
HAL Id: hal-04725668
https://laas.hal.science/hal-04725668v2

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlueScream: Screaming Channels on Bluetooth Low
Energy

Pierre Ayoub, Romain Cayre, Aurélien Francillon, Clémentine Maurice

To cite this version:
Pierre Ayoub, Romain Cayre, Aurélien Francillon, Clémentine Maurice. BlueScream: Screaming
Channels on Bluetooth Low Energy. 40th Annual Computer Security Applications Conference (AC-
SAC ’24), Dec 2024, Waikiki, Honolulu, Hawaii, United States. �hal-04725668v2�

https://laas.hal.science/hal-04725668v2
https://hal.archives-ouvertes.fr

BlueScream: Screaming Channels on Bluetooth Low Energy

Pierre Ayoub†, Romain Cayre†, Aurélien Francillon†, and Clémentine Maurice‡
† EURECOM

Sophia-Antipolis, Biot, France
Email: firstname.lastname@eurecom.fr

‡ Univ. Lille, CNRS, Inria
Lille, France

Email: firstname.lastname@inria.fr

Abstract—In recent years, a class of wireless devices has
been demonstrated to be vulnerable to a new side-channel
attack called Screaming Channels. This attack exploits distant
electromagnetic side channels up to a few meters, when a
coupling occurs between the digital activity and the radio
transceiver of a system. This can happen in mixed-signal chips,
where both digital and analog parts reside on the same silicon
die. Until now, the Screaming Channel attack has mainly
been demonstrated using custom firmware used in laboratory
conditions or simple protocols – e.g., Google Eddystone.

In this paper, we evaluate an end-to-end Screaming Chan-
nel attack on a real-world firmware running on an off-the-
shelf and popular Bluetooth Low Energy stack. By doing a
careful analysis of Bluetooth Low Energy to find how to make
the victim device leak, our results show that an attacker can
manipulate the protocol such that a Screaming Channel leak
happens during a radio transmission. Finally, we conducted
one successful full-key recovery attack against AES using
instrumented firmware and a partial-key recovery using stock
firmware.

1. Introduction

Electromagnetic eavesdropping on computer applica-
tions is a 70-year-old problem in the military world, as
illustrated by the TEMPEST specification from the NSA [1].
In the public domain, it has been known for at least four
decades, popularized as Van Eck Phreaking through the
work of Van Eck, which eavesdropped video display through
their electromagnetic radiation (EMR) [2]. On the other
hand, side-channel attacks are a threat to cryptosystems and
have been known for at least two decades in the public
domain [3]. However, physical side channels often require
that the attacker is in close physical proximity with the
victim target to perform his measurement, limiting their
practical impact. It is especially true for electromagnetic
side-channels [4] that use signals recorded through near-
field (NF) probes placed at a few millimeters of the victim
device.

However, the Screaming Channel attack discovered in
2018 by Camurati et al. [5] breaks the limitations of tra-

ditional electromagnetic (EM) side-channels. Indeed, this
paper demonstrates that EM side-channels can be conducted
in the far-field (FF) region, using antennas from a few
centimeters to some meters, because of a coupling phe-
nomenon between the digital and the analog part inside
a mixed-signal chip. When the transceiver of the analog
part is performing a radio transmission, we can observe a
side-channel leakage from the digital part in the spectrum
of the radio transmission. This side-channel leakage first
modulates the carrier signal of the radio transmission and
then is amplified and broadcasted with the carrier by the
radio transceiver.

A more in-depth analysis of the Screaming Channel
leakage [6] provided a better understanding of the leakage
– e.g., its distortions or the portability of the templates.
While this analysis performs a Screaming Channel attack
on Google Eddystone [7], a simple and discontinued pro-
tocol [8], there is no prior work tackling the challenges
of using Screaming Channels to target complex protocols
involving multiple layers.

Filling this gap is mandatory to consider Screaming
Channels attacks a realistic threat. Being able to conduct
an end-to-end attack at a distance from the wireless device
would be critical since side-channel attacks are often not
taken into account in their threat model and are difficult to
mitigate.

In this paper, we tackle challenges a complex and multi-
layered protocol raises by attacking Bluetooth Low Energy
(BLE), a widespread protocol for secure wireless commu-
nications. More precisely, we attack the BLE key derivation
mechanism – also known as the re-keying mechanism, a
standard and fundamental security feature of the protocol.
The impact of breaking this mechanism is critical since it
would allow the recovery of the Long Term Key (LTK)
independently of the pairing method used for its generation
and negotiation, including LE Secure Connections.
Research question Is the Screaming Channel attack a

threat for Bluetooth Low Energy, despite the limitations
imposed by such complex and multi-layered protocols?

Challenges A specificity of the Screaming Channel leakage
is that the transceiver of the target device must transmit
data during the cryptographic operation, i.e., emits radio

waves to broadcast the leak over the air. Depending on
the protocol, this period can be short and may happen
independently of the cryptographic activity targeted by
the side-channel attack. Moreover, side-channel attacks
usually involve collecting thousands of traces, while the
collection rate is limited due to protocol constraints.

Contribution 1 In Section 7, we analyze how to manipulate
the BLE protocol from an attacker perspective to find how
to make the victim device “scream”, i.e., execute critical
cryptographic operations during a radio transmission, and
how to accurately identify this timing. In addition, we
developed a framework that allowed us to collect and
process numerous traces over several days.

Contribution 2 In Section 8, we evaluate the Screaming
Channel attack performance against the Long Term Key
(LTK) of BLE under various conditions and firmware. We
demonstrate that the protocol can be exploited to fully
break the AES key at the condition of reducing the radio
noise of the environment during the collection process in
laboratory conditions, but that this noise is problematic
for an attacker in real conditions.

Contribution 3 In Section 9, we present the result of exper-
iments using several firmware modifications, suggesting
which hardware element is implicated in the Screaming
Channel leakage and how it can influence its exploitation.
Our framework is published as open-source software1

and our datasets are available as open data [9].

2. Related Work

Side-channels on Bluetooth. Concurrently to our
work, Cao et al. [10] analyzed the session key derivation
mechanism (also known as re-keying) of the BLE protocol
to assess its side-channel resistance. Cao et al. show a
conventional EMR side-channel attack, with an EM probe
close to the microcontroller, at low frequency, without the
radio activated. They compare the performance of traditional
correlation attacks against deep learning-based attacks and
do not address any of the challenges of a remote attack from
the radio channel (synchronization, triggering, etc.).

Screaming Channels. Published in 2018 by Camurati
et al. [5], the discovery of the Screaming Channel leakage
describes how the leak signal propagates through the tar-
geted mixed-signal chip and demonstrates an attack on a
custom firmware, i.e., constantly running cryptographic op-
erations while transmitting modulated random packets over
the air. It concentrates on how far the leak can be exploited
in an ideal scenario, increasing the range of traditional side-
channel attacks from dozens of centimeters to more than
10 meters. The same authors proposed a more advanced
analysis of the leakage in 2020 [6]. This paper evaluates
the non-linearity of the best leakage model and proposes to
use new statistical tools to increase the attack performance.

Attack on Google’s Eddystone. A preliminary as-
sessment of the risk induced by the Screaming Channels

1. https://github.com/pierreay/screaming_channels_ble

attack has been conducted by Camurati et al. [6] by ex-
ploiting Google’s Eddystone protocol. Eddystone [7] is an
application-level protocol on top of BLE used for beacons,
i.e., small IoT objects broadcasting information (e.g., a
URL). First, Camurati et al. [6] only assessed the Screaming
Channel attack using a synthetic setup with an RF coaxial
cable. Second, while Eddystone uses BLE as a transmission
layer, the security of the protocol is implemented at the ap-
plication level using Bluetooth services, which implies that:
1) It is a non-standard and discontinued [8] protocol specific
to the beacon use case. 2) The cryptographic operation is
triggered using a Characteristic Read, an operation built
over the application layer of BLE that does not involve
the native security mechanisms of BLE, facilitating the
exploitation. In contrast, in this paper, we aim to overcome
those limitations by using a realistic setup for our evaluation
and performing an end-to-end attack. Regarding the attacker
receiver, we use an antenna instead of an RF coaxial cable.
Regarding the attack target, we attack the key derivation
mechanism of the BLE instead of the Eddystone application-
level implementation.

