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Abstract
Motivation: Characterizing the structure of flexible proteins, particularly within the realm of intrinsic
disorder, presents a formidable challenge due to their high conformational variability. Currently, their
structural representation relies on (possibly large) conformational ensembles derived from a combination of
experimental and computational methods. The detailed structural analysis of these ensembles is a difficult
task, for which existing tools have limited effectiveness.
Results: This study proposes an innovative extension of the concept of contact maps to the ensemble
framework, incorporating the intrinsic probabilistic nature of disordered proteins. Within this framework,
a conformational ensemble is characterized through a weighted family of contact maps. To achieve this,
conformations are first described using a refined definition of contact that appropriately accounts for the
geometry of the inter-residue interactions and the sequence context. Representative structural features of
the ensemble naturally emerge from the subsequent clustering of the resulting contact-based descriptors.
Importantly, transiently-populated structural features are readily identified within large ensembles. The
performance of the method is illustrated by several use cases and compared with other existing approaches,
highlighting its superiority in capturing relevant structural features of highly flexible proteins.
Availability and Implementation: An open-source implementation of the method is provided together
with an easy-to-use Jupyter notebook, available at https://gitlab.laas.fr/moma/WARIO.

Contact: juan.cortes@laas.fr
Supplementary Information: Implementation details and additional results are provided in (ADD LINK
TO SUPP. INFO. FILE)
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1. Introduction
The function of numerous proteins is intricately linked to their
conformational variability. In particular, intrinsically disordered
proteins/regions (IDPs/IDRs) represent an extreme example
of this phenomenon (Dyson and Wright, 2005; Oldfield and
Dunker, 2014; Clerc et al., 2021; Holehouse and Kragelund,
2023). Nevertheless, the conformational characterization of highly-
flexible systems remains a challenge. Currently, structural
ensembles of disordered proteins, such as those deposited in
the Protein Ensemble Database (PED) (Ghafouri et al., 2023)
or those derived from molecular dynamics (MD) simulations,

are defined by a set of atomistic models, which are hard to
analyze. The structural characterization of these ensembles is
often reduced to very simple descriptors, such as the radius of
gyration or the relative solvent accessibility, which provide very
limited structural insights and that are not necessarily related
with their function. Moreover, these descriptors are averaged
values over the whole ensemble, ignoring the information about
their distribution. Transiently-populated secondary structural
elements and long-range interactions are more relevant structural
descriptors. However, their identification in large atomistic
ensembles is often hampered by their reduced population. New
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descriptors are therefore needed to represent large conformational
ensembles in a compact and meaningful way.

For well-folded proteins, contact and distance maps have
become fundamental tools to define their 3D fold (Phillips,
1970; Nishikawa et al., 1972; Tanaka and Scheraga, 1975),
demonstrating their suitability to identify structural domains
(Rossman and Liljas, 1974; Kuntz et al., 1976; Janin and
Wodak, 1983). More recently, contact maps have proven key
for the development of machine-learning-based approaches for
structure prediction (Zheng et al., 2019; AlQuraishi, 2021;
Jumper et al., 2021). A naive extension of contact and distance
maps to conformational ensembles, which involves estimating
contact probabilities by averaging binary contacts, has been
used to describe interaction propensities in structured systems
(Mercadante et al., 2018; Yuan et al., 2012; Güven et al., 2023;
Clementel et al., 2022). However, in the presence of structural
disorder, this approach is not appropriate. More specifically,
contacts between residues that are far apart in the sequence,
which may be structurally or functionally important but occur
with low probability, remain undetectable in these representations.
Similarly, scarcely populated structural motifs are diluted in the
average contact/distance maps. This phenomenon is illustrated
in Figure 3(a), which displays the average contact map for a
conformational ensemble of a 27-residue long IDR in CHCHD4,
one of the proteins used as an example in this study (see
Results section). This representation only highlights contacts
around the diagonal of the matrix, while long-range contacts
that appear at low frequency remain undetected. Consequently,
the characterization of conformational ensembles on the basis
of contacts represents a non-trivial task that requires novel
approaches integrating the statistical nature of flexible proteins.

