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Abstract: In robotics, “person following” depicts the servoing of the relative situation of a robot
w.r.t. a moving person. This property may be hard to achieve, especially when the estimation of
the person ego-motion is weak (e.g., due to limited prior knowledge or computational resources).
This paper introduces a nonholomic mobile robot controller, which ensures an intuitive and safe
behavior through an insightful robot-centered problem statement. Under realistic bounded-error
readings of hidden constant person velocities, ultimate boundedness of the state vector norm
can be ensured in the neighborhood of its equilibrium.

Keywords: Robotics, Mobile robots, Nonlinear control.

1. INTRODUCTION

Among the developing trends in the collaborative robot
industry, the “person following” task has already attracted
much attention in fields such as logistics, personal services
or collaborative inspection. The aim is to make the robot
evolve in the vicinity of a human operator by keeping it
servoed on him/her: either leading ahead, moving along-
side or lagging behind. Arguably, to perform this task,
continuous human motion estimation is required and must
be included in the robot motion control algorithm.

What has been seen as the most challenging obstacle
and has attracted most contributions is people percep-
tion (Dondrup et al., 2015; Linder et al., 2016; Leigh
et al., 2015; Montesdeoca et al., 2017). Conversely, the
motion control aspect has often been overlooked. Morales
et al. (2009) and Leigh et al. (2015) follow the operator
from behind by feeding decentralized proportional or PID
controllers with the relative translational and rotational
errors to the robot. Lagging behind a human is indeed
easier as it limits the risk of colliding with obstacles.
Leading in front may imply additional planning considera-
tions (Nikdel et al., 2018). However, some use cases require
the robot to either navigate alongside the person or to
change online its relative distance and angle to him/her.
Social acceptance and comfort criteria are studied in Mae-
hara and Fujinami (2018); Shanee et al. (2016).

In view of these considerations, the design of a nonlinear
controller enabling a robot to regulate at a constant ref-
erence its distance and bearing to a human is hereafter
revisited. An approach is proposed, which ensures the
exponential stability of the zero-error equilibrium point
when the exact person motion is known. To the authors’
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knowledge, no controller in the literature guarantee prop-
erties against unavoidable uncertainties in the assumed
velocity of the person. A step towards this aim is done,
by showing that the closed-loop system errors converge
to a small neighborhood of the origin when subject to
pragmatic disturbances on the genuine person velocity.

The paper is organized as follows. Section 2 reviews
literature on the control aspect of the “person following
task”. In Section 3 as the main contribution, a continuous
nonlinear feedback controller is proposed that takes into
account both the nonholonomic constraint of the robot,
and the uncertainty associated with the human motion.
Experiments in 4 corroborate its theoretical properties.

2. RELATED WORK

In the literature, person following is addressed along two
main control approaches. The inputs to the robot are
synthesized so as to control either the relative position of
the robot w.r.t. the person frame or the relative position
of the person in the robot frame. These approaches are
henceforth termed “person frame based control” or “robot
centered control”, respectively.

2.1 Person Frame Based Control

Given the velocity and orientation of the person in the
world frame, Montesdeoca et al. (2017) propose a Lya-
punov based controller to position the robot behind
him/her at a reference distance. However, in the case when
the person is motionless, the design outputs a zero velocity
for the robot irrespective of the current error distance,
which is unpleasant if the person is waiting for the robot
to catch up. In autonomous wheelchair applications, Park
and Kuipers (2013) propose a model predictive equilibrium
point control. The entailed objective function aims at
regulating the robot pose w.r.t. the person frame while
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handling the comfort of surrounding people and avoiding
obstacles. The reference pose is reached using the pos-
ture stabilization scheme of Park and Kuipers (2011). As
noted by Arechavaleta et al. (2006), human locomotion
can be viewed as nonholonomic and generally features a
faster dynamics compared to a robot. Therefore, if the
person velocity changes abruptly, then the reference pose
(implicitly coded in the objective function) may jump by
a few meters, and thus subsequently lead to an erratic
robot behavior. Theoretically, some of these corner cases
can be fixed by improving the estimation of the person
orientation. However, this would likely require additional
computing power for the human perception module. In our
opinion, the unpleasant consequences of the uncertainty on
the person orientation should be offset by the ability of the
controller to provide a safe and intuitive behavior. But as
long as the person is cooperative—avoiding corner cases—
and the perception module is reliable enough, the person
frame based control can be a suitable solution.

