. cliques of the graph with vertices {1,...,n} & edges E

Theorem [Korda-Laurent-M-Steenkamp ’22]
Ideal-sparse hierarchies provide better bounds than the dense ones
ﬁ ACCURACY
20/25
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

7
A= ZﬂgﬂgT for ayp >0
=1

r is called the completely positive rank
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.
r
A= ZﬂgﬂgT for ayp >0
(=1

r is called the completely positive rank
X hard to compute
v Relax/convexify with a linear program over measures

r> inf{/ ldy - / xixidp = Aj; (i,j € V), supp(p) € Ka}

H Ka Ka
KA:{x:\/Aiixi—xi20, Ai]‘—xinZO(i,j)GEA,
xixj:O(i,j) EEA, A—XXT%O}
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Application to matrix ranks

Random instances, order 2
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Application to matrix ranks

Random instances, order 2
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Application to matrix ranks

Random instances, order 2
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PERFORMANCE 374‘3’ AND ﬁ ACCURACY
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radius
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radius

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

V" Combine correlative & term sparsity for problems with n = 10°
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Further topics

Correlative sparsity: convergence rate?
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Further topics

Correlative sparsity: convergence rate? wbﬂ N
-
m %

Term sparsity: (smart) solution extraction
Ideal sparsity: tensor ranks?
Numerical conditioning of sparse SDP relaxations?

V" Tons of applications!
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Take-away

Why should you do polynomial optimization?
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Take-away

Why should you do polynomial optimization?
V" powerful & accurate MODELING tool for many applications

V" EFFICIENCY guaranteed on structured applications: deep
learning, quantum information, energy networks
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Thank you for your attention!
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