In order to overcome the above-described limitations, we
propose a new approach that, while exploiting the power of
contact maps, is adapted to the structural variability of highly-
flexible proteins. More precisely, we introduce the concept of
weighted family of contact maps to characterize a conformational
ensemble, by representing its structural diversity through a set
of short- and long-range contact patterns that appear at a given
frequency. This is done by first applying a well-suited clustering
algorithm that unravels the underlying conformational variability
of the protein and then characterizing such distribution through
its representative network of contacts.

Clustering conformations of highly-flexible proteins is a
challenging problem since their conformational space can be
considered as a high-dimensional manifold with non-Euclidean
geometry. In this regard, non-linear dimensionality reduction
algorithms, such as t-SNE (van der Maaten and Hinton, 2008),
UMAP (McInnes et al., 2020), are very attractive to disentangle
features embedded in high-dimensional data (Diaz-Papkovich
et al., 2019; Sakaue et al., 2020). Besides, their incorporation
into clustering algorithms has shown remarkable efficiency (Allaoui
et al., 2020; Grootendorst, 2022; Becht et al., 2018; Dorrity et al.,
2020). This idea has been recently exploited to analyze results
of MD simulations (Appadurai et al., 2023; Conev et al., 2023).
However, in these works, conformations were usually featured
by descriptors such as atom coordinates or backbone torsion
angles, and compared using root-mean-square deviation (RMSD)
(Rao and Rossmann, 1973; Maiorov and Crippen, 1994), whose
suitability to compare unfolded conformations is questionable.
Here, we propose to use contacts also to feature conformations
prior to clustering. However, unlike current approaches that use
an arbitrary threshold, we define contacts as a continuous weight

Fig. 1: Overview of WARIO pipeline implementation. The method takes a conformational ensemble as input. For each conformation,
inter-residue distances are computed, considering the sequence and the relative orientation of residue pairs. Using this information, a
proxy for the inter-residue contacts within the conformation is calculated, and the resulting values are used as structural descriptors.
Subsequently, the conformations are classified using the contact-based descriptors through a clustering algorithm that incorporates a
projection into a low-dimensional space. Finally, each cluster is represented by an average contact map describing the inter-residue
interactions within the corresponding group, along with their frequency within the ensemble. This weighted family of contact maps
characterizes the conformational ensemble.
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function that acts as a proxy of the interaction between residue
pairs. Importantly, this weight function depends on the amino-acid
types, their separation in the sequence, their Euclidean distance
and their relative orientation. We show that the appropriate
combination of these parameters in the contact definition is
crucial for the detection of transient structural features within
large ensembles. Then, clustering can be performed on the
conformational space featured with contact-based information
using HDBSCAN (Campello et al., 2013), passing through a low-
dimensional UMAP projection. In addition to the contact pattern,
several descriptors associated to each cluster can be derived, such
as secondary structure propensities, average radius of gyration and
end-to-end distances.

The pipeline with the stages corresponding to the actual
implementation of the method, which we named WARIO, is
illustrated in Figure 1. This original approach provides a compact
and meaningful representation of conformational ensembles of
flexible proteins, from which functionally important structural
features can be easily identified.

2. Methods
2.1. Description of intramolecular contact as a sequence and

orientation-dependent continuous function
Conventionally, a contact between a pair of residues is defined
as a binary indicator when the Euclidean distance between their
Cα (or Cβ) atoms is less than a certain threshold, typically set
between 6Å and 12Å (Newton et al., 2022). This indicator is
universal for every pair of residues regardless of their identities,
positions in the sequence or relative orientation. However, it is
known that these parameters influence inter-residue interactions.
Indeed, when looking at how Euclidean distances are distributed
in high-resolution structures, we observed that they concentrate
around values that are strongly dependent on the amino-acid
identities and their sequence distance (from now on, we will use
the term range to designate the sequence distance in number of
amino acids). Furthermore, interacting residues present preferred
relative orientations that clearly manifest for short-range contacts.
Consequently, an accurate contact descriptor must integrate both
sequence and geometric information, and avoid universal binary
indicators that, as we show here, yield a substantial loss of
structural information.