Further extensions of Screaming Channels. Several
researchers extended this preliminary work in different di-
rections. Wang et al. [11] tried to increase attack perfor-
mance by using a deep-learning-based approach applied
to the original custom firmware, allowing to decrease the
required number of traces. Guillaume et al. [12] elaborated a
new method to take up the triggering challenge by introduc-
ing Virtual Triggering, which aims at finding leakage related
to cryptographic operations contained in a trace without
prior knowledge about it. This is a more difficult challenge
with Screaming Channel attacks compared to traditional
side channels. The same authors also explored at which
frequencies the leak is detectable and exploitable [13] and
concluded that the latter is present at non-harmonic frequen-
cies and is strong enough to conduct attacks, sometimes as
powerful as using harmonic frequencies. Fanjas et al. [14]
also introduced a new real-time triggering method called
Synchronization by Frequency Detection (SFD) based on
Camurati’s triggering but implemented on an FPGA. Finally,
Danieli et al. [15] tried to exploit the Screaming Channel
leakage in other ways than performing cryptographic side-
channel attacks. For instance, this paper exploits the direct
readout of the Screaming Channels effect using various
coupling sources (RAM, SPI, JTAG, NFS) to recover non-
encrypted data.

We observed that none of these papers evaluated the
Screaming Channels attack on a complex multi-layered pro-
tocol such as BLE.

3. Background

3.1. Side-channels

Different channels. A side-channel attack is an attack
against a security system using information originating from
the interaction between the security system and its environ-
ment. Hence, it allows for an attacker to recover the secret

https://github.com/pierreay/screaming_channels_ble

key used during a cryptographic operation (CO), e.g., the
encryption of plaintext or signing data using a secret key.
Side-channel attacks originate from cryptanalysis, popular-
ized by Kocher et al., by exploiting the time taken by the
attacked cryptographic operation [3] or its power consump-
tion [16]. Various classes of side-channels were discovered
and exploited [?], e.g.: time [3], power consumption [16],
acoustic waves [17], or the optical photonic emanations [18].

Electromagnetic radiation (EMR) has been identified to
be a threat against cryptosystems by Quisquater et al. [4]
with a similar impact as power consumption. Numerous
algorithms have been developed to exploit this EMR mea-
surement, the first ones being Simple EM Attack (SEMA)
and Differential EM Attack (DEMA) [19] which are analo-
gous to Simple Power Attack (SPA) and Differential Power
Attack (DPA) [16]. EM side-channel have been systemat-
ically studied by Lavaud et al. [20], describing multiple
classes depending on the emanation origin (illumination,
mixing, radiation, coupling). In Screaming Channels pub-
lications [5], [6], conventional leakage, which is radiative
EMR recorded using a near-field (NF) probe, is clearly
distinguished from Screaming Channel leakage, which is
recorded using an antenna in the far-field (FF) after the
leakage has been transmitted by a radio transmitter (e.g.,
due to mixing between the analog and the digital part of the
chip) [5].

Attack steps. From a high level, a side-channel attack
is conducted in two steps: 1) creating a model of the leakage,
either theoretically or by collecting training measurements to
build a template, 2) collecting attack measurements (called
“traces”) and computing correlations between predictions
from the model and the actual measurements. Those col-
lected traces are real values representing the measured phys-
ical quantity over time. Searching for the key candidate with
the best correlation, the side-channel algorithm may lead to
a full key recovery if the attack is successful. Often, the
Pearson correlation coefficient (ρ or r) is used to compute
the correlations.

AES and side-channels. AES is a block cipher, i.e., it
works on a block of data to encrypt plaintext into a cipher-
text – or the opposite for decryption [21]. It can be used with
different key sizes (e.g., 128 bits), different operation modes
(e.g., ECB, where each block is processed separately), and
different numbers of iterations called “rounds” (e.g., 10
rounds for the 128-bit key size). Each round repeats all or
a subpart of the following operations: 1) “AddRoundKey”,
which XORs each column of the internal state with a word
from the key scheduling 2) “SubBytes”, which apply the
S-Boxes to each byte of the internal state, being the only
non-linear operation 3) “ShiftRows”, which cyclically shifts
the last three rows in the internal state 4) “MixColumns”,
which operates on the internal state column-by-column.
AES has been a target for side-channel attacks for two
decades, e.g., with timing attacks targeting the T-Table im-
plementation [22], with power attack (DPA) against the first
“AddRoundKey” operation [23], or with power attack (SPA)
against the key scheduling algorithm [24].

Central Peripheral

Cleartext session

Generate random
SKDC , IVC

LL_ENC_REQ
{RAND,EDIV, SKDC , IVC}

Generate random
SKDP , IVP

LL_ENC_RSP {SKDP , IVP }

Compute Session Key (SK):
SK = AES-ECB(LTK,SKDP ||SKDC)

LL_START_ENC_REQ

Encrypted session:
C = AES-CCM(SK, IVP ||IVC ,M)

LL_START_ENC_RSP
LL_START_ENC_RSP

Figure 1. Session key derivation in BLE. The ciphertext C will be sent
over the air to transmit the message M .

3.2. Bluetooth Low Energy

Pairing. The pairing procedure is used to exchange a
set of keys (including an encryption key) that are generally
stored for future use. The stored encryption key is known
as the Long Term Key (LTK). The specification defines two
pairing methods [25, p. 1626]:
• “LE Legacy Pairing” method will negotiate a common

key (Short-Term Key (STK)) between the two devices
to establish an encrypted session. This encrypted session
will be used to exchange a set of keys, including the LTK.

• “LE Secure Connections” method uses the Elliptic Curve
Diffie-Hellman (ECDH) algorithm to agree on a shared
LTK. In this case, the LTK is directly used to establish
the encrypted session to exchange the other keys securely.

In this work, we focus on a later stage of the protocol, and
our approach is independent of the paring method in use.

Session key derivation. The pairing procedure is only
needed the first time the two devices are used together; for
each session (connection of the devices), a new session
key will be generated using the Long Term Key (LTK).
Following the pairing, both devices will also keep two
values, RAND and EDIV, used to retrieve the LTK from
the security database storing all LTK from the previous
pairing. The two paired devices can now establish a se-
cure connection with link-layer encryption by computing

a common Session Key (SK) if they share a common LTK
(Figure 1 [25, p. 2957]). The SK is derived by performing an
AES in ECB mode using the LTK as the key and a public
random nonce as the plaintext. This random nonce, also
known as the Session Key Diversifier (SKD), is composed of
two concatenated random numbers respectively generated by
the Central (SKDC) and the Peripheral (SKDP). SKDC

and SKDP are transmitted over-the-air in plaintext using
the control protocol data units (PDUs) LL_ENC_REQ and
LL_ENC_RSP. After the SK computation, the two devices
perform a three-way handshake to start the encrypted session
by sending empty control PDUs. The Peripheral sends an
unencrypted LL_START_ENC_REQ, the Central and the
Peripheral responds with an encrypted LL_START_ENC_-
RSP and LL_START_ENC_RSP, respectively.

Radio transmission. A standard BLE communica-
tion [25] is divided into connection events (CEs) follow-
ing the time division duplex (TDD) mechanism. During a
CE, the node initiating the connection called the Central
(formerly called “Master”), sends at least one packet to
the second node involved in the connection, the Peripheral
(formerly called “Slave”). After a short inter-frame space
of 150µs, the Peripheral sends the response packet. For syn-
chronization purposes, this simple communication pattern is
repeated for each CE, whether data needs to be transmitted
or not – e.g., packets with an empty data field are therefore
often transmitted. A field called More Data (MD) bit can be
set in the protocol data unit to indicate that the CE should
not end after the current PDU because a device (Central
or Peripheral) has more data to transfer during the current
connection event. If the MD bit is set to 0, no further trans-
missions will occur during the CE. Otherwise, the devices
repeat the communication pattern until the MD bit is not
set anymore or until the CE’s time window is exhausted.
Between each CE, the transmission frequency is changed
according to the channel hopping algorithm. The radio of
both the Central and the Peripheral are then turned off to be
reconfigured for another frequency. The duration of a CE is
equal to connInterval = H ∗ 1250µs, with the hop interval
H ∈ [6; 3200]. The next frequency, i.e., the next channel,
is chosen between all standard channels defined from the
specification. The channel selection can be influenced by
the channel map, a 5-byte value where every bit indicates
if a channel is blacklisted or not. The Central transmits the
initial channel map during the connection initiation but can
be modified at any time during the connection, allowing a
fast adaptation to changes in the radio environment (e.g.,
interference).

Frequency hopping. A Bluetooth communica-
tion (excluding advertisement) can be located between
2.404GHz and 2.478GHz on the spectrum due to the
frequency hopping (FH) algorithm. Intercepting communi-
cation from such a protocol can be challenging because
consumer-grade radio equipment cannot monitor a large
enough band in the spectrum. When the channel hopping
sequence can be neither modified nor known a priori by an
attacker, a possible solution is to rely on software-defined
radio (SDR) flexibility and FPGA-based acceleration in

order to decode a wideband region (e.g., 200 MHz) in real-
time [26].

