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Verifying Properties of Binary Neural Networks Using
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Summary

of our method in verifying robustness against both ||.||sc and ||.||o-based adversarial attacks.

This work explores methods for verifying the properties of Binary Neural Networks (BNNs), focusing on robustness against adversarial attacks. Despite their lower computational and memory needs, BNNs, like their full-precision
counterparts, are also sensitive to input perturbations. Established methods for solving this problem are predominantly based on Satisfiability Modulo Theories (SMT) and Mixed-Integer Linear Programming (MILP) techniques,
which often face scalability issues. We introduce an alternative approach using Semidefinite Programming (SDP) relaxations derived from sparse Polynomial Optimization (POP). Our approach, compatible with continuous input
space, not only mitigates numerical issues associated with floating-point calculations but also enhances verification scalability through the strategic use of tighter first-order semidefinite relaxations. We demonstrate the effectiveness
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Binary Neural Networks

Let L > 1 be the number of hidden layers of a classifying BNN, with layer widths being given by n =
(ng,n1,...,np,n1)7 € NL+2 | where ng and ny . are input and output dimensions. A feed-forward BNN
is @ mapping from the input region R, C R™ to the output set |1, ny ] realized via successive compositions
of several internal blocks (B;);—; . and an output block By

BNN : Ry, — [1, ny 1]

2 — BNN(2") := argmax (Bo(By(. .. (B1(x"))))) (1)

For any i € [1, L], the internal block B; implements successively three different operations: affine transfor-
mation, batch normalization and point-wise binarization, so that its output vector, denoted by x', belongs to
{—1,1}". These operations are described by a set of trainable parameters:

i+1] pli+1] _ N1 XN, TN i ali] ] 2.0 nid
(W 7b >Z€[[O,L]] 6 { ]‘707 1} I X R +17 (7 7/8 7/"’ 70 >Z€[[1,L]] 6 <R ) : (2)
Steps Input Output Transformation
Linearization z—1 ¢ {—1, 1}”2'—1 y € R™ Yy = WM 1—1 s b{’iJ
1] :
Batch-Normalization y € R z € R *y;] jJJQ Hi |+ ﬂ?]
Binarization z € R" x' e {—1,1}" i S|gn( )

Table 1: Structure of an internal block B;.

The output block B, applies a softmax transformation to the affinely-transformed outputs of the last hidden
layer, i.e., for each j € |1, ny 1],

oLl exp(z;)
CT T S exp(z)

L L | L+1]
, where Z] = W(],) r + b] . (3)

Deriving a Tighter First-Order Relaxation - 7.

Sparse SDP for BNN Robustness Verification

Consider a sequence of vector-valued functions (hj, g;);cq1 1] such that
z' = sign (W[i]a{‘i_1 + bm) —

Suppose that the input perturbation region B C R™ can be encoded via positivity conditions on (at most
quadratic) polynomials zV — gB(mO). Then, the standard form BNN verification problems becomes:

o i flal ' xh) (5a)
st hiz)=0,i€e[1, L] (5b)
gi(@' @'~ >0,ie[1, L], (5¢)
gp(x’) >0, (5d)
where f is linear/quadratic, e.g., f = f]%dv(azo, xl ... ,azL) = <W(%J>rl] — W([]ggl] >+ b[LH] bkLH].

Exploiting Sparsity

Let us suppose that [1,n] =: Iy = ngl-’k with I;. not necessarily disjoint. The subsets [;., called cliques,
correspond to the subsets of variables xj, := {x;,7 € I;;}. An instance of the BNN robustness verification
problem of the form (5) exhibits correlative sparsity since

= There exist (fk>ke[[1,p]] such that f = szk with fi. € Rlz; ],

= The polynomials g can be split into disjoints sets Ji, such that g;(); € J it and only i 9i(-); € Rlzp].
Moreover, gg € Jj, for k € [1, p]. Since h;(-); only depends on x%, the overall sparsity structure is
induced by inequality constraints that mimic the cascaclmg BNN structure