2.2 Robot Centered Control

Robot centered control aims at keeping the person in a
region defined in the robot frame. The most elementary
proportional or PID schemes generate the robot velocities
which enable the servocontrol of the person distance in
front of the robot (Morales et al., 2009; Leigh et al., 2015).
As pointed out by Pucci et al. (2013), the person orienta-
tion may be unreliably inferred, so it may be beneficially
disregarded. The authors address two major issues: the
case when the reference is located on the robot’s driving
wheels axis, and the so-called jack-knife effect. The first
problem is due the nonholomic nature of the robot and has
been formulated in a theorem by Brockett (1983) and re-
called in Morin and Samson (2008), i.e., no time-invariant
continuous state feedback can stabilize the person on the
robot driving wheel axis. A discontinuous control solves
this issue. The second effect depicts the tendency of the
robot to progressively reverse its orientation when the
person moves towards it, so that it ends up lagging behind
him/her.

3. NONLINEAR FEEDBACK CONTROL

3.1 Definitions

In this section, we firstly assume that the exact velocity
of the followed person is known and constant. This strong
assumption will be relaxed in Subsection 3.5. The person,
also named “target” in the sequel, is described by a single
point as his/her orientation (and velocity) is assumed
tangent to his/her trajectory in virtue of human motion
nonholonomicity (Arechavaleta et al., 2006). Figure 1
sketches the problem and introduces the related notations.

3.2 Kinematics of the Problem

In the fixed frame F0, the nonholonomic kinematics of the
robot are described by

ẋ = v cos θ (1a)

ẏ = v sin θ (1b)

θ̇ = ω. (1c)

Transforming (1) to express the distance and angle from
the front of the robot to the target yields the model,

defined for [r, α, θ]
T ∈ D = ]0; +∞[× ]−π2 , π2 [× R,

ṙ = −v cosα− ωd sinα (2a)

α̇ = v
sinα

r
− ω

(d
r

cosα+ 1
)

(2b)

θ̇ = ω. (2c)

Let vp := [vxp, vyp]
T terms the velocity vector of the target

T relative to the world (F0) and expressed in F0. For
vp 6= 0, the state space model (2) extends as:

ṙ = −v cosα+ vxp cos(α+ θ) + vyp sin(α+ θ) (3a)

α̇ =
v

r
sinα− ω − vxp

r
sin(α+ θ) +

vyp
r

cos(α+ θ) (3b)

θ̇ = ω. (3c)

The reference values r∗, α∗ entailed in e = [er, eα]T are
assumed constant. The synthesis of the controller is hence-
forth based on the model{

ė = G(e)u+ F (e, θ)vp (4a)

θ̇ = ω (4b)

equivalent to (3), with (r and α being respective shortcuts
for er + r∗ and eα + α∗, and the arguments of F,G being
omitted for space reasons)

G =
[
− cosα −d sinα

sinα
r −(1+ d

r cosα)

]
, F =

[
cos(θ+α) sin(θ+α)

− sin(θ+α)
r

cos(θ+α)
r

]
. (5)
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y
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ω
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Fig. 1. Definitions (bold symbols term vectors):
F0 := (O,x,y): word frame; FM := (M,xr,yr):
robot frame (with M the robot’s drive axle mid-
point and xr orthogonal to this axle); M ′ foremost
point of the robot on xr; u := [v, ω]T : robot con-
trol vector (with v, ω the translational and rota-
tional velocities relative to F0 and expressed in FM );
d := ‖MM ′‖; r := ‖M ′T ‖: distance to the person T ;

α := ̂(xr,M
′T ): angle to the person T ; θ := (̂x,xr):

orientation of the robot in F0; e := [er, eα]T :=
[r − r∗, α− α∗]T , with r∗, α∗ some reference values;

θ̃ := θ − θ∗, with θ∗ a reference value.
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Fig. 2. Phase portrait of subsystem (7b). Several initial
conditions are shown in blue. The singularity domain
S = {e | er = −r∗, (er + r∗) cos(eα +α∗) + d = 0}
is shown in red. In view of the nature of S, the
proposed definition (9) leads to a dynamic matrix
A := −P−1Q such that any trajectory starting in
De converges towards the stable node e = 0 without
making G(e) singular.

