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Summary
This work explores methods for verifying the properties of Binary Neural Networks (BNNs), focusing on robustness against adversarial attacks. Despite their lower computational and memory needs, BNNs, like their full-precision
counterparts, are also sensitive to input perturbations. Established methods for solving this problem are predominantly based on Satisfiability Modulo Theories (SMT) and Mixed-Integer Linear Programming (MILP) techniques,
which often face scalability issues. We introduce an alternative approach using Semidefinite Programming (SDP) relaxations derived from sparse Polynomial Optimization (POP). Our approach, compatible with continuous input
space, not only mitigates numerical issues associated with floating-point calculations but also enhances verification scalability through the strategic use of tighter first-order semidefinite relaxations. We demonstrate the effectiveness
of our method in verifying robustness against both ∥.∥∞ and ∥.∥2-based adversarial attacks.
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Binary Neural Networks

Let L ≥ 1 be the number of hidden layers of a classifying BNN, with layer widths being given by n =
(n0, n1, . . . , nL, nL+1)⊺ ∈ NL+2 , where n0 and nL+1 are input and output dimensions. A feed-forward BNN
is a mapping from the input region Rn0 ⊂ Rn0 to the output set J1 , nL+1K realized via successive compositions
of several internal blocks (Bi)i=1,...,L and an output block Bo:

BNN : Rn0 → J1 , nL+1K
x0 7→ BNN(x0) := argmax

Bo(BL(. . . (B1(x0))))
 .

(1)

For any i ∈ J1 , LK, the internal block Bi implements successively three different operations: affine transfor-
mation, batch normalization and point-wise binarization, so that its output vector, denoted by xi, belongs to
{−1, 1}ni. These operations are described by a set of trainable parameters:

W [i+1], b[i+1]
i∈J0 ,LK ∈ {−1, 0, 1}ni+1×ni × Rni+1,

γ [i], β[i], µ[i], σ2,[i]
i∈J1 ,LK ∈ (Rni)4 . (2)

Steps Input Output Transformation
Linearization xi−1 ∈ {−1, 1}ni−1 y ∈ Rni y = W [i]xi−1 + b[i]

Batch-Normalization y ∈ Rni z ∈ Rni zj = γ
[i]
j


yj−µ

[i]
j√

σ
2,[i]
j +ϵ

 + β
[i]
j

Binarization z ∈ Rni xi ∈ {−1, 1}ni xi = sign(z)
Table 1: Structure of an internal block Bi.

The output block Bo applies a softmax transformation to the affinely-transformed outputs of the last hidden
layer, i.e., for each j ∈ J1 , nL+1K,

xL+1
j = exp(zj)∑nL+1

k=1 exp(zk)
, where zj = W

[L+1]
(j:,) xL + b

[L+1]
j . (3)

Sparse SDP for BNN Robustness Verification

Consider a sequence of vector-valued functions (hi, gi)i∈J1 ,LK such that

xi := sign
W [i]xi−1 + b[i] =⇒


hi(xi) := xi ⊙ xi − 1 = 0, (4a)
gi(xi, xi−1) := xi ⊙ (W [i]xi−1 + b[i]) ≥ 0, (4b)

Suppose that the input perturbation region B ⊆ Rn0 can be encoded via positivity conditions on (at most
quadratic) polynomials x0 7→ gB(x0). Then, the standard form BNN verification problems becomes:

τ :=



min
x0,x1,...,xL

f (x0, x1, . . . , xL) (5a)

s.t. hi(xi) = 0, i ∈ J1 , LK, (5b)
gi(xi, xi−1) ≥ 0, i ∈ J1 , LK, (5c)
gB(x0) ≥ 0, (5d)

where f is linear/quadratic, e.g., f = fadv
k (x0, x1, . . . , xL) :=

〈
W

[L+1]
(ȳ:,) − W

[L+1]
(k:,) , xL

〉
+ b

[L+1]
ȳ − b

[L+1]
k .

Exploiting Sparsity
Let us suppose that J1 , nK =: I0 = ∪p

k=1Ik with Ik not necessarily disjoint. The subsets Ik, called cliques,
correspond to the subsets of variables xIk

:= {xi, i ∈ Ik}. An instance of the BNN robustness verification
problem of the form (5) exhibits correlative sparsity since
• There exist (fk)k∈J1 ,pK such that f = ∑p

k fk, with fk ∈ R[xIk
],

• The polynomials g can be split into disjoints sets Jk, such that gi(·)j ∈ Jk if and only if gi(·)j ∈ R[xIk
].

Moreover, gB ∈ Jk for k ∈ J1 , pK. Since hi(·)j only depends on xi
j, the overall sparsity structure is

induced by inequality constraints that mimic the cascading BNN structure.
The hierarchy of correlatively sparse SDP relaxations is then given by

τd
cs := sup

λ,σ
{λ ∈ R | f − λ −

p∑
k=1

σk ∈ Id(h), σk ∈ Qd({gi(·)j ∈ Jk})}.

Deriving a Tighter First-Order Relaxation - τ 1
tighter,cs

=⇒ For each i ∈ J1 , LK, we replace the constraint defined in (4b) by the following two constraints:

g̃1

i (xi, xi−1) := (xi + 1) ⊙
W [i]xi−1 + b[i] ≥ 0, (6a)

g̃2
i (xi, xi−1) := (xi − 1) ⊙

W [i]xi−1 + b[i] ≥ 0. (6b)

=⇒ Add the following two redundant quadratic constraints, i.e., tautologies, to the optimization problem (5):

g̃t1

i (xi, xi−1) := (xi + 1) ⊙
nv

W [i] − W [i]xi−1 ≥ 0, (7a)
g̃t2

i (xi, xi−1) := (1 − xi) ⊙
nv

W [i] + W [i]xi−1 ≥ 0, (7b)

Theorem
For any BNN verification problem, τ1

tighter,cs = τ1
tighter ≥ τ1. If L ≥ 2, there exists an affine f such that the

inequality is strict. We also have τ1
tighter,cs ≥ τLP for any affine f .

Figure 1: (left) A toy BNN with L = 2 and (n0, n1, n2, n3) = (3, 2, 2, 2). The cliques I1, I2, I3 (red polygons)
and I4, I5 (blue polygons) are used to compute τ1

tighter,cs (right). We let g̃i = {g̃1
i , g̃2

i , g̃t1
i , g̃t2

i }.

Some Numerical Results

=⇒ Verification against ∥.∥∞-attacks ⇓

Figure 2: (left) Performance comparison for different models and input regions, given by δ||.||∞ = 127.5ϵ. (right)
Comparing τLP and τ1

tighter,cs bounds for BNN1 and different δ||.||∞. The relative improvement is up to 55%.

=⇒ Verification against ∥.∥2-attacks ⇓

Figure 3: (left, center) Performance comparison for different BNN models and input regions, given by
δ||.||2 = 255ϵ. (right) Verification against ∥.∥2-attacks: illustrating the significant speedup for specific instances.
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