Here, we redefine contact as a continuous function, taking
values in the interval [0, 1], that integrates sequence information
and the relative orientation between the interacting residues. To
do so, we followed the steps briefly explained below. Details
are provided in Section S1 of the Supplementary Information
(SI). The contact function was defined based on the analysis
of 15,177 experimentally-determined high-resolution (< 2Å)
structures of protein domains extracted from the SCOPe 2.07
release (Chandonia et al., 2018), which we will refer to as the
structural database. The first step corresponds to the identification
of Euclidean contact distance maxima in the structural database,
which depend on the identity and range of the two residues. These
maxima are used to define the so-called Euclidean contact interval,
which represents a fuzzy boundary below which the interaction
between residues is meaningful. We observed that, for Euclidean
distances below its upper limit, preferred orientations clearly stand
out in the structural database. Once again, they depend on the
residue identities and range, and they are more clearly observed for

Fig. 2: Contact function for Ala-Ala residue pairs at ranges 3 and
4. The growth of each curve is concentrated within the so-called
contact interval, which is marked by a band colored magenta and
blue for ranges 3 and 4 respectively. When inter-residue Euclidean
distances remain equal, the contact function yields higher values
for relative orientations that more closely resemble the preferred
ones observed in the structural database. On the right, two Ala-
Ala pairs at range 4 with equal Cβ-Cβ distances of 7.4Å. The
configuration on the top has a higher contact value, indicating
its closer alignment to the preferred orientation of both alanine
residues at range 4.

short-range contacts (see Figure S3). These preferred orientations
need to be combined with the Euclidean distance in a suitable
way. In this respect, we ask the orientation contribution: (i) to be
negligible for large values of the Euclidean distance, and (ii) to
contribute to enhance the proxy for contact only if it is close to
the specific preferred orientation of the residue pair. Conditions (i)
and (ii) yield the definition of the so-called relative pose distance,
which equals the Euclidean distance for large values or if the
contact is long range, and progressively reduces the Euclidean
distance as the relative inter-residue orientation approaches the
preferred one. Note that in the present context, the term pose
refers to the position and orientation of the amino acid in the
three-dimensional space. The relative pose distance is explicitly
constructed as a continuous function combining the Euclidean
distance and the deviation from the preferred orientation. Its
functional form is parameterized by the identities and the range of
the corresponding residue pair. Finally, the relative pose distance
is transformed into a proxy for contact taking values in [0, 1], which
we refer to as contact function. It is a decreasing function of the
relative pose distance, parameterized by the sequence information.
The growth of the curve is concentrated within a specific interval,
which was analogously determined through the analysis of the
relative pose distance distribution in the structural database. This
is illustrated with an example in Figure 2, where the contact
function is depicted for Ala-Ala residue pairs at different range
values.

The redefinition of contact as a continuous function in
[0, 1], depending on the relative position, orientation and
sequence information, proves to be essential for an appropriate
characterization of the structural dynamics of flexible proteins, as
shown in Section S2 in SI.

2.2. Clustering pipeline and ensemble characterization
The clustering method applied in WARIO relies on the contact
function defined above. Conformations are featured by the contact
function values for every pair of residues along the sequence.
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Consequently, an ensemble corresponding to a protein of length
L and having n conformations is described by the n × L(L − 1)/2
matrix:

WC =



ωC
12;1 · · · ωC

ij;1 · · · ωC
(L−1)L;1

ωC
12;2 · · · ωC

ij;2 · · · ωC
(L−1)L;2

...
...

...

ωC
12;n · · · ωC

ij;n · · · ωC
(L−1)L;n

 , (1)

where ωC
ij;k denotes the value of the contact function for residues

i, j ∈ {1, . . . , L} in the k-th conformation, for k ∈ {1, . . . , n}. Note
that this formulation is equivalent to consider each conformation
as a graph, as it has been previously done in related methods
such as RING (Martin et al., 2011; Clementel et al., 2022). Here,
the set of nodes is given by the set of residues and every pair of
residues i,j is linked by an edge with a weight ωC

ij;k. This procedure
is depicted in Figure 1. It should be noted, however, that the
graphical representation is merely an alternative visualization of
the data, and that our methodology does not rely on graph theory.

