

Experimentation platform for repeatable security analysis in IoT heterogeneous environments

Florent Galtier, Paul L R Olivier, Guillaume Auriol, Vincent Nicomette,

Romain Cayre

► To cite this version:

Florent Galtier, Paul L R Olivier, Guillaume Auriol, Vincent Nicomette, Romain Cayre. Experimentation platform for repeatable security analysis in IoT heterogeneous environments. 17th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2024), May 2024, Seoul, South Korea. 2024, 10.1145/xxxxxx. hal-04725617

HAL Id: hal-04725617 https://laas.hal.science/hal-04725617v1

Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

48

49

58

POSTER: Experimentation platform for repeatable security analysis in IoT heterogeneous environments

Florent Galtier Paul L. R. Olivier LAAS-CNRS Toulouse, France firstname.lastname@laas.fr Guillaume Auriol Vincent Nicomette LAAS-CNRS, INSA-Toulouse Toulouse, France firstname.lastname@laas.fr Romain Cayre EURECOM Biot, France firstname.lastname@eurecom.fr 59 60

61 62

63 64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ABSTRACT

This poster introduces a platform addressing challenges in creating a representative environment for IoT wireless protocols. It aims to facilitate experiment repeatability by generating realistic traffic, executing attacks, and monitoring wireless communications. It offers a controlled environment for producing datasets suited for the assessment of intrusion detection systems.

CCS CONCEPTS

• Networks \rightarrow Wireless local area networks; • Security and privacy \rightarrow Mobile and wireless security.

KEYWORDS

IoT, platform, security, wireless protocols, datasets

ACM Reference Format:

Florent Galtier, Paul L. R. Olivier, Guillaume Auriol, Vincent Nicomette, and Romain Cayre. 2024. POSTER: Experimentation platform for repeatable security analysis in IoT heterogeneous environments. In *WiSec '24: 17th ACM Conference on Security and Privacy in Wireless and Mobile Networks, May 27–May 30, 2024, Seoul, Korea.* ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/xxxxxx.xxxxxx

1 INTRODUCTION

With the rise of the Internet of Things, a large set of wireless protocols has emerged, each optimized to address its particular requirements and limitations. Their simultaneous deployment in the same frequency bands has led to increased their complexity in order to avoid interference. In addition, the dynamic nature of IoT ecosystem forced these protocols to always undergo changes in their specifications, while keeping a degree of compatibility to adapt to competition and new use cases. In particular, new attacks and defense mechanisms require to keep the protocol up to date.

While a lot of papers have been published to highlight new attack vectors [5], reproducing these results is generally difficult. This situation significantly complicates the collection of traffic traces for defensive research. Attacks must be reproduced to be thoroughly studied from various perspectives to build comprehensive datasets.

© 2024 Association for Computing Machinery.

57 https://doi.org/10.1145/xxxxxxxxxx

These can then be used to design and evaluate intrusion detection and prevention systems.

Wireless IoT protocols introduce new challenges when it comes to experiments repeatability. The nature of protocols themselves introduces technical challenges that could lead to unstable attacks. For instance, the channel hopping mechanism in Bluetooth Low Energy (BLE) requires the attacker to synchronize with its victims before launching its attacks [2]. Moreover, the existence of attacks exploiting the lowest communication layers underlines the need to collect not only the packets but also radio signals. It is typically the case when targeting the Link Layer and Physical Layer in BLE [1], or when impacting compatibility between wireless technologies.

More importantly, an IoT environment is generally composed of multiple networks based on heterogeneous protocols interconnected by gateways. Building a realistic IoT environment involves encompassing all these elements into a cohesive system. While it is already difficult to produce representative attack datasets for standard protocols on wired networks, IoT protocols face the additional above-mentioned challenges. De Keersmaeker et al. also highlight the lack of exploitable IoT public datasets in their survey [4].

In this poster, we present the development of a platform targeting challenges of experiment repeatability with IoT wireless protocols. This platform aims to generate legitimate and malicious traffic in a realistic IoT environment to support research into intrusion detection in wireless protocols. It provides a set of preconfigured tools allowing to capture and inject traffic from different devices deployed in the environment. The platform is currently under active development. Its final aim is to enable researchers to configure their own experimental setup and launch it automatically.

2 MAIN FEATURES

Legitimate traffic generation. Our approach focuses on deploying off-the-shelf devices composed of commercial products and programmable devices. Commercial devices, such as lightbulbs and smartwatches, generate realistic traffic linked to a specific application. Programmable devices can generate and replay pre-defined traffic. They are configured by the user to choose the traffic suited for their experiment.

Malicious traffic generation. Passive and active attacks can be performed from different nodes, targeting the deployed protocols. Examples of attacks available to platform users include spoofing, Man-in-the-Middle, hijacking, jamming and sniffing. In addition, it is possible to collect generated logs from each attack module.

Multi level monitoring. Monitoring wireless communications efficiently is a key feature of the platform. The platform currently

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.
 WiSec '24, May 27–May 30, 2024, Seoul, Korea

ACM ISBN 978-1-4503-XXXX-X/21/06...\$15.00

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

174

includes Software Defined Radios (SDR) (e.g., USRP), which collect the whole traffic at the physical layer. Later, the platform will be enriched with more specialized sniffers such as Ubertooth and RZUSBStick. Those directly demodulate the signal, exposing the binary packets. It is also possible to instrument some devices to collect their received and transmitted traffic. This way, we capture traffic on different layers (radio signal, packets) and from different locations (external probe, on-device).