3.3 Controller Design

Unless otherwise stated, the target velocity vector vp is
assumed constant. If P and Q are two positive definite
matrices of R2×2, then the controller

u = [ vw ] = −G−1(e)P−1
(
PF (θ, e)vp +Qe

)
(6)

linearizes and stabilizes the closed-loop dynamics of sub-
vector e. Indeed, the closed-loop system writes as{

θ̇ = [0 1]u, (7a)

ė = −P−1Qe (7b)

where A := −P−1Q satifies 1
2A

TP + 1
2PA+Q = 0.

Fact 1. G(e) is singular, and the feedback system is ill-
posed, when r cosα = −d, i.e., if the person is located on
the line passing through the driving wheels. This is a direct
consequence of Brockett’s theorem (Brockett, 1983).

The autonomous closed-loop equation (7b) on e does not
make potential singularities of G(e) explicit. As shown
by the phase portrait of Figure 2, for general choices of
P,Q, there seems to be no guarantee that a trajectory e(t)
starting inside the nonsingular domain remains in it. 2

To avoid ill-posedness/singularities issues, the control de-
sign follows two stages. First, the initial condition domain
of e = [er, eα]T is narrowed to:

De =

{
e | er > −r∗, | eα +α∗| < arccos

(
− d

(er + r∗)

)}
(8)

Secondly, P and Q are selected such as the dynamic matrix
A := −P−1Q of the autonomous linear subsystem (7b) is
real diagonal with most negative eigenvalues associated
to eα. To this end, these matrices are set to:

P =
[
λ 0
0 µ

]
and Q = I, with 0 < µ < λ. (9)

x

y

O

Fig. 3. The jack-knife effect. While keeping the distance
and angle to the target at their reference values, the
robot progressively retreats behind the person. The
equilibrium corresponding to the case when the robot
precedes (resp. follows) the person with an absolute
orientation of ±π (resp. 0) is unstable (resp. stable).

Fact 2. The origin e� = 0 is the single equilibrium point of
the autonomous closed-loop subsystem (7b) and is (locally,
in view of ill-posedness issues) asymptotically stable. The
closed-loop dynamics of θ thus writes as:

θ̇ =
vyp cos θ − vxp sin θ + er

λ sinα+ reα
µ cosα

d+ r cosα
. 2 (10)

Define θ∗ involved in the definition of θ̃ = θ − θ∗ as

θ∗ = θ∗k := atan2(vyp, vxp). (11)

Distinct conclusions can be drawn depending on whether
the target is static or moving. When the person is static,
(i.e., ∀t ≥ t0, vp(t) = 0), all possible values for θ are
equilibria. When the person moves at constant velocity
vp, one gets

˙̃
θ=

vyp cos(θ̃ + θ∗k)− vxp sin(θ̃ + θ∗k) + er
λ sinα+ reα

µ cosα

d+ r cosα
.

(12)

As cos θ∗k = εk
sign(vxp)√
1+v2

yp/v
2
xp

and sin θ∗k =
vyp
vxp

cos θ∗k, with

εk = +1 (resp. εk = −1) for even k (resp. for odd k),
the closed-loop system (7b)–(7a) is equivalent to ˙̃
θ=f1(θ̃, e) :=

(−1)k+1‖vp‖ sin θ̃ + er
λ sinα+ reα

µ cosα

d+ r cosα
(13a)

ė=f2(e) := −P−1Qe, (13b)

where the following shortcut is used, in addition to
r = er + r∗ and α = eα + α∗:

‖vp‖ =
sign(vxp)
vxp

v2
xp+v2

yp√
1+v2

yp/v
2
xp

=
√
v2
xp + v2

yp. (14)

Hence, the set of equilibrium points of the closed-loop
system (7),(13) writes as

E =
{

[θ̃�k, (e
�
k)T ]T | e�k = 0, θ̃�k =: θ�k−θ∗k=kπ, k∈Z

}
. (15)

For even k, [θ̃�k, (e
�
k)T ]T is locally asymptotically stable

by the Lyapunov first method. Similarly, [θ̃�k, (e
�
k)T ]T is

unstable for odd k, which complies with the observed jack-
knife effect (Figure 3).