The clustering method performed on the contact function
matrix (1) is based on the combination of a dimensionality
reduction technique with an efficient clustering algorithm,
similarly to state-of-the-art approaches (Conev et al., 2023;
Appadurai et al., 2023). Here, we opt for UMAP (McInnes et al.,
2020) to first embed the data (1) into a low-dimensional space,
as this strategy has been shown to improve the performance of
several clustering algorithms (Allaoui et al., 2020). Besides, the
use of UMAP has demonstrated its ability to preserve the topology
of the high-dimensional data and efficiently reveal population
structure (Diaz-Papkovich et al., 2020; Dorrity et al., 2020; Sakaue
et al., 2020). In this work, we set to 10 the dimension of
the low-dimensional UMAP space based on empirical analyses,
although the user can change this parameter in the provided
implementation. The HDBSCAN clustering algorithm (Campello
et al., 2013), which we consider to be one of the best-performing
density-based techniques, in then applied to the embedding. One of
its practical advantages is that it only requires as input parameter
the minimum cluster occupancy and automatically selects the
number of classes. This is suitable for our implementation, as the
practitioner might have more intuition of the desired “resolution”
of the characterization through the setting of a minimum number
of conformations rather than through the direct choice of a number
of classes. Details on UMAP and HDBSCAN are provided in SI.

Once the clustering is performed, each class is characterized
through a cluster-specific contact map. Let K be the number
of retrieved clusters and Ck ⊂ {1, . . . , n} be the subset of
conformations constituting the k-th cluster, for k ∈ {1, . . . , K}.
Of course, Ck ∩ Ck′ = ∅ for all k ̸= k′. Keeping the notation
of (1), we define the k-th cluster-specific ω-contact map as the
(L − 1) × (L − 1) matrix:

W Ck
=

(
1

|Ck|

∑
l∈Ck

ωC
ij;l

)
ij

for i < j ∈ {1, . . . , L}, (2)

where |Ck| denotes the cardinality of Ck. The matrix (2) is the
average of all the rows in (1) that belong to the k-th cluster,
represented in a matrix form. Its entries are the cluster averages

of the contact function values for every pair of residues along the
sequence, and it accounts for the contact patterns that dominate
the cluster. A weight pk = |Ck| /n can be assigned to each matrix
(2) based on the cluster occupancy proportion. This allows us to
define the ensemble characterization as the K-tuple of weighted
cluster-specific ω-contact maps:

E =
((

W C1 , p1
)

, . . . ,
(

W CK
, pK

))
, (3)

which provides a compact characterization of inter-residue
interactions in the ensemble.

Each cluster of conformations can be analyzed a posteriori on
the basis of additional descriptors. Here, we propose to evaluate
the secondary structure propensities based on the structural
classification provided by DSSP (Kabsch and Sander, 1983) and to
compute the cluster average radius of gyration. Other descriptors
can be easily added using methods implemented in tools such as
SOURSOP (Lalmansingh et al., 2023).

2.3. Software availability
WARIO has been implemented in Python, and can be executed
through an easy-to-use Jupyter Notebook. The open-source code,
along with detailed installation and use instructions, is available
at: https://gitlab.laas.fr/moma/WARIO.

3. Results
We have used WARIO to characterize ensembles of three highly-
flexible proteins containing different levels of structure. We applied
the pipeline described in Section 2 to ensembles extracted from
long MD trajectories. Details of these simulations can be found in
the original articles. Through these examples, we demonstrate the
ability of our approach to localize scarcely populated structural
patterns, including secondary structural elements and transient
long-range contacts. We also compared WARIO’s contact-based
clustering method with other approaches, highlighting its unique
ability to cluster structural patterns that often remain unidentified
by other strategies.

3.1. Characterization of the N-terminal region of CHCHD4
CHCHD4 (coiled-coil-helix-coiled-coil-helix domain containing 4)
plays a crucial role in the import of intermembrane space-targeted
proteins (Hofmann et al., 2005; Fischer et al., 2013). Only the
structure of the folded domain of CHCHD4 (residues 45-109)
has been experimentally resolved (Banci et al., 2009). However,
the interaction with most of its clients exclusively involves the
intrinsically disordered N-terminal region (27 residues) (Hangen
et al., 2015), which is the fragment analyzed here.