4. Threat model

We consider an attacker that aims to obtain the LTK
used to generate key material for secure communications
between two paired devices: a victim Peripheral and a victim
Central. The attacker does not need to monitor the pairing
phase, and the attack is independent of the pairing method
used (LE Legacy Pairing or LE Secure Connections). The
attacker is able to sniff and inject packets at the physical
layer. More precisely, the attacker will need to:
Sniff a BLE encryption initiation (LL_ENC_REQ) packet

between the Central and the Peripheral, to obtain the
parameters sent in the clear from the Central (addresses,
RAND and EDIV),

Interrupt a previous connection. While not strictly re-
quired, this makes the attack faster by forcing the Central
and Peripheral to establish a new connection and collect
parameters, instead of waiting for a new connection.

Impersonate the victim Central (using the above parame-
ters), which was previously paired with the victim Pe-
ripheral,

Initiate a connection and interact with the Peripheral victim
through the BLE protocol,

Repeat session key establishment on the Peripheral side
using this connection, which triggers an encryption using
the LTK as a key,

Record a radio signal over the air during the encryption, at
the physical layer, (e.g., using an antenna connected to a
software-defined radio (SDR)).

In our attack, we used profiled algorithms, where an at-
tacker can build a template to learn the leakage model
using a similar device that can be instrumented prior to
the attack. Note that this is not strictly required when
exploiting screaming channels because non-profiled attacks
may also be performed. Once the attack is successful (LTK
is recovered), the attacker can decrypt data sent over the air
during BLE communications between the two victim devices
– for previous and future connections [27], provided that the
packet traces can be collected. According to the state of the
art in BLE security, these capabilities are realistic and can
be performed with affordable open-source tools [28].

5. Attack overview

Figure 2 presents a high-level overview of our attack
strategy. In the first offline phase, steps may occur at differ-
ent locations and times before the attack:
1) Template creation The attacker prepares a template us-

ing a different device but a similar model to the victim
Peripheral [6]. Under controlled conditions, he collects a
high number of traces corresponding to the session key
derivation, where an AES encryption with a controlled
random input (LTK, SKD) is performed by the victim
Peripheral (see Figure 1).

Victim
Central

Victim
Peripheral

Attacker
Central

1) Template
creation

PAIR_REQ

PAIR_RSP

Keys distributionPairingPairing features
exchange

2) Legitimate connection - Pairing

ENC_REQ

ENC_RSP

START_ENC_REQ

START_ENC_RSP

3) Legitimate connection - Encryption

CONNECT

Channel map

ENC_REQ

ENC_RSP

Req.

Rsp.

MD=1 MD=1MD=1

Targeted Connection
Event

µ

4) Malicious connection

START_ENC_REQ

CONNECT CONNECT

Legacy
Pairing

LE Secure
Connections

TX TX TX

AES

 times 5) Template-
based attack

Template

Sniffed parameters:

Addr. type

Addr. type

Hop interval

Addr. type

not observed

Offline Online Offline

Attacker side Victim side Sniffed public parameter

Legend

Figure 2. Attack overview.

2) Legitimate pairing The victim Peripheral and victim
Central perform a pairing in secure conditions, agreeing
on a shared Long Term Key (LTK) and its associated
parameters (RAND and EDIV). The attacker is not present
during this phase.

In the second online phase, the attacker needs to be active
and in the victim’s proximity during the following steps:

3) Legitimate connection sniffing After the pairing phase,
the attacker passively observes one legitimate connection
and encrypted session establishment between the victim
Central and the victim Peripheral. From the CONNECT
message, he collects the victim’s Central Bluetooth ad-
dress (BD_ADDR) and the address type – used later on to
impersonate the victim Central. From the LL_ENC_REQ,
he collects the RAND and EDIV associated with the LTK
in use – used later on to trigger a similar session key
derivation on the victim Peripheral without knowledge of
the LTK.

4) Malicious connections The attacker repeatedly per-
forms n connections by: 1) impersonating the victim
Central, 2) injecting controlled channel map and hop
interval, 3) starting a BLE procedure requiring a response
to generate an interleaved procedure, 4) triggering the
session key derivation by initiating the encrypted session
establishment, 5) setting the MD bit of every transmitted
PDU to 1. This protocol manipulation maximizes the vic-
tim Peripheral radio transmission duration, increasing the
probability that the session key derivation occurs concur-
rently with the radio transmission (TX) period, therefore
generating a Screaming Channel leakage. Without this
protocol manipulation and using only a passive attacker
device, the probability of having a Screaming Channels
leakage would be weak or close to zero. Simultaneously,
the attacker records the electromagnetic radiation at the
correct frequency, leveraging the knowledge of the chan-
nel map in use. We present the technical details of this
protocol manipulation in Section 7.

Lastly, once enough traces have been collected, the third
offline phase consists of:

Only for experimental evaluation
(Section 7.3)

Butterfly

WHAD

Central (Attacker)

USRP (NF)

USRP (FF)

Peripheral (Victim)

Nimble

Computer (Attacker)
IQ samples

12
8

M
H

z
(N

ea
r-

fie
ld

)

BLE communication

LNA

2.
52

8
G

H
z

(F
ar

-fi
el

d)

Figure 3. The experimental setup.

5) Template-based attack The attacker performs a
template-based attack to recover the LTK from the
collected traces using the template previously created. If
needed, the attacker can perform a key enumeration to
brute-force the remaining bits incorrectly recovered by
the side channel. This is possible because the attacker
can capture encrypted but predictable traffic, which can
be used as an oracle during key enumeration. If the
attack is successful, the full LTK is retrieved.

6. Experimental Setup

Figure 3 illustrates our hardware and software experi-
mental setup in laboratory conditions (without the Central
Victim described in Section 5). To characterize the impact
of the protocol manipulation in Section 7, the full setup,
including the USRP used for near-field (NF) measurements,
was used. To evaluate the attack in a realistic scenario and
its performance in Section 8, the setup excluding the USRP
NF was used (i.e., only including the USRP used for far-
field (FF) measurements).

TABLE 1. FIRMWARE USED THROUGH THE PAPER.

Name Code Encryption nb. AES inputs Radio packets

Fcustom Custom C Arbitrary Controlled Dummy
Finstru NimBLE Arbitrary Controlled Real BLE
Fdefault NimBLE 1 Known only Real BLE

Hardware. We use two software-defined radios ca-
pable of recording up to 56MHz of bandwidth (USRP
B210 [29]). The USRP NF, only used in Section 7, is
connected to a TekBox TBPS01 near-field (NF) probe [30]
placed at 1cm of the target SoC and tuned at the 2nd
harmonic of the CPU clock (fNF = 2 ∗ fclock). The USRP
FF is connected to an antenna placed in the far-field (FF)
(typically, more than 30cm) from the target and tuned
at the carrier frequency added to the previous frequency
fFF = fcarrier + fNF . Typically, fclock = 64MHz for the
CPU clock of the nRF52832 and fcarrier = 2.420GHz for
the Bluetooth channel 8. Depending on the experiment, we
used an omnidirectional [31] or a directional [32] antenna to
increase the leakage gain. A low-noise amplifier (LNA) from
Mini-Circuits [33] is plugged between the Wi-Fi antenna
and the SDR, maximizing the signal-to-noise ratio (SNR)
of our recorded signal. The two SDRs are connected to a
standard desktop computer through USB 3.0, sending raw
I/Q during the recording. The attacker’s dongle is a Nordic
Semiconductor nRF52840 dongle, while the victim’s de-
vice is a Nordic Semiconductor nRF52832 development kit
(PCA10040), a well-known target for Screaming Channels
analysis.

Software. The computer runs our custom Python
instrumentation library built on the WHAD [34] framework,
which controls the attacker’s dongle. The attacker’s don-
gle (nRF52840) is running our modified version of But-
teRFly [35], a BLE firmware initially developed for the
InjectaBLE attack [36] allowing to accurately inject link-
layer traffic.

Firmware variations. During our evaluations, we
used 3 firmware for the victim target depending on our needs
presented in Table 1. Fcustom is a custom firmware built upon
homemade C code for experimental purposes. Finstru and
Fdefault are based on the Peripheral example firmware from
NimBLE [37], a public BLE open-source stack developed
by Apache for the Mynewt RTOS [38]. This BLE stack
provides AES through either: 1) a hardware implementation
if the SoC implements it 2) a software implementation using
the TinyCrypt [39] library otherwise. In our evaluation, we
use the software AES since its leakage is stronger than
that of the hardware AES, and the focus of the paper
is not to assess the difficulty of attacking hardware-based
implementations. Let us highlight that, to the best of our
knowledge, no prior work managed to perform a successful
Screaming Channels attack on a cipher in hardware. Finstru is
an instrumented firmware built upon the NimBLE stack for
evaluating the attack in favorable conditions to the attacker.
Fdefault is a stock firmware built upon the NimBLE stack
for evaluating the attack in realistic conditions. All radio

transmissions use the GFSK modulation scheme whenever
the packets are dummy or real BLE.