Repeatable and controlled environment. A major challenge in repeating wireless security experiments is the large variety of environments, along with the time and financial cost required to reproduce experimental setups. The platform provides a set of devices and protocols diverse enough to be representative of a realistic environment. The state of all devices can be controlled individually.

3 PLATFORM DESCRIPTION

The architecture of the platform has been designed to simplify the 134 135 execution of the various experiments and the collect of the corresponding datasets. The platform contains a set of Raspberry Pi 136 controlled with Mirage [3], a Python framework for IoT auditing. It 137 138 features several well-known short-range wireless protocols, such as 139 Bluetooth Low Energy (BLE), ZigBee, 6LoWPAN and Wifi. For each supported protocol, it embeds analysis and attack modules, as well 140 as means to communicate as a standard device. Of course, some 141 other tools may also be used to carry out specific attacks if neces-142 sary. We are also currently working on integrating longer-range 143 protocols such as LoRaWAN. The platform also contains various 144 145 wireless devices supporting those protocols, that can be controlled or attacked remotely from Raspberry Pi running Mirage, as well 146 as SDR devices. By precisely controlling the environment and the 147 attacks that are performed, this platform generates meaningful data 148 for assessing intrusion detection mechanisms. 149

The platform is accessed and managed by three machines: 1) A web server, that users access to configure and launch experiments, as well as receive the results ; 2) An orchestrator, that receives commands from the web server and configures the platform accordingly ; and 3) A central monitor linked to a SDR device, allowing to test centralized Intrusion Detection Systems.

Experiments are set up from a web interface where one can 156 specify which commands they want to run, where and when. This 157 generates a JSON file that will then be sent to the orchestrator, 158 159 and integrated with the output data. The user can also directly provide a JSON file to launch an experiment. For each experiment, 160 161 the orchestrator first generates a schedule for all devices inside the platform, according to the requested configuration. It contains the 162 different commands that should be run, when, and the execution 163 time, at the end of which the command is killed if it didn't finish. 164 165 Then, it manages powering on or off the devices needed for the experiment, and sends to each device that should run commands the 166 corresponding individual schedule. Finally, it sends to the central 167 168 monitor information on the experiment duration and frequency band, to configure correctly the radio receiver. 169

On reception of this configuration, the central monitor schedules
a radio capture at the requested time and frequencies. In the current
state of the platform, the monitor analyses the signal to detect the
presence of emissions, and returns this information along with the

raw signal. In time, users will be able to integrate their own analysis code, for example an Intrusion Detection System that could return its alerts in the experiments logs.

Each experiment generates an archive containing: 1) The raw signal captured during the experiment (in complex format), 2) PCAP files corresponding to the communications identified at the SDR device, 3) Logs from the Mirage commands that were executed during the experiment. The raw signal captures are performed using several USRP B200. This allows recovering a wide band capture from separate synchronized captures from the USRP.

The whole architecture of the platform is described in Figure 1. In its current state, the platform contains: 20 controllable Raspberry Pi 3, plus a last one managing a local Wifi network; 1 controllable Raspberry Pi 4; 2 BLE outlets; 1 BLE lightbulb; 3 BLE smart watches; 1 BLE thermometer; 3 Philips Hue lightbulbs plus an associated gateway; 1 6LoWPAN thermometer linked to a 6LoWPAN water heater (heating control system); 1 WiFi outlet and 1 Google Doorbell.

Figure 1: General architecture

4 CONCLUSION

We are currently working on experiment automation and the instrumentation of the commercial devices, to control them more finely. We plan to isolate the platform in a Faraday cage, allow the generation of arbitrary signal from the USRP, and use it to provide several large datasets to the community, including labelled legitimate and malicious activity.

REFERENCES

- [1] S. Bräuer, A. Zubow, S. Zehl, M. Roshandel, and S. Mashhadi-Sohi. 2016. On practical selective jamming of Bluetooth Low Energy advertising. In 2016 IEEE Conference on Standards for Communications and Networking (CSCN). 1–6. https: //doi.org/10.1109/CSCN.2016.7785169
- [2] Damien Cauquil. 2018. You'd better secure your BLE devices or we'll kick your butts !. In DEF CON, Vol. 26. Available at https: //media.defcon.org/DEFCON26/DEFCON26presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf.

POSTER: Experimentation platform for repeatable security analysis in IoT heterogeneous environments

- [3] Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata, Mohamed Kaåniche, and Geraldine Marconato. 2019. Mirage: towards a Metasploit-like framework for IoT. In 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). Berlin, Germany. https://laas.hal.science/hal-02346074
 [4] François De Keersmaeker, Yinan Cao, Gorby Kabasele Ndonda, and Ramin Sadre.
 - 2023. A Survey of Public IoT Datasets for Network Security Research. IEEE

Communications Surveys Tutorials 25, 3 (2023), 1808-1840. https://doi.org/10. 1109/COMST.2023.3288942

[5] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave Tian, and Antonio Bianchi. 2023. SoK: The Long Journey of Exploiting and Defending the Legacy of King Harald Bluetooth. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 23–23.