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Deep learning for nano-photonic materials - The solution to everything!?

Peter R. Wiecha1, ∗

1LAAS, Université de Toulouse, CNRS, Toulouse, France

Deep learning is currently being hyped as an almost magical tool for solving all kinds of difficult problems
that computers have not been able to solve in the past. Particularly in the fields of computer vision and natural
language processing, spectacular results have been achieved. The hype has now infiltrated several scientific
communities. In (nano-)photonics, researchers are trying to apply deep learning to all kinds of forward and
inverse problems. A particularly challenging problem is for instance the rational design of nanophotonic ma-
terials and devices. In this opinion article, I will first discuss the public expectations of deep learning and give
an overview of the quite different scales at which actors from industry and research are operating their deep
learning models. I then examine the weaknesses and dangers associated with deep learning. Finally, I’ll discuss
the key strengths that make this new set of statistical methods so attractive, and review a personal selection of
opportunities that shouldn’t be missed in the current developments.

In the past year, large language models (LLMs) like “chat-
GPT”, “GPT-4” or “LLM200” [1–3] and text-to-image gen-
erators like “Midjourney” or “stable diffusion” [4, 5] have
demonstrated the literally breathtaking capabilities of large
deep learning models. As a result, Big Tech companies cur-
rently engage in a literal battle over the integration of artifi-
cial intelligence (AI) into their products [6]. Supposedly for
marketing reasons, the term “AI” is thereby often used syn-
onymously for “deep learning”, which boils down to, a little
disrespectfully stated, fitting large mathematical functions in a
statistical approach to gigantic amounts of data [7]. Although,
in contrast to conventional statistical methods, deep learning
models are typically much larger in terms of internal degrees
of freedom and the number of input / output channels. So large
actually, that it becomes extremely hard or even impossible to
understand, how a model comes up with its predictions [8].
Nevertheless, DL has proven to perform almost “unreasonably
effective” [9] on problems encompassing an abundant variety
of applications. Already for more than a decade, deep learning
methods are breaking records in computer vision challenges
[10, 11] or enable previously unimaginable applications in
natural language processing [12, 13]. Other examples to il-
lustrate the remarkable effectiveness of deep learning, may be
protein folding predictions [14], astrophysical problems like
the identification and analysis of galaxy merger events [15],
or even games like “Go”, which, before the era of deep learn-
ing, was assumed to be unsolvable by computer algorithms
[16].

I. EXPECTATIONS

In the early stages of applying deep learning to the study of
photonic nano-structures and materials, researchers reported
successful applications [17–21]. These findings seemed to
validate the prospect of a transformative shift in our com-
putational capacity to address nano-photonics problems. In
the meanwhile however, several challenges have turned out to
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be more difficult to overcome than anticipated, and other, un-
expected problems have emerged. A representative example
from the field around nano-photonic materials may be meta-
material design. For several years already, intense research
is taking place with the goal to create deep learning algo-
rithms that increase the accuracy in the conception of photonic
metasurfaces [22–28]. However, and despite frequent claims
of unprecedented design accuracy, works demonstrating deep
learning methods are quite generally at the level of proofs of
concept. Application oriented and large-scale metasurfaces
are still almost exclusively designed via the traditional method
based on pre-simulated lookup tables [29–31]. As another ex-
ample, while indeed providing impressive results, also the per-
formance of the initially mentioned protein folding prediction
model (“alphaFold2”) has turned out to be less stable and the
results less useful, than initially hoped and claimed [32].

Big Tech has its own examples of overly raised expecta-
tions, a prominent one is autonomous driving. Enabling self
driving cars by machine learning is in fact an ongoing promise
for almost forty years [33–38]. Yet, regardless the tremen-
dous research and development efforts over this considerable
time-span, progress remains slow, autonomous vehicles still
underlie extremely rigid regulations and their market share is
insignificant. A recently shut down San Francisco self-driving
taxi company employed 1.5 persons per autonomous car, su-
pervising the fleet remotely and intervening every few miles
(keep in mind that a conventional taxi requires exactly one
driver) [39]. All this despite enormous global invests, in par-
ticular during the last decade [40].