7. Bluetooth Low Energy Manipulation

7.1. Challenges

Three fundamental requirements of the Screaming Chan-
nel attack become challenging when using a complex pro-
tocol instead of custom firmware.

Challenge 1: Transmitting radio signals while the
cryptographic operation is performed. The victim must
transmit radio signals while the cryptographic operation is
performed. Otherwise, the radio transmission is off, and no
data is leaked over the radio. However, both the encryption
and the transmission are short (order of 100µs) and may
happen in sequence, one after the other. Indeed, the trans-
mission is a power-consuming operation and will be made as
short as possible. Relying on the chance that both operations
occur simultaneously significantly reduces the probability of
success of the attack and adds a significant time overhead.

Challenge 2: Recording at the correct time. Second,
the attacker has to collect data at the right time, as the victim
is leaking information only for a short duration. Contrarily to
a custom firmware designed to highlight the effect itself [5],
on a real protocol, the attacker cannot artificially activate
the radio transmission, repeat the cryptographic operation
or use an artificial triggering mechanism (like a GPIO pin
indicating that the encryption started).

Challenge 3: Recording at the correct frequency.
Third, the attacker has to record the signal at the right
frequency, as the frequency of the physical channel used
by the protocol may not be constant. This is rendered
difficult because 1) the leakage can be spread over numerous
frequencies 2) the leakage can be impacted by interfering
transmitters 3) the rapid frequency hopping of BLE.

Solutions overview. Therefore, we developed a
framework to solve those challenges by leveraging the But-
teRFly firmware on the attack device presented in Section 6.
This attack device can control low-level parameters of the
Bluetooth communication, and, while staying fully compli-
ant with the BLE protocol, allows us to finely control the
victim device behavior. Using those low-level messages, we
can indirectly force the victim to increase the duration of
the TX, making it transmit radio messages while performing
encryption and expose a Screaming Channel leakage.

7.2. Methodology

Challenge 1: Transmitting radio signals while the
cryptographic operation is performed. According to the
Bluetooth specification [25], we listed a set of parame-
ters that may influence the TX timing or increase the TX
duration. For comparison purposes, we measure that the
AES took approximately 250µs to fully execute on our
target board – using AES-ECB from TinyCrypt provided by
Apache Mynewt. However, the SubBytes operation – which

t t t t
Connection Event (CE) More Data (MD) bit Hop Interval Interleaved Procedure

Figure 4. Illustration of BLE parameters impact.

is the side-channel target – took only 10µs to execute. We
used the following parameters, illustrated in Figure 4:
Connection event (CE) Defining a precise CE at which

the attacker will send the LL_ENC_REQ PDU allows
influencing the cryptographic operation execution in time.

More Data (MD) bit We used this bit indicating that more
data needs to be sent to increase the number of exchanges
between the attacker Central and the victim Peripheral
during a single CE, hence, without a radio reconfigura-
tion. This bit alone only allows us to send more data, and
it does not send the data in itself. We set the MD bit when
sending our LL_ENC_REQ PDU while staying compliant
with the specification.

Hop Interval Increasing this parameter allows increasing
the CEs duration. With the MD bit set to 0, this parameter
modifies the interval between two subsequent TX, i.e.,
one radio reception (RX) slot and one TX slot from a
Peripheral perspective. On the contrary, with the MD bit
set to 1, this parameter increases the number of RX and
TX cycles that can fit inside the window of one CE, which
is desirable to prevent the radio reconfiguration during the
cryptographic operation. We set the Hop Interval when
sending the CONNECT_IND PDU compliant with the
specification.
In the terminology used by the Bluetooth Core Specifica-

tion, a Procedure is a sequence of packets, including requests
and responses. We use the term “interleaved procedures”
when sending multiple procedures simultaneously, resulting
in interleaved request-response patterns. Having the MD bit
set to 1, we sent interleaved procedures to increase the TX
time during the system activity of the victim Peripheral.
Before sending the request that will trigger the cryptographic
operation, we sent other dummy requests that will force
the Peripheral to send responses back. The choice of the
dummy request can be important because some requests
require larger responses than others, increasing the TX
duration. The goal of this strategy is to increase the TX
time of the Peripheral during its system activity, including
the cryptographic operation.

Challenge 2: Recording at the correct time. The
cryptographic operation occurs between two specific PDU:
the LL_ENC_REQ PDU sent by the Central and the LL_-
START_ENC_REQ PDU sent by the Peripheral. LL_ENC_-
REQ identifies the paired devices and provides the Central
random value (SKDC), required to compute the Session
Key. On the other hand, the LL_START_ENC_REQ needs
the Session Key as the link is encrypted [25, p.2843,
p. 2845]. Our attack firmware can monitor the connection,
report received packets, and report parameter values like
the current CE number and conditionally execute a function

with low latency. We leveraged those features to send the
LL_ENC_REQ PDU at a chosen CE, start the recording at
another specified CE, and stop it when the LL_START_-
ENC_REQ PDU has been received. This guarantees the
recording of potential Screaming Channel leakage during
the Session Key derivation.

Challenge 3: Recording at the correct frequency.
BLE uses frequency hopping, which makes it hard to
record at a frequency corresponding to the leakage. The
protocol allows for a Central to specify a channel map
inside ChM field of the CONNECT_IND PDU [25, p. 2688]
sent during the connection establishment. By setting the
channel map to 0x300, we can force the Peripheral to
only use channels 8 and 9, corresponding to frequencies
2.420GHz and 2.422GHz. This technique was already used
in previous work targeting Google’s Eddystone protocol [6].
By recording at fcarrier + 2 ∗ fcarrier = 2.548GHz using
at least 4MHz of bandwidth, we are now sure to match
the Screaming Channel leakage frequency allowing us to
capture both channels in the same record. However, as seen
in Section 9.2, this frequency is not the only one where the
leak can be observed and exploited.

7.3. Evaluation

This evaluation is done using the firmware Fdefault and
using the full experimental setup, including the USRP NF
from Section 6.

Connection event and Hop Interval. We empirically
determined that increasing or decreasing the connection
event (CE) number allowed us to modify the leakage po-
sition in time with a granularity of 80ms. Also, it was
mandatory to set the hop interval greater than 12 to have
a TX during the cryptographic operation.

Interleaved procedures comparison. Section 7.2 in-
troduced the technique of “interleaved procedures” leverag-
ing the MD bit. We compared a few procedures, detailed in
Table 2. This shows that using this technique can increase
the TX time by a factor of 2, increasing the probability of
having a radio transmission from the Peripheral during the
cryptographic operation.

Cryptographic leakage detection. The cryptographic
operation leakage detection we performed is two-fold: 1) an
automatic detection of the AES signal 2) a visual control of
the system activity and the radio transmission. Based on an
a priori knowledge of the AES signal inspired from previous
work [5], we used an automatic detection of the latter
inside a recorded signal using frequency detection and cross-
correlation matching. Moreover, thanks to our framework,
we were able to perform two parallel and synchronized

Near-field spectrogram

Far-field spectrogram

Radio
transmission

noise
AES
noise

Figure 5. Leakage comparison between Conventional (upper) and Scream-
ing Channel (bottom).

TABLE 2. SYSTEM ACTIVITY LEAKAGE DURATION BASED ON
PROCEDURE INTERLEAVING METHOD.

Method Leak duration

None 108µs
ATT_Read_Request 225µs
ATT_Read_Multiple_Request 234µs
ATT_Find_Information_Request 206µs

recordings. Figure 5 shows a comparison of two recordings.
The upper one at 2 ∗ fclockHz using a near-field (NF) probe
is recording at the 2nd harmonic of the CPU’s clock, where
a conventional side-channel can be recorded. The bottom
one at fcarrier + 2 ∗ fclockHz using a far-field (FF) antenna
is recording at the 2nd harmonic of the CPU’s clock added
to the frequency of BLE radio carrier for Bluetooth channel
number 8. On the NF recording, the full AES computation
can always be identified (upper blue rectangle) since we
have all the electromagnetic radiation from the inherent
system activity. For both the NF and the FF recordings, we
can identify when the TX is happening (red rectangles). On
the FF recording, only a partial AES computation can be
identified (bottom blue rectangle) because the TX duration
was not long enough – still, the exploitable part for a side-
channel attack has already leaked. The first goal was to
identify the instant the AES computation is happening using
the NF recording while completing a BLE connection proce-
dure. The second goal was to manipulate BLE parameters
to force this AES computation to occur during the radio
transmission. To complete those goals, we leveraged both
the automatic AES detection and the visual inspection –
where the second goal is achieved when the red and blue
boxes are overlapped similarly to Figure 5.