Fact 3. As f2(e) is Lipschitz and the time-derivative of the
Lyapunov function V (e) = 1

2e
TPe along the trajectories

of (13b) writes as V̇ (e) = −eTQe, the following holds:

∀t ≥ 0, ‖e(t)‖ ≤ λmax(P )
λmin(P ) exp−

1
2

λmin(Q)

λmax(P )
(t−t0) ‖e(t0)‖, (16)
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where the maximum and minimum eigenvalues λmax(.)
and λmin(.) simplify in view of the selected P,Q. Besides,
the following inequalities hold:

c1‖e‖2 ≤ V2(e) ≤ c2‖e‖2,
∂V2

∂e
f2(e) ≤ −c3‖e‖2, (17)∥∥∥∥∂V2

∂e

∥∥∥∥ ≤ c4‖e‖, with c1 = λ, c2 = c4 = µ, c3 = 1. 2

3.4 Lyapunov Analysis of the Complete Closed-Loop System

The following unconnected cascade system is first investi-
gated: {

˙̃
θ = f1(θ̃, 0) (18a)

ė = f2(e). (18b)

Proposition 4. The function V1(θ̃) := 1
2 θ̃

2 is a Lyapunov
function for (18) and proves the exponential stability of its

equilibrium point θ̃� = 0. 2

Proof. One has ∀θ̃ 6= 0, V1(θ̃) > 0 and ∀θ̃ ∈ [−θa, θa],

V̇1(θ̃) = − ‖vp‖
d+r∗ cosα∗ θ̃ sin θ̃ < 0, with V̇1(θ̃) the time-

derivative of V1(θ̃) along the solutions of (18), and
θa ∈ [−π2 ,−π] the solution of tan θa + θa = 0, (θa ≈ 2.04).

In addition, V̇1(θ̃) ≤ −cθ̃2 holds, with

c :=
‖vp‖

d+r∗ cosα∗
sin θa
θa

, what concludes the proof 1 . 2

Inspiring from (Khalil, 2014, Appendix C), and consider-
ing the closed-loop system (13), the exponential stability

of the origin can be proved on the basis of V1(θ̃) and V2(e)
defined above.

Theorem 5. If there exists a Lipschitz constant LΩ such
that ∀[θ̃, eT ]T ∈ [−θa, θa]× Ω, with Ω ∈ De a closed set
centered around the origin,∥∥∥∥∂V1

∂θ̃

(
f1(θ̃, e)− f1(θ̃, 0)

)∥∥∥∥ ≤ LΩ‖e‖ (19)

holds, then the equilibrium [(θ̃�), (e�)
T

]T = 0 of (13) is
exponentially stable. 2

Proof. Define

V (θ̃, e) = bV1(θ̃) + V2(e), b > 0. (20)

Then, V̇ (θ̃, e) = b∂V1

∂θ̃
f1(θ̃, 0) + b∂V1

∂θ̃

[
f1(θ̃, e)− f1(θ̃, 0)

]
+∂V2

∂e f2(e) can be upper bounded by

V̇ (θ̃, e)≤−bc‖θ̃‖+bL‖θ̃‖‖e‖−c3‖e‖2 =: −
[
‖θ̃‖
‖e‖

]T
S
[
‖θ̃‖
‖e‖

]
,

with S :=
[

bc −bL/2
−bL/2 c3

]
. (21)