A conformational ensemble of the disordered N-terminal region
of CHCHD4, encompassing n = 100050 conformations, was
generated from 50 independent MD trajectories of 200 ns each
(Mazzanti et al., unpublished). Data are publicly available
(Mazzanti and Ha-Duong, 2024). Using a minimum cluster size
of 1% of the total number of conformations, WARIO identified
23 clusters with different levels of occupancy. The two most
populated clusters contained approximately 20% and 16% of the
conformations, while the remaining 21 clusters only represented
1-3% of them. The overall cluster distribution can be visualized
through the projection to a 2-dimensional UMAP space (see
Section S4.1 in the SI). The complete family of ω-contact maps
for CHCHD4 as well as the secondary structure propensities and

https://gitlab.laas.fr/moma/WARIO
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Fig. 3: Structural characterization of CHCHD4. (a) Contact probability map for the conformational ensemble of CHCHD4. Each contact
probability is estimated as the proportion of contacts between a pair of residues, considering a 8Å distance threshold between the Cβ

atoms (Cα for glycine). In the upper triangle, 10 randomly selected conformations from the ensemble. (b-f) Cluster-specific ω-contact
maps (2) for five clusters of CHCHD4. Panels (b) and (c) correspond to the two most populated groups encompassing 20.06% and 16.32%
of the conformations. In each upper triangle, 10 randomly selected conformations from the corresponding cluster and aligned on residues
exhibiting off-diagonal contact patterns. Note that the cluster numbering is arbitrary and it is not related with its population.

average radius of gyration for all clusters are presented in the SI.
The average ω-contact map of the two most populated clusters
showed the presence of some local structure at the C-terminus
of the chain and a complete absence of long-range contacts
(Figure 3(b,c)). Interestingly, all the remaining, low occupied
conformational clusters presented more specific structural features
(Figure 3(d-f)). For instance, two clusters containing 1.5% and
1.1% of the population presented a turn from residues 6 to 15 and a
short α-helix, respectively (panels (d) and (e) in Figure 3). Indeed,
the clusters provided by WARIO group together conformations
that exhibit the same secondary structure motifs. As shown in
Section S2 of the SI, this is due to the proper incorporation
of relative orientation in the definition of inter-residue contacts.
Another low populated (1.17%) cluster displayed a well-defined
long-range contact between the central and the C-terminal region
of the peptide (Figure 3(f)). When analyzing the average radius
of gyration for all the identified clusters, a large difference was
observed between the two most populated ones, with values of
15.36Å and 13.98Å, respectively, and the others, presenting values
around 10-12Å. This observation substantiates the presence of
long-range contacts in the majority of the low-populated clusters.
This analysis demonstrates the ability of WARIO to identify
and localize scarcely populated structural patterns from large
ensembles.

3.2. Comparison of WARIO’s featurization with other methods
We compared the clusters obtained using WARIO for CHCHD4
with those provided by two existing approaches based on pairwise
distances and inter-residue Lennard-Jones contact energies. In
distance-based methods, structural data are featured by Euclidean
distances between residue pairs. This metric has proven its
suitability for detecting structural differences between ensembles
of flexible proteins (Lazar et al., 2020; González-Delgado et al.,
2023b). It is frequently used together with dimensionality
reduction and clustering algorithms to analyze conformational
ensembles (Lowry et al., 2008; Appadurai et al., 2023; Conev et al.,
2023). However, when employed to characterize the structure of
a highly-flexible protein, the use of Euclidean distances does not
show the same efficacy as when used for comparative purposes.
This is explained because the inter-residue Euclidean distances for
the whole protein primarily account for the global structure of
the conformation, and are less sensitive to transient interactions.
To illustrate this, we applied the UMAP + HDBSCAN pipeline
to the structural data featured with pairwise Euclidean distances
between all Cβ atoms (Cα for glycines) to characterize the
CHCHD4 MD ensemble. This strategy retrieved 10 clusters,
among which one contained the 67% of conformations. Note that
WARIO retrieved 23 clusters for the same ensemble and that
the two most occupied clusters contained approximately 20% and
16% of the conformations. Figure 4(a-c) displays the average
distance maps for the three most occupied clusters, together
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Fig. 4: Comparison of WARIO with other clustering approaches. (a-c): CHCHD4 cluster-specific average distance maps after applying
the UMAP + HDBSCAN pipeline to the set of conformations featured by all Euclidean inter-residue distances. In each upper triangle,
30 randomly selected CHCHD4 conformations from the corresponding cluster and aligned on all residues are displayed. (d-f) CHCHD4
cluster-specific Lennard-Jones contact maps after applying the UMAP + HDBSCAN pipeline to the set of conformations featured
by all inter-residue LJ interaction potentials. In each upper triangle of (e,f), 10 randomly selected CHCHD4 conformations from the
corresponding cluster and aligned on residues with low average contact energy values. In the upper triangle of panel (a), corresponding
to the most populated cluster, four non-aligned randomly selected conformations from the group are displayed. Note that the cluster
numbering is arbitrary and it is not related with its population.