8. Screaming Channel Attack on BLE

We now detail the Screaming Channel leakage exploita-
tion during a BLE communication, using our framework
described in Section 7.

8.1. Metrics

We are using the following metrics to evaluate our attack
and compare it to previous work:

Partial Guessing Entropy (PGE) [40]. The PGE de-
fines the rank (i.e., the index) of the correct subkey among a
list of all possible subkeys classified from the most probable
to the least probable according to the side-channel output.
For a single subkey, it hence estimates how many guesses
are needed to find the correct subkey.

Key Rank [41]. The key rank defines the rank (i.e.,
the index) of the correct key among a list of all possible
keys classified from the most probable to the least probable.
Estimating how many guesses are needed to find the correct
key is representative of the complexity of the key recovering.
The key rank enumeration is a key brute force leveraging
knowledge of the side-channel output. We are using the
Histogram-based Enumeration Library (HEL) from Poussier
et al. [42], using both key rank estimation and key enumer-
ation. Performing a key enumeration is an offline procedure
that happens after the side-channel attack.

8.2. Side-channel attack on AES during SK deriva-
tion

Since a Screaming Channel attack can be seen as a
conventional EM side-channel coupling to a radio trans-
mitter, we start by considering a conventional side-channel
attack on BLE. We target the step after the first S-Box
(AddRoundKey and SubBytes) inside the 1st AES exe-
cution, where the key is the LTK and the plaintext is SKD.
SKD is known but partially controlled, because SKD =
SKDP ||SKDC with SKDP chosen by the Peripheral.
As mentioned in Section 2, Cao et al. [10] analyzed the
feasibility of BLE only for the conventional case (i.e., near-
field (NF)), concurrently to our work. Our work exploits the
same side-channel vulnerability over the Screaming Channel
(i.e., far-field (FF)), significantly increasing its impact.

8.3. Profiled Correlation Attack

We used the Profiled Correlation Attack used by Ca-
murati et al. [6]. The training (i.e., profiling) datasets are
collected using a training device similar to the test device but
entirely controlled by the attacker, while the attack datasets
are collected on the victim device. Previous works on
Screaming Channels [5], [6] use time diversity by averaging
numerous traces and re-executing the encryption with the
same parameters. This approach drastically reduces the noise
for both training and attack traces, improving the profile’s
efficiency. In our case, this is possible using firmware Finstru
since we control the AES inputs. However, this approach
is not practicable with firmware Fdefault, where half of the
input (SKDP) is controlled by the victim and will change
for each attack trace according to the BLE protocol. The
impact on the attack performance of this averaging technique
is discussed in Section 8.6.

In Tables 3 and 4, for “Profile” and “Attack” columns,
xk ∗ y means x ∗ 103 traces containing y AES operations.
When a key enumeration value is provided, we could per-
form a full key recovery – illustrated by “¥”. We use

TABLE 3. ATTACK RESULTS USING FINSTRU .

Env. Dist.
(cm)

Profile (#) Attack (#) PGE
me-
dian

Key
rank

Key
enum.

A1 Office Û 100 64k ∗ 100 12k ∗ 300 3 258

A2 ¥ Office Û 10 64k ∗ 300 2k ∗ 300 1 227 12s

A3 ¥ Office Õ 120 16k ∗ 300 10k ∗ 300 1 233 45min
A4 ¥ Office Õ 120 16k ∗ 300 16k ∗ 1 0 227 12s
A5 Office Õ 120 16k ∗ 1 10k ∗ 300 2 254

A6 Office Õ 120 16k ∗ 1 16k ∗ 1 4 276

TABLE 4. ATTACK RESULTS USING FDEFAULT .

Env. Dist.
(cm)

Profile (#) Attack (#) PGE
me-
dian

Key
rank

Key
enum.

A7 ¥ Anechoic Û 10 16k ∗ 1 16k ∗ 1 1 234 1.5h

A8 Office Õ 120 30k ∗ 1 20k ∗ 1 5 260

A9 Office Õ 120 65k ∗ 1 40k ∗ 1 7 260

the icons “Û” and “Õ” for the omnidirectional and the
directional antennas, respectively (see Section 6).

8.4. Evaluation on firmware Finstru

Table 3 summarizes the conditions and the results of
our attacks using firmware Finstru and only the USRP FF
from Section 6. This instrumented firmware allows using
the averaging technique mentioned in Section 8.3, denoted
by xk ∗ y with y the number of averaged AES (y > 1). A1

attempts to attack at 1 meter inside an office environment,
reducing the key rank to 258. The leak is exploitable, but
this attack used the omnidirectional antenna from Section 6
with low gain, resulting in noisy traces. To reduce the noise,
we first performed the A2 attack at a smaller distance using
10 centimeters. In these conditions, we successfully recover
the full key in only 12 seconds by lowering the key rank to
227. To confirm the attack feasibility at a higher distance, we
used the directional antenna with higher gain for attacks A3

to A6. With a profile based on averaging training traces in
A3 and A4, we systematically perform a full key recovery.
However, when using non-averaged traces for the profile in
A5 and non-averaged traces at all in A6, the performance
is rapidly decreasing with a key rank down to 254 and 276,
respectively.

Averaging attack traces is not a realistic requirement
for performing our attack in real-life conditions since the
attacker cannot control the plaintext at every cryptographic
operation. However, these experiments show that noise re-
duction (through averaging traces or another method) is a
critical requirement for a full key recovery.

8.5. Evaluation on firmware Fdefault

Table 4 summarizes the conditions and the results of
our attacks using firmware Fdefault and only the USRP FF
from Section 6. This corresponds to the most challenging

0 2500 5000 7500 10000 12500 15000
Number of traces

40

60

80

100

120

L
og

2(
K

ey
ra

n
k
)

A7

A9

Figure 6. Key rank over number of traces for A7 and A9.

conditions for an attacker since no instrumentation can be
used, making the averaging technique impossible. A7 is
an attack inside an anechoic box with an omnidirectional
antenna, isolating the setup from the environmental noise,
leading to a key rank of 234 and a full key recovery in
less than 2 hours. A8 and A9 are two attempts to reproduce
A7 performance at a higher distance (120 cm), using the
directional antenna. In A9, we chained two LNAs, but it
did not improve the result. Figure 6 shows the key rank
over the number of traces for A7 and A9. A7 convergence
speed is lower than A9 because we use less training traces
for the profile, however, A7 converges to a lower key rank
than A9 because the training traces were less noisy.

While we were able to conduct a full key recovery inside
an anechoic environment, we observed a strong impact of
the noise in an office environment, preventing a full key
recovery.

8.6. Impact of noise on the profile

Note that each attack cannot be improved by simply
collecting more traces because they reached their “conver-
gence point”, i.e., the attack performance does not increase
while increasing the number of traces. This phenomenon is
strongly tied by the profile quality. To build a profile, we
first compute the Pearson Correlation Coefficients (PCCs)
(ρ) over the traces to test for statistical differences depending
on the AES inputs, as shown in Figure 10 (see Appendix A).
The samples with a significant coefficient correspond to
the SubBytes operation of AES and are used as point of
interests (POIs) to create the profile. To do so, we estimate
the mean value and the standard deviation (σ) for each
possible classes, i.e., the 256 possible values of p ⊕ k for
each subkey. We empirically observed on our profiles that
the main difference between a profile leading to a full key re-
covery (A4) and a profile which does not (A6 and A9) is the
value of the standard deviation. Table 5 illustrates with three
representative examples the comparison between the means
of both the PCCs and the standard deviation. All traces were

TABLE 5. MEANS OF PCC (ρ) AND STD. DEVIATION (σ).
Attack ρ σ Key rank Full key recovery

A4 0.5 0.15 227 ¥
A6 0.05 1.5 276 q
A9 0.275 0.8 260 q

0 10 20 30 40 50 60 70 80

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Average of attack traces
Average of profile trace

0 10 20 30 40 50 60 70 80

1.0

0.5

0.0

0.5

1.0

Average of profile trace

0 10 20 30 40 50 60 70 80

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Average of attack traces

Figure 7. Profile reuse attempt with firmware Fdefault.

normalized using z-score normalization [43], [44] before
computing the values. Analogous to the floor noise in radio
communication, having a high standard deviation in our
profile create a statistical floor noise, i.e., despite using more
traces, the distinguisher cannot accurately estimate the most
probable subkey above a specific level.