In summary, the expectations with regards to the power and
capabilities of deep learning are tremendous, yet sometimes
illusory. It is probably safe to claim that these expectations
are across the board exaggerated. Consequently I believe that
it is important to clarify some myths about the capabilities and
weaknesses of deep learning methods, and in this light revisit
its main limitations, but also strengths and key potentials.

II. YET ANOTHER DEEP LEARNING PAPER?

To start, I want to briefly discuss a rarely mentioned prob-
lem that is in some ways also a consequence of exaggerated
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Figure 1. Cumulated number of publications per year from 2000
to 2022, combining the topics “photonics” and one of: “deep learn-
ing”, “machine learning” or “artificial intelligence”. Citation Report
graphic is derived from Clarivate Web of Science, Copyright Clari-
vate 2023. All rights reserved.

expectations: The flood of publications that can be referred to
as “yet another deep learning paper”. Because of its medial
attention and promises, many researchers try currently to ap-
ply deep learning to their problems. Naturally, first tests are
often done on simple problems, like design challenges with
only a few free parameters, or with very constrained geome-
tries, merely in the perturbation regime. Such problems how-
ever, are typically better solved with conventional methods
[41]. The main reason is the tremendous computational over-
head of deep learning. Moreover, being a statistical approach,
it also does not make much sense to apply it to problems with
only weak variations. However, scientific publication culture
has strongly accelerated in the last decades [42]. Researchers
experience high pressure for publication, especially in an ex-
ploding research field, where a year of hesitation can make all
the difference. As a consequence, currently an overwhelm-
ing number of publications around deep learning applications
for photonic materials and nano-optics problems is thrown on
the audience (figure 1). A significant fraction of these may
be cautiously called “incremental results”. On the other hand,
there are various highly relevant results that merit the com-
munity’s full attention. The ever increasing inflation of publi-
cations unfortunately dilutes the important works and renders
them more and more difficult to spot. For photonics materi-
als researchers that are new to deep learning and think about
applying it to their research, I recommend to get an overview
of the more significant results through recent review articles,
such as [41, 43, 44].

III. CONSIDERATIONS ABOUT SCALES

Another problem associated with overwhelming expecta-
tions is the difference between the scale of deep learning in
the products of Big Tech companies that we hear about in the
mass media, and the scale of deep learning that is accessible
to researchers in physics or materials science.

a. Big Tech The threshold of networks with more than
a billion parameters has been overcome already many years
ago [45]. Today, the challenge that Big Tech has set, are mod-

els with trillions of free parameters [46]. Some commercial
products have in fact already reached this order of magnitude.
Google’s PaLM for instance has 540 billion parameters [47],
and GPT-4 is considered to have almost 2 trillions of trained
parameters [48]. Concerning the dataset sizes we face similar
orders of magnitude. According to a leaked document, GPT-
4 is said to be trained on more than 12 trillion (1013!) text
samples [48], which probably amounts to a significant frac-
tion of the internet’s entire accessible information. OpenAI’s
competitors are not significantly behind this data scale. Meta’s
Llama for example was trained on 2 Trillion text samples [49].