with 30 conformations randomly drawn from each cluster and
aligned using all residues. As the UMAP + HDBSCAN pipeline
is fed with all the pairwise distances, clusters tend to group
conformations having similar global shapes and do not necessarily
group them according to the presence of structural motifs or
long-range contacts. As a consequence, the structural clusters
yield much broader contact maps when compared to the results
yielded by WARIO. Therefore, distance-based methods do not
seem adapted to identify scarcely populated states diluted in a
conformationally diverse ensemble.

The use of an inter-residue Lennard-Jones (LJ) interaction
potential to feature individual conformations has been recently
reported (Appadurai et al., 2023). The capacity to capture
interactions within the chain makes this strategy similar to
our continuous contact function. In order to implement the LJ
potential, we repeated the same strategy as in the previous
distance-based analysis but featuring each conformation k ∈
{1, . . . , n} by the vector

(
V12;k, . . . , Vij;k, . . . , VL(L−1);k

)
, where

Vij;k is the inter-residue LJ contact energy between residues i and
j in the k-th conformation. The explicit form of the interaction
potential is given in (Clementi et al., 1999, Eq. 1-3).

After classifying the LJ interaction matrices with the UMAP
+ HDBSCAN pipeline, one predominant cluster was retrieved
containing around 16% of conformations, together with 25 other
groups with populations ranging from 1% to 5% (Figure 4(d-
f)), similarly to the number of clusters retrieved with WARIO.

The regions of these maps displaying low energy values indicate
pairs of residues with more likely interactions. Although this
representation is more diffuse than that based on contact
functions implemented in WARIO (see Figure 3), they still
allow for the identification of cluster-specific interaction patterns.
When looking at the most populated cluster (Figure 4(d)),
an interaction map with low energy values near the diagonal
that steadily increases towards the interior of the matrix was
observed, and no local contact or long-range interaction could
be identified. This contradicts the inter-residue interactions
observed for some randomly selected conformations of the cluster,
as shown in Figure 4(d). The inspection of less populated
clusters indicates that LJ-based interaction maps are more diffuse
than the continuous-contact ones and that the derivation of a
specific structural features from these maps is less straightforward
(Figure 4(e)-(f)). In order to exemplify this last observation, we
searched among the LJ-based clusters one presenting a helical
motif at residues 21-24, as detected by WARIO (Figure 3(e)). For
this, we identified three LJ maps presenting energy minima at the
C-terminus (Figure 4(f), Figure S9(c,e)). However, the secondary
structure analysis of these three clusters displayed a negligible α-
helical propensity for residues 21-24 (Fig. S9(b,d,f)), indicating
that the LJ-based description of contacts produces structurally ill-
defined clusters. The distance and LJ-based featurizations, along
with classical binary contacts, are compared to WARIO using the
adjusted Rand index in Section S3.2 of the SI.
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3.3. Characterization of Huntingtin Exon-1 and TAR
DNA-binding protein 43

We applied WARIO to characterize conformational ensembles of
more challenging systems. Due to length constrains, detailed
descriptions are presented in Section S4 of SI.

The huntingtin exon-1 (HTTExon-1), which contains
a poly-glutamine tract, poly-Q, is the main toxic agent in
Huntington’s disease (Saudou and Humbert, 2016). A 20-
microsecond molecular dynamics (MD) simulation of HTTExon-1
(Elena-Real et al., 2023) with a 46 glutamines and 5 prolines was
analyzed using WARIO, revealing 43 low-population structural
clusters, each representing 1-3% of conformations. Cluster-specific
contact maps and secondary structure analyses identified a
systematic extension of helical structures within the poly-Q tract.
By refining the clustering resolution, WARIO detected scarcely
populated intramolecular contacts, such as a β-sheet formation
in 0.2% of the conformations, demonstrating the ability of the
method to identify critical structural features with extremely low
populations.