9. Leakage Characterization

9.1. Profile reuse

In profiled side-channel attacks, it is common to create
a profile using a controlled device in a lab and then use
this profile to attack another instance of the same device
in the field [45], [46], [47]. This assumes that the training
device’s leakage closely matches that of the target device.
However, in our case, minor changes in the hardware setup
or firmware of the target device significantly impact the
leakage. We faced this issue despite the use of normalization
techniques, e.g., z-score normalization, to improve profile
portability [43], [44]. The possible root causes of those
differences are, among others, static code layout, dynamic
state of registers, and impulse response of the hardware
reception system. In particular, we observed that: 1) training
traces recorded in the anechoic box at 10 cm (A7) are
different from attack traces recorded at more than 1 me-
ter (A7−8), 2) training traces recorded with the firmware
Finstru (A8−9−10−11) are different from the attack traces
recorded with firmware Fdefault (A6−7−12). Consequently,
profile reuse is complicated in attacks using either complex
firmware or hardware setups. Figure 7 illustrates a profile
reuse attempt using firmware Fdefault for both training and
attack traces, but in different conditions. The profile has
been created inside an anechoic environment using a small
antenna. The attack traces were recorded inside an office
environment using a directional antenna and an LNA. We
observe that the profile mean trace (green) and the attack
mean trace (red) are closely similar but do not exactly match.

9.2. Leaking frequencies

Understanding at which frequency a leakage may be
found and exploited is not trivial. Li et al. [48] formalized

0.1535 0.1540 0.1545 0.1550 0.1555 0.1560
Sample [#]

2.48

2.49

2.50

2.51

2.52

F
re

q
u

en
cy

[H
z]

×109

2.496 GHz

Figure 8. Third-order intermodulation product at 2.496 GHz between the
32 MHz CPU sub-clock and the 2.4 GHz carrier.

and simulated how a CMOS transistor can act as an am-
plitude modulator, resulting in electromagnetic radiations
(EMRs) at the harmonics of a clock signal modulated in
amplitude by a data signal. Camurati et al. [5] described
the Screaming Channel leakage as a substrate coupling
between the amplitude-modulated signal from the digital
part and the analog part of the SoC. While only harmonic
frequencies were used for this initial attack, Guillaume et
al. [13] shows that many frequencies can be exploited to
successfully recover a key without investigating the reason
for the presence of the leak at those frequencies.

Therefore, we analyzed the spectrum in the frequency
domain using 56MHz of bandwidth with a USRP B210 [29],
monitoring the leakage generated by firmware Fcustom (see
Table 1) running AES encryption and continuous radio
transmissions concurrently. We identified that the leakage
was present at predictable frequencies that were not the
harmonics of the CPU clock itself but the harmonics of
derived clocks. The nRF52832 provides a main CPU clock
(“HCLK64M”) running at 64MHz, but also derived clocks
“PCLK32/16/1M” provided to various peripherals, running
at respectively 32, 16, and 1 MHz. Figure 8 shows the signal
generated by the AES leak at 2.496GHz for a carrier trans-
mitting at 2.4GHz. The two sidebands correspond to the
AES modulating the PCLK32M clock signal in amplitude.
This signal has been recorded at 3 ∗ 32MHz + 2.4GHz
and corresponds to a third-order intermodulation product
between the PCLK32M clock of the nRF52832 and the radio
transceiver carrier. The number of derived clocks inside the
SoC, and the number of harmonics and the bandwidth of
the leaked signal, explains the observations from Guillaume
et al. [13] reporting successful attacks at “non-harmonics”
frequencies, which was only considering the presence of the
64MHz clock and its harmonics. In summary, we postulate
that the “non-harmonics” frequencies are, in fact, due to the
harmonics of multiple internal clocks.

9.3. Hardware component impacting the leakage

We explored the hypothesis that the memory controller
(flash) may be the root cause of the leak. We observed
that the nRF52832 has an Instruction Cache (I-Cache) [49],
allowing the CPU to fetch the firmware code to execute
instructions directly from the cache instead of soliciting
the flash memory (Figure 12, in Appendix A). To evaluate
the impact of this cache, we record two datasets of Fcustom
firmware running AES encryptions and radio transmissions
simultaneously, with and without the I-Cache enabled. We
observe that the recorded traces are intermittent (Figure 11,
in Appendix A). This suggests that the leakage is present
when the instruction is fetched from the flash controller (i.e.,
a cache miss) and absent when fetched from the cache (i.e.,
a cache hit). We observe that the I-Cache is disabled on
NimBLE by default, potentially for reliability reasons (for
constant-time execution). Even with the I-Cache enabled,
we were still able to correlate with the AES inputs in our
experiments. These observations suggest that the code base
itself, the compiler, and the linker decisions may affect the
leak exploitability if the cache is enabled, providing an
interesting direction for future work.

10. Discussion

Protocol manipulation. Using protocol manipulation
from the attacker’s side only, we demonstrated that it is pos-
sible to force the victim device (with unmodified real-world
firmware) to transmit while the target cryptographic activity
occurs. While we leveraged BLE specific techniques, we
identified a set of generic requirements for the Screaming
Channel to happen. First, increasing the radio transmission
(TX) duration by manipulating physical layer parameters
largely increases the Screaming leakage probability. Such
a low-level influence can be generated directly by injecting
specific values at the physical layer or indirectly by interfer-
ing with the channel itself or triggering target retransmission
mechanisms. Second, generating traffic, especially requests
expecting a response from the victim device, may also lead
to an increased TX duration. Third, taking a fine-grained
control of the timing of operations, like the control of
CEs using hop interval in BLE, is also helpful for the
attacker. Moreover, our BLE manipulations are not exhaus-
tive. Indeed, manipulating other parameters could have an
impact on the TX duration, like injecting a bigger maximum
transmission unit (MTU) through its dedicated control PDU.
We demonstrated this for BLE; however, for other protocols,
a case-by-case analysis is required, and we expect this to be
more challenging for some protocols.

Attack complexity. Our work shows that performing
Screaming Channels in realistic conditions is challenging
and that the exploitability can be impacted by many factors.
Moreover, building an experimental setup and collecting
datasets require significant engineering work, motivating
us to release our framework as open-source software and
our collected traces as an open dataset to facilitate the
reproducibility of our work and encourage the community

to explore related topics. We identified several research
directions that could significantly improve the attack perfor-
mance. First, the difficulty of reusing profiles complicates
the attack. Understanding the root causes of the leakage
differences or significantly improving the profiling and nor-
malization algorithms could help to reuse profiles across
devices. Second, a detailed evaluation of the impact of the
instruction cache could be relevant in specific scenarios.
Third, evaluating the feasibility of attacking a hardware
implementation of AES with Screaming Channel remains
an open challenge. Finally, our experiments show that the
radio setup and environment significantly impact the attack
performance, indicating a need for optimization.

Impact. Our attack demonstrates that Screaming
Channels may be a threat against realistic firmware and
off-the-shelf Bluetooth Low Energy stacks in the future.
The attack still requires performance improvements before
claiming that it is a fully realistic threat. Reducing the noise,
which has a critical impact on attack performance, seems to
be the predominant challenge. It underlines the need for
a more robust radio setup, better statistical pre-processing
algorithms, or signal diversity such as frequency diversity
or space diversity, which are promising directions for future
work.

11. Countermeasures

We propose several countermeasures at different levels.
Cryptographic countermeasures. 1) Masking [50],

[51], where the secret is divided into multiple “shares” and
mixed with internal random values during cryptographic
computations, such that an attacker cannot gain information
about intermediate values. 2) Hiding [52] involves control-
ling execution time and power consumption during crypto-
graphic operations to appear random or constant, preventing
attackers from gaining information through side-channel
measurements. 3) Re-keying [53] involves frequently chang-
ing the key, preventing an attacker from collecting sufficient
traces before the key is updated.

Physical countermeasures. Shielding [54] or decou-
pling consists in attenuating the physical leakage propa-
gation. A hardware designer can insert a shield between
the analog and the digital part of the SoC to reduce the
Screaming Channel leakage. Alternatively, if the crypto-
graphic operation is implemented in hardware, the AES S-
boxes themselves can be shielded and isolated. However,
shielding is inherently complicated in a fully integrated radio
system that needs to transmit data over the air.

Protocol countermeasures. Protocol countermeasures
against side channels include limiting the number of con-
nections in a period of time [10] so that an attacker cannot
collect enough traces in a reasonable amount of time. Limit-
ing the number of failed encrypted session establishments in
a given period or per pairing or adding a waiting time after
each failed session establishment also seems effective. These
countermeasures are suited for a protocol specification. To
counteract Screaming Channels in particular, it is essential
to ensure that the cryptographic operation (CO) happens at

random times or during the second slot of the connection
event when the radio is disabled. These countermeasures are
suited to be ensured at the firmware level.