Selecting b < 4cc3/L
2 ensures that V̇ (θ̃, e) is negative

definite on [−θa, θa] × Ω and that [(θ̃�), (e�)
T

]T = 0 is
exponentially stable. 2

Note that equivalently, the constant LΩ must be greater

than 1√
e2r+e2α

∣∣∣‖vp‖ sin θ̃
(

1
d+r∗ cosα∗−

1
d+r cosα

)
+

er
λ

sinα+
reα
µ

cosα

d+r cosα

∣∣∣
for all [θ̃, eT ]T in [−θa, θa]× Ω. The following more con-
servative condition can be imposed on LΩ by using the
triangular inequality, which allows the removal of sin θ̃:

‖vp‖
∣∣ 1
d+r∗ cosα∗ −

1
d+r cosα

∣∣+∣∣ 1
d+r cosα

(
er
λ

sinα+
reα
µ

cosα

)∣∣
√
e2r+e2α

≤LΩ. (22)

1 In fact, V̇1 < 0 on ] − π, π[ and admits an inflexion point at θa.

As will be shown in the experiments section, LΩ is deter-
mined on a per case basis.

3.5 Uncertain Target Velocities

In practice, the velocity vector of the target is not perfectly
known. So, the controller (6) and the closed-loop system
(13) respectively become

u = −G−1(e)P−1
(
PF (θ̃, e)v̂p +Qe

)
(23)

with v̂p the estimate of vp and
˙̃
θ =

(−1)k‖v̂p‖ sin θ̃ + er
λ sinα+ reα

µ cosα

d+ r cosα
(24a)

ė = −P−1Qe+ F (θ̃, e)
(
vp − v̂p

)
. (24b)

Theorem 6. e = 0 is no longer an equilibrium point—
nor a partial equilibrium in the sense of Vorotnikov and
Martyshenko (2010)—of the perturbed subsystem (24b).

Its dynamics depends on θ̃. However, if the norm ‖vp− v̂p‖
is uniformly upper bounded at all times, then ultimate
boundedness of the state vector [θ̃T , eT ]T of (24) is in
effect. 2

Proof. Assume that there exists γ > 0 such that ∀t >
t0, ‖vp − v̂p‖ ≤ γ. Then, for all r in [rmin,+∞], rmin > 0,

‖F (θ̃, e)(vp − v̂p)‖ ≤ δ holds, with δ := γ sup ‖F (θ̃, e)‖ =
γmax(1, 1/rmin). From the properties defined in subsec-
tion 3.4, there exist constants h1, h2, h3, h4 such that, for[
θ̃, eT

]T ∈ Bρ , the ball centered on 0 of radius ρ:

h1

∥∥∥[θ̃, eT ]T∥∥∥2

≤ V (θ̃, e) ≤ h2

∥∥∥[θ̃, eT ]T∥∥∥2

,

∂V

∂θ̃
f1(θ̃, e) +

∂V

∂e
f2(e) ≤ −h3

∥∥∥[θ̃, eT ]T∥∥∥2

, (25)∥∥∥∥∥∥
[
∂V

∂θ̃
,
(∂V
∂e

)T]T∥∥∥∥∥∥ ≤ h4

∥∥∥[θ̃, eT ]T∥∥∥ .
Define

C :=
h3

h4

√
h1

h2
=

ν

max(b, µ)

√
min(b, λ)

max(b, µ)
, (26)

with ν the maximum eigenvalue of S. Define z such

that 0 < z < 1. If, for all t ≥ t0 and
[
θ̃, eT

]T ∈ Bρ,
δ < Czρ holds, then, for all trajectories starting in domain{
V (θ̃, e) ≤ h1ρ

2
}

, the ultimate boundedness lemma de-

fined in (Khalil, 2014, Lemma 4.3) applies, and leads to
the following upper bound on the solution :∥∥∥[θ̃(t),eT (t)

]T∥∥∥≤max

{
η exp

(
− t−t0τ

)∥∥∥[θ̃(t0),eT (t0)
]T∥∥∥, δzC}.

with η:=
√
h2/h1, τ :=

2h2
h3(1−z) (27)

Exponential convergence of the norm of the state vector is
guaranteed towards a domain around 0 all the smaller as
uncertainties on the velocity are low. 2