The hierarchy of correlatively sparse SDP relaxations is then given by

& =sup{A ER | f—A- él% € Zyh), 01 € Qa(19i(+)j € Jr1)}-

NoJ

Some Numerical Results

ighter,cs

—> For each i € |1, L], we replace the constraint defined in (4b) by the following two constraints:

gla’ z ) = (@' +1) o (Wiz'"! +bll) > 0, (6a)
g’z ) = (z' - 1) o (Wl +8l) > 0 (6b)

g’ 2 ) = (2 + 1) © (v (W) - wlilz'™1) > o, (7a)
g’ 2 ) = (1 —a") o (v (W) + wlilz'™1) > o, (7b)

Theorem
1

For any BNN verification problem, 7oy o = Ttlghtel“ > 71 If L > 2, there exists an affine f such that the
inequality is strict. We also have Ttlighter o = T1,p for any affine f.

( sup A
}\’{ﬂ-ﬂ }H'Eﬁi i€[1,2]:9B 1{Gk }E:zl

) , | st. fA Y _X—geTi(h),
y S | \ 3
N 3.’31 7 :I:]_ —> :B]_ 1

2N I S Tighers =\ o(z) =) Y 1'(og0g(’a™) + ) oulen) + ongs(a’).
L 7 N i=1 g&gi k=1

o — ook(xr,) = vi(2, ) Grvi(zr,), G € Sﬁﬂﬂak e [1,5],
L3 \ 0,>0g€g,i€[1,2], op>0.
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Figure 1: (left) A toy BNN with L = 2 and (ng,ni,n9,n3) = (3,2,2,2). The cliques Iy, I, I3 (red polygons)

and Iy, I'5 (blue polygons) are used to compute Ttlighter,cs (right). We let g; = {g}, g7, i, g}

—> \Verification against ||.||sc-attacks |

100 -
=
N
B —100 |
=
TLP T TSoft-MILP £ —200
tighter,cs ort- @)
Model A cert. t(s) | cert. ¢ t(s) cert. t(s) —300 ]
BNN; - 025 | 83 001 ] 91 362 | 3195 0.04 100 [ '
050 | 31 0.02] 60 669 | 4194 121 <
[78%504(”3‘;9’ O Yoo | T 003| 21 1076 | 15150 25190 & o
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Figure 2: (left) Performance comparison for different models and input regions, given by 4| = 127.5¢. (right)
Comparing 71,p and Ttlighter,cs bounds for BNN7 and different d) || . The relative improvement is up to 55%.

—> \Verification against ||.||>-attacks |

Image Index bmS%hterﬁs) boﬂtrlszr(l)(fit-l\ﬂ}ﬁs)

Ol.f, = 15
1 i 1 4 0.14 47.94 | timeout > 600
5| | | |2 TtightEI"?CS TSoft-MINP (5| | ||‘2 Ttighter"CS TSoft-MINP 14 19.98 39.04 | timeout > 600
cert. t(s) cert. t(s) cert. t(s) cert. t(s) 20 33.38  88.27 | timeout > 600
. L . 48 16.31  47.78 | timeout > 600
BNN; : (784,500, 500, 10], w, = 34.34% BNN, : [784, 500, 500, 10], w, = 19.07% 51681 AT | timeont > 60
10 70 523 | 3193 33.35 D 81 8.57 | 2196 3.31 69 20-93 67;48 timeont = 600
20 | 36 19.54 | 4130  447.11 10 | 46 19.00 | 3158 27292 | g Do) et > 00
30 13 3424 | 416 556.07 15 27 6321 | 4123 475.78 99 5351 5717 | timeout ~ 600

Figure 3: (left, center) Performance comparison for different BNN models and input regions, given by
5||-\|2 = 255e. (right) Verification against ||.|[>-attacks: illustrating the significant speedup for specific instances.
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