Countermeasures limitations. Each of those counter-
measures needs to be carefully considered, as they may have
negative side effects. The cryptographic countermeasures
increase the implementation complexity and introduce a
performance overhead. The physical countermeasures are
quite complex and not well studied, and they may increase
the cost significantly. The protocol countermeasures seem to
be the most straightforward to apply and effective against
this specific attack. While we need to ensure that no corner
case could lead to a denial of service for legitimate users, we
recommend specifying them in the protocol specification.

12. Conclusion

In this paper, we showed how an attacker could manip-
ulate a set of parameters of the BLE protocol to make a
victim device “scream”, i.e., execute critical cryptographic
operations during a radio transmission while staying com-
pliant with the protocol specification. Leveraging these
mechanisms allowed us to conduct a successful end-to-end
Screaming Channel attack on a victim Peripheral device in
an environment isolated from noise, leading to a full key
recovery of the Long Term Key, used to establish a secure
session between the two devices. However, assessing the
attack in a realistic environment only leads to a partial key
recovery due to its increased radio noise. Future work to
improve profile reuse or reception diversity is a promising
direction, as it may change the outcome of an attack from
a partial key recovery to a full key recovery. Regarding the
improvement potential, our results led toward a threat that
should be considered for the future of IoT communications.

Acknowledgments

This research work was supported by the French Na-
tional Agency for Research (ANR), in part by the project
MobiS5 (ANR-18-CE39-0019) and in part the France 2030
project PEPR REV (ANR-22-PECY-0009). The authors
thank Karel Král from Google and Rachida Saroui from
École Normale Supérieure (ENS) for the discussions and
collaborations on preliminary experiments on the topic. Fi-
nally, we are highly grateful for the meaningful comments
from the reviewers.

References

[1] N. S. Agency, “TEMPEST: A Signal Problem,” NSA, Tech. Rep.,
1972.

[2] W. Van Eck, “Electromagnetic radiation from video display units:
An eavesdropping risk?” North-Holland Computers & Security, pp.
269–286, 1985.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
RSA, DSS, and other systems,” in Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology,
ser. CRYPTO ’96. Berlin, Heidelberg: Springer-Verlag, 1996, p.
104–113.

[4] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Proceedings of
the International Conference on Research in Smart Cards: Smart
Card Programming and Security, ser. E-SMART ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, p. 200–210.

[5] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,
“Screaming channels: When electromagnetic side channels meet
radio transceivers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 163–177. [Online]. Available: https://doi.org/10.1145/
3243734.3243802

[6] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding
Screaming Channels: From a Detailed Analysis to Improved
Attacks,” IACR Transactions on Cryptographic Hardware and
Embedded Systems (CHES 2020), vol. 2020, no. 3, pp. 358–
401, Jun. 2020. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/8594

[7] Google. (2015) Eddystone. [Online]. Available: https://github.com/
google/eddystone

[8] A. D. Blog. (2018) Discontinuing support for android
nearby notifications. [Online]. Available: https://android-developers.
googleblog.com/2018/10/discontinuing-support-for-android.html

[9] P. Ayoub, “Screaming channels on bluetooth low energy,” Aug.
2024. [Online]. Available: https://doi.org/10.5281/zenodo.13384278

[10] P. Cao, C. Zhang, X.-J. Lu, H.-N. Lu, and D.-W. Gu, “Side-
channel analysis for the re-keying protocol of bluetooth low
energy,” Journal of Computer Science and Technology, vol. 38,
no. 5, p. 1132–1148, Sep. 2023. [Online]. Available: http:
//dx.doi.org/10.1007/s11390-022-1229-3

[11] R. Wang, H. Wang, and E. Dubrova, “Far field em side-channel
attack on aes using deep learning,” Proceedings of the 4th ACM
Workshop on Attacks and Solutions in Hardware Security, Nov 2020.
[Online]. Available: http://dx.doi.org/10.1145/3411504.3421214

[12] J. Guillaume, M. Pelcat, A. Nafkha, and R. Salvador, “Virtual
triggering: a technique to segment cryptographic processes in
side-channel traces,” in 2022 IEEE Workshop on Signal Processing
Systems (SiPS). IEEE, Nov. 2022. [Online]. Available: http:
//dx.doi.org/10.1109/SiPS55645.2022.9919238

[13] ——, “Attacking at non-harmonic frequencies in screaming-channel
attacks,” in Smart Card Research and Advanced Applications,
S. Bhasin and T. Roche, Eds. Cham: Springer Nature Switzerland,
2024, pp. 87–106.

[14] C. Fanjas, C. Gaine, D. Aboulkassimi, S. Pontié, and O. Potin,
“Combined fault injection and real-time side-channel analysis
for android secure-boot bypassing,” in Smart Card Research
and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised
Selected Papers, 2022, pp. 25–44. [Online]. Available: https:
//doi.org/10.1007/978-3-031-25319-5_2

[15] E. Danieli, M. Goldzweig, M. Avital, and I. Levi, “Revealing
the secrets of radio embedded systems: Extraction of raw
information via rf,” IEEE Transactions on Information Forensics
and Security, vol. 19, p. 2066–2081, 2024. [Online]. Available:
http://dx.doi.org/10.1109/TIFS.2023.3345131

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397.

[17] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J.
Cryptology, vol. 30, pp. 392–443, 2017.

[18] J. Ferrigno and M. Hlavác, “When AES blinks: Introducing optical
side channel,” IET Inf. Secur., vol. 2, no. 3, pp. 94–98, 2008.
[Online]. Available: https://doi.org/10.1049/iet-ifs:20080038

https://doi.org/10.1145/3243734.3243802
https://doi.org/10.1145/3243734.3243802
https://tches.iacr.org/index.php/TCHES/article/view/8594
https://tches.iacr.org/index.php/TCHES/article/view/8594
https://github.com/google/eddystone
https://github.com/google/eddystone
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://android-developers.googleblog.com/2018/10/discontinuing-support-for-android.html
https://doi.org/10.5281/zenodo.13384278
http://dx.doi.org/10.1007/s11390-022-1229-3
http://dx.doi.org/10.1007/s11390-022-1229-3
http://dx.doi.org/10.1145/3411504.3421214
http://dx.doi.org/10.1109/SiPS55645.2022.9919238
http://dx.doi.org/10.1109/SiPS55645.2022.9919238
https://doi.org/10.1007/978-3-031-25319-5_2
https://doi.org/10.1007/978-3-031-25319-5_2
http://dx.doi.org/10.1109/TIFS.2023.3345131
https://doi.org/10.1049/iet-ifs:20080038

[19] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The
em side-channel(s),” in Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems, ser.
CHES ’02. Berlin, Heidelberg: Springer-Verlag, 2002, p. 29–45.

[20] C. Lavaud, R. Gerzaguet, M. Gautier, O. Berder, E. Nogues, and
S. Molton, “Whispering devices: A survey on how side-channels
lead to compromised information,” Journal of Hardware and
Systems Security, vol. 5, pp. 143 – 168, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:233685396

[21] N. I. of Standards and T. (NIST), Advanced En-
cryption Standard (AES), Nov. 2001. [Online]. Available:
https://csrc.nist.gov/publications/detail/fips/197/final

[22] D. J. Bernstein, “Cache-timing attacks on AES,” 2005. [Online].
Available: https://api.semanticscholar.org/CorpusID:2217245

[23] S. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis
attack on an ASIC AES implementation,” in International Conference
on Information Technology: Coding and Computing, 2004. Proceed-
ings. ITCC 2004., vol. 2, 2004, pp. 546–552 Vol.2.

[24] S. Mangard, “A simple power-analysis (SPA) attack on implemen-
tations of the AES key expansion,” in Information Security and
Cryptology — ICISC 2002, P. J. Lee and C. H. Lim, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 343–358.

[25] B. W. Group, Bluetooth Core Specification. [Online]. Available: https:
//www.bluetooth.com/specifications/specs/core-specification-5-3/

[26] C. Lavaud, “Reconfigurable Systems for the Interception of Com-
promising Sporadic Signals,” Theses, Université de Rennes 1, Jan.
2022.