4. EXPERIMENTS

We conduct a real world experiment using a differential
drive robot equipped with 2d laser range scanner to evalu-
ate our controller. The robot used in our setting is the Air-
Cobot differential drive robot (Jovančević et al., 2015).
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Fig. 4. Block diagram of the follower system.
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Fig. 5. Trajectory of the robot (RGB frames) and the
person followed during the experiment

Among the sensors available on the platform, we use 2
Hokuyos UTM-30LX scanning ahead and behind, at knees
level. The robot velocities are saturated in practice at 1.35
m/s for the translational velocity and 0.4 rad/s for the
rotational velocity. The embedded computer is an intel i7
3.2Ghz with 32Go RAM. Our follower module is imple-
mented in a C++ package wrapped into the popular ROS
middleware. Its state machine is controlled by a tablet
application, enabling the person followed to change online
the angle-distance reference.

Figure 4 summarizes the architecture of the follower mod-
ule implementation. Target positions and velocities are
inferred by mean-clustering the laser points at 40Hz in
a search region given the last position of the target in
the fixed world frame. The velocities are subsequently
computed using a linear least squares model over the last
50 readings.

Figure 5 shows the achieved trajectory. The robot ob-
jective is to follow the target on time segment [t0, t1]
with references (r∗ = 2, α∗ = 0), on [t′1, t2] with (r∗ =
2, α∗ = 0.8727) and on [t′2, tf ] with (r∗ = 2, α∗ = −1.309).
The module of the target velocity is considered constant
within each segment: v̂p1 := 0.6m/s, v̂p2 := 0.75m/s,

Table 1. Ultimate boundedness of solutions for
time sequences

Time segment α∗(rad) LΩ Ultimate bound

[t0, t1] 0 1.2 0.336
[t′1, t2] 0.8727 2 0.51
[t′2, tf ] −1.309 1.1 0.2906

v̂p3 := 0.65m/s. The upper bound on the velocity norm
error is set as: γ = 0.4m/s. Other constants are set during
the whole setup as: µ = 1, λ = 1.4, rmin = 0.4m, z = 0.75
and ρ = 1.5. µ, λ and rmin are robot-specific and could
have been chosen otherwise for a more agile platform.
Recall that ρ defines the radius of the ball onto which[
θ̃, eT

]T
must live for theorem 6 to be valid. Therefore, a

small value set for ρ would be impractical.

Table 1 shows the expected ultimate bounds values as well
as the constants complying with the Lipschitz condition,
one example being shown in Figure 7 for the first time
segment. Results are displayed on Figure 6. The ultimate
bounds under hypothesis γ = 0.4 are achieved on the three
segments when the target velocity is close to constant. Out
of bounds cases were noticeable during a rapid change of
course of the followed person, because his/her measured
velocity exceeded the hypothesized value γ. During seg-
ments [t1, t

′
1] and [t2, t

′
2], the target stops to change angle-

distance references. The component θ̃ displays large errors
at stops, but those situations have no relevance since no
stable equilibrium can be set for ‖vp‖ = 0 as stated in (11).
Furthermore, the quite restrictive robot rotational velocity
saturation has not been integrated in our model. Its effect
is notable. Except for these cases, the norm of the error
is bounded as expected under our hypothesis, despite the
human perception module having achieved rather erratic
positioning (Figure 5) and velocity (Figure 6).

5. CONCLUSION

A new state feedback controller has been proposed for
the person follower problem within the robot centered
paradigm. The solution acknowledges at the control level
the detrimental effects of the uncertainty associated with
the person speed and direction, what had not been done
before. For an assumed an upper bound on the person
velocity estimation errors, the system state is ultimately
trapped in a ball of given radius around the origin.

The solution could then be extended to avoid obstacles
by moving the equilibrium as done by (Park and Kuipers,
2013), with the added benefit that the distance between
the robot and the person would still be guaranteed at the
controller level, without resorting to motion planning.

A perspective could consist in addressing the non-constant
target velocity case, by proving exponential stability
of the origin of the time-varying counterpart of (13).
But currently, as a uniform small bound on the norm
‖vp(t)− v̂p(t)‖ can be hardly found when the person ego-
motion changes, no relevant ultimate bound can be proved.
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