The structure of TAR DNA-binding protein 43
(TDP-43), associated with amyotrophic lateral sclerosis and
frontotemporal dementia (Cohen et al., 2011), was studied through
all-atom MD simulations at 100 and 300 mM NaCl to understand
its phase separation behavior (Mohanty et al., 2024). WARIO
analysis of these simulations elucidated intricate interdomain
interactions. At low ionic strength (100 mM NaCl), TDP-43
showed complex interaction networks involving its N-terminal
domain (NTD), disordered regions (IDR1 and IDR2), and RNA-
recognition motifs. Upon increasing the ionic strength at 300
mM NaCl, some interactions, such as the L1-RRM2 contact,
remained unaltered, while others, such as the IDR1-IDR2 contact,
disappeared. This analysis revealed the capabilities of WARIO
in providing insights into the protein behavior under different
experimental conditions.

4. Discussion
The proposed method provides a compact and meaningful
characterization of conformational ensembles through a weighted
family of contact maps. The idea of using a graph-based
characterization built from contact information to investigate
biomolecular ensembles has been previously proposed (Clementel
et al., 2022). However, due to the enormous structural variability
of highly-flexible proteins and to the sparsity of most long-
range contacts, the average probability of residue-residue contacts
is not a suitable structural descriptor. To account for the
complex nature of the contact distribution, WARIO first unravels
the most determinant interaction patterns that characterize the
ensemble and then represents them as easily interpretable cluster-
specific contact maps, with associated weights accounting for
their population. A key point of this procedure is a novel
definition of contact that integrates the chemical nature of the
residues involved, their distance along the sequence and their
relative orientation. Taking into account the relative orientation
of interacting residues is essential to correctly identify scarcely
populated structural motifs. Note that these motifs are often
the anchoring points for biomolecular assemblies, where they can
modulate the thermodynamics and kinetics of recognition events
(Tompa et al., 2015; Davey, 2019). In the current implementation

of WARIO, the relative orientation is not considered for long-
range interactions. Indeed, our analyses of high-resolution protein
structures did not show clearly preferred orientations for residue
pairs with a distance greater than four along the sequence. Despite
this, in all our examples, very clear contacts between residues far
apart in the sequence were detected. Importantly, WARIO was
able to cluster these conformations based primarily on the presence
of these long-range contacts. This is possible thanks to the use
of contact information to feature conformations instead of global
descriptors based on atomic coordinates, which we showed to be
less effective to derive structurally meaningful clusters.

It is important to emphasize that descriptors based on contact
information hold particular significance for the investigation of
disordered proteins. Indeed, they can be directly associated
to experimental data reporting on local and global structural
information obtained by Nuclear Magnetic Resonance (NMR)
(Milles et al., 2018), Small-Angle X-ray Scattering (SAXS)
(Bernadó and Svergun, 2012), single molecule Förster Resonance
Energy Transfer (smFRET) (Chowdhury et al., 2023), Electronic
Paramagnetic Resonance (EPR) (Jeschke, 2013) or from
mutational studies (Pounot et al., 2024). In contrast, the use
of atomic coordinates, the most standard descriptor for rigid
protein structures, is less suitable in this context, since the
experimental techniques providing such information, namely X-ray
crystallography and cryo-electron microscopy, are not applicable
to highly-flexible systems.

The proposed ensemble characterization approach relying on
contact-based clustering is clearly defined and easy to interpret.
Nevertheless, it strongly depends on the minimum cluster size used
by HDBSCAN. The output dependence on hyper-parameters is
an intrinsic and unavoidable property of all clustering algorithms.
However, in our pipeline, the minimum cluster size is easily
interpretable as the desired resolution for the characterization (3).
The smaller the size, the finer the classification, allowing the
detection less frequent contact patterns. Nevertheless, too high
resolution could result in redundancy. The choice of the clustering
resolution should be made based on the practitioner’s needs, and
its readjustment can be envisioned depending on the results. It is
important to emphasize that, in general, there is no “true number
of clusters”, and all classification algorithms aim at representing
the diversity of the conformational states rather than revealing
a non-existing underlying partition. An effective solution to deal
with the dependence on the minimum cluster size would be to
apply statistical techniques, providing evidence of the differences
between the clusters obtained at different resolutions and evaluate
whether several clusters can be merged into a larger one, or vice
versa. This problem is a growing field of research referred to
as post-clustering inference. However, these methods are highly
dependent on the type of algorithm used for clustering and on
the interdependence of the observations and descriptors employed.
Despite recent advances (Gao et al., 2022; Chen and Witten, 2023;
González-Delgado et al., 2023a), their application to the evaluation
of WARIO results remains to be explored.