An incredible amount of computing power is required to
configure these massive degrees of freedom and process the
vast amount of data. GPT-4 is the current leading example.
It has been trained for several months, running in parallel on
about 25,000 (25,000!) Nvidia H100 GPUs. A single H100
GPU integrates 80 billion transistors and is capable to per-
form 2 petaFLOPS (2× 1015 16 bit floating point operations
per second), while running on 700 Watts of electric power.
This signifies more than 17 Megawatts of continuous power
consumption and several tens of Gigawatt hours of electric
energy spent for just a single training run. According to Ope-
nAI’s former and once again CEO Sam Altman, the cost for
the training of GPT-4 alone amounts to more than 100 mil-
lion US dollars [50]. Yet, this development is continuing to
accelerate. Only a few years back, the second-last generation
of large language models (GPT-2, BERT, etc...) required per-
training energy in the order of hundreds of Megawatt hours,
orders of magnitude less than the latest generation of mod-
els [51]. In the meanwhile, also the hardware costs are im-
mense. As of mid 2023, one H100 GPU alone costs around
40,000$ [52].

b. Physics labs In comparison to Big Tech, the size of
typical deep learning models, their training costs, and the
amount of data processed are of a completely different or-
der of magnitude in physics, especially in the fields of nano-
optics and photonic devices and materials. The number of
free parameters are typically in the order of millions to tens
of millions (106 - 107), the training is often done on single
consumer grade GPUs, in general no longer than during a few
days. In most cases, the amount of available training data is
particularly limited, since their generation is usually expen-
sive. Common training sets comprise in the order of ten thou-
sand training samples [53–58]. Only in rare cases, studies are
based on hundreds of thousands (105) or even more samples
[59, 60].

A comparison of the orders of magnitude of the relevant

Table I. Orders of magnitude of important metrics in commercial
(Big Tech) vs. physics lab scale deep learning.

physics lab Big Tech

Ngpu 1 104

Ntrain time (GPU hours) 10 107

Ntrain cost ($) 100 108

NNN params 107 1012

Ntrain samples 106 1013
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Figure 2. Deep learning scale comparison. In almost every met-
ric, deep learning in physics labs is 6 or more orders of magnitude
smaller compared to Big Tech applications like “chat-GPT” (c.f. ta-
ble I). This difference compares like the size of the sun to that of
earth, the latter fitting around 1.3 million times in the star at our solar
system’s center. Images by NASA, arranged with permission through
NASA’s open access policy.

quantities is given in table I. In fact, Big Tech’s neural network
models compare to physics lab deep learning in a remarkably
consistent way, like comparing the size of our Sun to the size
of the planet Earth, as shown at scale in figure 2. The Earth is
about 1.3 million times (106) smaller in volume than the Sun.

IV. INTERPOLATION AND EXTRAPOLATION

The main assumption that underlies deep learning is that
a mathematical function of large enough degree of freedom
can approximate any other function to arbitrary precision [64].
The large mathematical model is the artificial neural network.
The target function to be approximated is only implicitly de-
fined by a (large) set of data samples. Practically, the param-
eters of the network are then configured in a fitting process
(the training) to match the given set of data. In this process,
the hope is that the neural network will develop some kind
of global model that describes the data and is able to gener-
alize. However, such generalization happens very rarely, in
most cases extrapolation outside the training data region fails
quickly [41]. This is illustrated in figure 3 by the example
of a multilayer perceptron model, trained on datapoints sam-
pled from a random polynomial function. While interpola-
tion works well, extrapolation fails immediately outside of the
training data range.

In nano-optics and photonics materials applications, similar
trends are observed. Limiting trained deep learning models to
a valid parameter range is therefore an important secondary

nearest

Figure 3. Illustration of a neural network’s performance at interpola-
tion and extrapolation tasks. Two simple 3-layer networks are trained
on data, describing a polynomial function. In one case, a larger area
of connected data is given (top panel). In a second experiment, the
data in a limited parameter region is removed (bottom panel). In the
interpolation regime where training data is available (inside the green
shaded ranges), the accuracy is high. Outside of the data range (left
and right sides), extrapolation fails immediately. Yet, interpolating
between two adjacent zones of available data (white center area in
the bottom panel), works better than the trivial nearest neighbor lin-
ear interpolation (red dotted line in the inset).