[27] D. Antonioli, “Bluffs: Bluetooth forward and future secrecy attacks
and defenses,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’23. New
York, NY, USA: Association for Computing Machinery, 2023,
p. 636–650. [Online]. Available: https://doi.org/10.1145/3576915.
3623066

[28] J. Wu, R. Wu, D. Xu, D. Tian, and A. Bianchi, “Sok: The long
journey of exploiting and defending the legacy of king harald
bluetooth,” in 2024 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, May 2024,
pp. 23–23. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/SP54263.2024.00023

[29] E. Research, “USRP B210 SDR kit - dual channel transceiver
(70 MHz - 6GHz).” [Online]. Available: https://www.ettus.com/
all-products/ub210-kit/

[30] TekBox, “Tbps01 probe,” 2024. [Online]. Available: https://www.
tekbox.com/product/tekbox-tbps01-emc-near-field-probes/

[31] GoTronic, “2,4 ghz antenna,” 2024. [Online]. Available: https:
//www.gotronic.fr/art-antenne-2-4-ghz-a24-hasm450-31786.htm

[32] TP-Link, “Tl-ant2424b,” 2024. [Online]. Available: https://www.
tp-link.com/fr/home-networking/antenna/tl-ant2424b/

[33] Mini-Circuits, “Zx60-272ln-s+,” 2024. [Online]. Available: https:
//www.minicircuits.com/pdfs/ZX60-272LN-S+.pdf

[34] D. Cauquil and R. Cayre, “One for all and all for whad: Wireless
shenanigans made easy !” DEF CON 2024, DEF CON Security
Conference, 8-11 August 2024, Las Vegas, NV, USA, 2024. [Online].
Available: https://defcon.org/html/defcon-32/dc-32-speakers.html

[35] R. Cayre, “Butterfly,” 2024. [Online]. Available: https://github.com/
RCayre/injectable-firmware

[36] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche,
and G. Marconato, “InjectaBLE: Injecting malicious traffic into
established Bluetooth Low Energy connections,” in IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN 2021), Taipei (virtual), Taiwan, Jun. 2021. [Online]. Available:
https://laas.hal.science/hal-03193297

[37] A. S. Foundation, “Nimble,” 2024. [Online]. Available: https:
//github.com/apache/mynewt-nimble

[38] ——, “Mynewt,” 2024. [Online]. Available: https://mynewt.apache.
org/

[39] Intel, “Tinycrypt,” 2024. [Online]. Available: https://github.com/intel/
tinycrypt

[40] H. Pahlevanzadeh, J. Dofe, and Q. Yu, “Assessing cpa resistance
of aes with different fault tolerance mechanisms,” in 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC),
2016, pp. 661–666. [Online]. Available: https://ieeexplore.ieee.org/
document/7428087

[41] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Security
evaluations beyond computing power,” in Advances in Cryptology
– EUROCRYPT 2013, T. Johansson and P. Q. Nguyen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 126–
141. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-642-38348-9_8

[42] R. Poussier, F.-X. Standaert, and V. Grosso, “Simple key enumeration
(and rank estimation) using histograms: An integrated approach,”
in Cryptographic Hardware and Embedded Systems – CHES 2016,
B. Gierlichs and A. Y. Poschmann, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 61–81. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-662-53140-2_4

[43] M. A. Elaabid and S. Guilley, “Portability of Templates,” Journal of
Cryptographic Engineering, vol. 2, no. 1, pp. 63–74, May 2012.

[44] D. P. Montminy, R. O. Baldwin, M. A. Temple, and E. D. Laspe,
“Improving cross-device attacks using zero-mean unit-variance
normalization,” Journal of Cryptographic Engineering, vol. 3, pp.
99–110, 2013. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18343838

[45] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Workshop
on Cryptographic Hardware and Embedded Systems, 2002. [Online].
Available: https://api.semanticscholar.org/CorpusID:9694193

[46] T.-H. Le, C. Canovas, and J. Clédière, “An overview of side channel
analysis attacks,” in Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ser.
ASIACCS ’08. Association for Computing Machinery, 2008, p.
33–43. [Online]. Available: https://doi.org/10.1145/1368310.1368319

[47] M. Randolph and W. Diehl, “Power side-channel attack analysis: A
review of 20 years of study for the layman,” Cryptography, vol. 4,
no. 2, 2020.

[48] H. Li, A. T. Markettos, and S. Moore, “Security evaluation
against electromagnetic analysis at design time,” in Proceedings
of the 7th International Conference on Cryptographic Hardware
and Embedded Systems, ser. CHES’05. Springer-Verlag, 2005, p.
280–292. [Online]. Available: https://doi.org/10.1007/11545262_21

[49] N. Semiconductor, nRF52832 Product Specification, 2021.

[50] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, p. 612–613, nov 1979. [Online]. Available: https:
//doi.org/10.1145/359168.359176

[51] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Advances in Cryptology - EUROCRYPT
2013, ser. Lecture Notes in Computer Science, vol. 7881. Springer,
2013, pp. 142–159.

[52] J. Lee and D.-G. Han, “Security analysis on dummy based side-
channel countermeasures—case study: Aes with dummy and shuf-
fling,” Applied Soft Computing, vol. 93, p. 106352, 2020.

[53] M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni, “Fresh
re-keying: Security against side-channel and fault attacks for low-cost
devices,” in Progress in Cryptology – AFRICACRYPT 2010, D. J.
Bernstein and T. Lange, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 279–296.

[54] M. Wang, V. V. Iyer, S. Xie, G. Li, S. K. Mathew, R. Kumar, M. Or-
shansky, A. E. Yilmaz, and J. P. Kulkarni, “Physical design strategies
for mitigating fine-grained electromagnetic side-channel attacks,” in
2021 IEEE Custom Integrated Circuits Conference (CICC), 2021, pp.
1–2.

https://api.semanticscholar.org/CorpusID:233685396
https://csrc.nist.gov/publications/detail/fips/197/final
https://api.semanticscholar.org/CorpusID:2217245
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://doi.org/10.1145/3576915.3623066
https://doi.org/10.1145/3576915.3623066
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00023
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00023
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://www.tekbox.com/product/tekbox-tbps01-emc-near-field-probes/
https://www.tekbox.com/product/tekbox-tbps01-emc-near-field-probes/
https://www.gotronic.fr/art-antenne-2-4-ghz-a24-hasm450-31786.htm
https://www.gotronic.fr/art-antenne-2-4-ghz-a24-hasm450-31786.htm
https://www.tp-link.com/fr/home-networking/antenna/tl-ant2424b/
https://www.tp-link.com/fr/home-networking/antenna/tl-ant2424b/
https://www.minicircuits.com/pdfs/ZX60-272LN-S+.pdf
https://www.minicircuits.com/pdfs/ZX60-272LN-S+.pdf
https://defcon.org/html/defcon-32/dc-32-speakers.html
https://github.com/RCayre/injectable-firmware
https://github.com/RCayre/injectable-firmware
https://laas.hal.science/hal-03193297
https://github.com/apache/mynewt-nimble
https://github.com/apache/mynewt-nimble
https://mynewt.apache.org/
https://mynewt.apache.org/
https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt
https://ieeexplore.ieee.org/document/7428087
https://ieeexplore.ieee.org/document/7428087
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_8
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_8
https://link.springer.com/chapter/10.1007/978-3-662-53140-2_4
https://api.semanticscholar.org/CorpusID:18343838
https://api.semanticscholar.org/CorpusID:18343838
https://api.semanticscholar.org/CorpusID:9694193
https://doi.org/10.1145/1368310.1368319
https://doi.org/10.1007/11545262_21
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

Appendix

AES leak with Fdefault firmware

AES Key Scheduling AES Key SchedulingAES 1st round AES 1st round

Figure 9. AES leakage in amplitude at fcarrier + 2 ∗ fclockHz during BLE
communication.

0 100 200 300 400 500
Samples

0.0

0.1

C
or

re
la

ti
on

co
eff

.
(r

)

0 100 200 300 400 500
Samples

0

2

M
ea

n
tr

ac
e

Figure 10. Correlation on amplitude for A7 during a radio transmission
with GFSK at fcarrier + 2 ∗ fclockHz.

Instruction Cache Experiment

0 200 400 600 800 1000 1200 1400 1600
Samples

0

2

N
or

m
al

iz
ed

am
p

li
tu

d
e

0 200 400 600 800 1000 1200 1400 1600
Samples

0.0

0.2

ρ

0 200 400 600 800 1000 1200 1400 1600
Samples

0

2

4

N
or

m
al

iz
ed

am
p

li
tu

d
e

0 200 400 600 800 1000 1200 1400 1600
Samples

0.0

0.5ρ

Figure 11. Correlations with instruction cache disabled (top) and enabled
(bottom).

Figure 12. The CPU (red) can fetch instructions from either the RAM
(blue), the Instruction Cache (purple) or the Flash (green). [49, p. 24]

	Introduction
	Related Work
	Background
	Side-channels
	Bluetooth Low Energy

	Threat model
	Attack overview
	Experimental Setup
	Bluetooth Low Energy Manipulation
	Challenges
	Methodology
	Evaluation

	Screaming Channel Attack on BLE
	Metrics
	Side-channel attack on AES during SK derivation
	Profiled Correlation Attack
	Evaluation on firmware Finstru
	Evaluation on firmware Fdefault
	Impact of noise on the profile

	Leakage Characterization
	Profile reuse
	Leaking frequencies
	Hardware component impacting the leakage

	Discussion
	Countermeasures
	Conclusion
	References
	Appendix