In the present study, we have applied WARIO to single-chain
trajectories, but its range of applications could be easily extended
to study large biomolecular multi-chain complexes with different
levels of disorder, and to ensembles containing several copies of the
same or different molecules (Galvanetto et al., 2023; Guseva et al.,
2023). Note however that the current implementation of WARIO
operates in an all-atom representation of the protein backbone.
This is required for the definition of the residue-specific reference
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frame and, therefore, for the integration of relative orientation
into the contact function. The adaptation of WARIO to coarse-
grained (CG) models would be extremely valuable in the present
context of continuous improvement of force-fields with the aim of
investigating condensed states of phase separating systems (Tesei
et al., 2021; Rizuan et al., 2022). Until this extended version of
WARIO is available, interested users can rely on algorithms to
transform CG into all-atom models such as cg2all (Heo and Feig,
2024) or integrated tools in MD simulation packages.

As illustrated through the above-presented examples, WARIO
can be easily applied to analyze the structural behavior of
highly-flexible protein from conformational ensembles produced
by MD simulations. Furthermore, WARIO can also be applied
to ensembles generated by statistical sampling methods (Bernadó
et al., 2005; Estaña et al., 2019; Teixeira et al., 2022), as we have
shown for the N-tail protein from Sendai virus (Jensen et al., 2008)
(see Section S5 in SI).

Importantly, the results provided by WARIO can also help
to understand structural effects of mutations or environmental
changes, as shown with the analysis of TDP-43 in two ionic
strengths. An interesting direction for future work could be to
exploit WARIO’s clustering capabilities to build Markov State
Models (MSM) from MD simulation (Prinz et al., 2011; Sisk
and Robustelli, 2024), in order to study the kinetic properties
of intrinsically disordered proteins. Nevertheless, we believe that
WARIO’s greatest potential lies in its coupling with machine-
learning (ML) methods for the prediction of the conformational
behaviour of disordered chains in solution. Some recent studies
have shown the potential of ML method to predict structural
properties of IDPs/IDRs directly from sequence (Tesei et al., 2024;
Lotthammer et al., 2024). However, these approaches are based
on extremely simple structural descriptors, such as the radius of
gyration and the end-to-end distance, and therefore provide very
limited insights into the conformational details at the residue level.
The weighted families of contact maps proposed in this work would
enable the development of more accurate predictors and generative
models for IDPs and IDRs.
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Mercadante, D., Gräter, F. and Daday, C. CONAN: A tool to
decode dynamical information from molecular interaction maps.
Biophysical Journal, 114(6):1267–1273, 2018.

Milles, S. et al. Characterization of intrinsically disordered
proteins and their dynamic complexes: From in vitro to cell-
like environments. Progress in Nuclear Magnetic Resonance
Spectroscopy, 109:79–100, 2018.

Mohanty, P. et al. A complex network of interdomain interactions
underlies the conformational ensemble of monomeric TDP-43
and modulates its phase behavior. Protein Science, 33(2):e4891,
2024.

Newton, M.H. et al. Enhancing protein contact map prediction
accuracy via ensembles of inter-residue distance predictors.
Computational Biology and Chemistry, 99:107700, 2022.

Nishikawa, K. et al. Tertiary structure of proteins. i.
representation and computation of the conformations. Journal
of the Physical Society of Japan, 32(5):1331–1337, 1972.

Oldfield, C.J. and Dunker, A.K. Intrinsically disordered proteins
and intrinsically disordered protein regions. Annual Review of
Biochemistry, 83(1):553–584, 2014.

Phillips, D.C. British biochemistry, past and present. In London
Biochemical Society Symposia, page 11. Academic Press, 1970.

Pounot, K. et al. Mutations in Tau protein promote aggregation
by favoring extended conformations. JACS Au, 4(1):92–100,
2024.

Prinz, J.H. et al. Markov models of molecular kinetics: Generation
and validation. The Journal of Chemical Physics, 134(17):

https://doi.org/10.1080/01621459.2022.2116331
https://doi.org/10.1080/01621459.2022.2116331
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