problem [65, 66]. Especially, because in high-dimensional
problems it is often not trivial to specify the interpolation
regime [67]. Figure 5c shows an example of extrapolation to
a photonic light router design with around 150 perturbations,
whereas the dataset was limited to cases with no more than 20
perturbations [68]. A possible approach to constrain surrogate
models to the interpolation regime of the input space is to use
auxiliary networks like variational autoencoders or generative
adversarial networks, that learn a compact, regularized repre-
sentation of the input parameters [41, 69–71]. It can also help
to provide physics through additional loss functions, that test
whether a solution is compatible with known physics laws (for
example in form of partial differential equations or causality)
[72–74]. But these steps to improve extrapolation require sig-
nificant efforts, and there is no guarantee to what extent such
techniques will work. Simply speaking, one must always ex-
pect “to get out what has been put in”, and careful testing of
the results is necessary when operating in extrapolation.

V. WEAKNESSES AND DANGERS

In addition to the limited extrapolation capabilities dis-
cussed before, various further weaknesses and possible pit-
falls come with deep learning. A selection is illustrated in
figure 4a. Some limitations can be countervailed with large
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Figure 4. Deep learning weaknesses and strengths. On the weakness side (a) we have: Black-box: Deep learning models are black boxes,
untrustworthy and prone to adversarial attacks [61]. Statistical approach: On smaller datasets, deep learning will alwyas add a significant
statistical error. For example with 5000 samples, the margin of error for a 2σ confidence interval is still around ±1.5%. Furthermore, a neural
network will reproduce biases from the datasets, therefore deep learning stands and falls with the data quality. Abuse potential: Deep learning
can be used for generative tasks beyond detectability. On the strength side (b) we have: Hard algorithmic problems: Problems that are very
difficult to solve by conventional algorithms can often be solved with little effort by deep learning. Very detailed image analysis is a good
example. Specific problems: The more specific a problem can be defined, the easier it will be for deep learning. Low stake approximations:
Problems where rough approximations are good enough but speed is all that matters. Cat image (c) 2016 by Alexandru Zdrobău, reproduced
with permission of the author. Obama’s white skin upsampling result reproduced from twitter post on 20th June 2020 by user “chicken3egg”.
Generated vs real portraits, reproduced with permission from [62]. Tomato leaf dataset images reprinted from [63], copyright 2020, with
permission from Elsevier.

enough datasets. Others however are inherent to the method.

a. Black Box A fundamental problem of deep learning
as such, is the black box character of basically all artificial
neural networks. In general it is not possible to understand
microscopically how a trained neural network makes its pre-
dictions. An illustrative symptom of this issue are so-called
“adversarial examples”, that can be found for basically all
deep learning image classification models [61, 75, 76]. An
adversarial example is a weak, but specifically designed noise
pattern, that maximally activates a target pathway through the
deep learning model and eventually leads to a complete mis-
classification of the input image. Also in various regression
models, similar singularities can be found at which predic-
tions totally fail [53]. This is illustrated in figure 5a, where,
for not understood reasons, a nanophotonics regression model
shows prediction failure with very high error in around 5%
of cases. This renders neural network predictions untrustwor-
thy in a quite general sense, imposing severe limitations for
security-relevant applications such as the above mentioned au-
tonomous driving [77]. For instance, only a few years back
it was possible by very simple means to fool Tesla’s car as-
sistant system to drive on the wrong side of the street or to
ignore speed limits [78]. Another example for a currently

emerging security gap are so-called “indirect prompt injec-
tion” attacks against large language models like AI-assistants
(e.g. Microsoft “co-pilot” or Google’s “Bard”). These LLMs
are known to be vulnerable to “engineered” prompts, which
hackers may hide in specifically tailored websites. A model
that parses such website and which is equipped with advanced
privileges like access to personal data and the internet, can
then be forced to execute malicious tasks [79]. Despite these
known shortcomings, all major Big Tech companies are, as
of 2023, about to grant LLM-based personal assistant tools
access to the internet and to personal costumer data such as
e-mails.

Please note that there are more interpretable machine learn-
ing models than deep neural networks [80], and there are con-
siderable ongoing efforts to render deep learning more ex-
plainable [81, 82].

b. Data quantity and quality Other problems relate to
the data quality or quantity, and boil down to the statistical
nature of deep learning. Naturally, a sufficient amount of data
is necessary as the training process will statistically evaluate
correlations between the samples. If little data is available,
it is therefore important to keep in mind that the predictions
of a neural network model will be necessarily worse than the
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accuracy of the training data. A statistical error will always
be added on top. This can be circumvented to some degree
using data augmentation methods, yet excessive use of such
techniques bears the risk of inducing bias in the model [83,
84].

Data quality on the other hand, can pose problems that
could also be denominated with the term “systematic errors”.
A prominent problem with data quality is biased statistics, that
is, data sets that are not representative of the entire param-
eter space, or that contain an excessive number of samples
from a small subspace of the problem. Biased datasets be-
hind natural language processing models or computer vision
tools have been widely covered by the media. Both type of ap-
plications have reportedly learned racism and sexism, among
other social or ethnical biases [85–87]. In photonics materials
design, a typical bias could be the resonant or non-resonant
nature of samples in the training data, as illustrated in fig-
ure 5b, where the dataset consisted of mostly non-resonant
samples [53]. A neural network may also statistically learn to
ignore the possibility of optical losses if trained on a dataset
of highly transmissive devices [68]. Other systematic prob-
lems can be caused by erroneous data (e.g. non-converged nu-
merical simulations) or datasets containing many outliers (e.g.
noisy measurements) that break the statistical assumptions of
the learning process [88, 89]. Since high quality data is the
most essential ingredient for deep learning, in Appendix A, I
discuss some of the most frequent problems with data quality
and possible solutions.

c. Deep fakes Finally, a very dangerous element of deep
learning is actually related to the unquestionable strength of
large models to generate seemingly real content. They gen-
uinely reproduce the characteristics of the training data in new,
often undetectable ways. These generative models are nowa-
days widely used to disseminate deep fakes of images, videos
or voices [90–92]. In fact, a recent survey that compared real
photographs and generated portraits, found that deep learning
generated faces were believed to be real significantly more
often than photos of actual persons [62]. The authors of
the study assume that the neural network learned to combine
key features of faces in a statistically perfectly averaged way,
whereas real persons sometimes feature “outlier” characteris-
tics (like a slightly crooked nose or asymmetric eyes or ears).
Such characteristics of real faces were associated by the test-
persons with generation errors of the neural network, whereas
the used face generation network was sophisticated at a level
to produce seemingly perfect images [92]. As another exam-
ple, deep voice fakes were reportedly used by criminals to
access the bank account of the CEO of a British energy com-
pany, relieving him by around a quarter million dollars [93].

Just as waves of AI generated fake news are washed ashore
social media platforms [94], also in science these technolo-
gies make it increasingly easier to generate fraudulent re-
sults and flood scientific publication channels with fake re-
search [95, 96]. This imminent danger can be compared
in some ways with distributed denial of service (DDoS) at-
tacks in computer networks. The fraudulent potential can al-
ready be impressively illustrated by the two-generations old,
openly accessible language model GPT-2 [97]. It was specif-

(b) biased data:  
innaccurate on resonances

(a) black box:  
prediction failures

(c) extrapolation (pixel-based geometries): 
total transmission prediction failure

etched
perturbations

TNN = ~95%
Tsim = ~5%

~ 
5%

 o
ut

lie
rs

Si structure

Gold
structure

L

NN designed 
photonic light router

Figure 5. Illustrations of the potential impact of deep learning weak-
nesses on applications in nano-photonics. (a) In regression tasks, a
certain percentage of predictions is often significantly worse than the
statistical average error. Adapted with permission from [53]. Copy-
right 2020 American Chemical Society. (b) Infrequent physical phe-
nomena, for example resonances, can easily be under represented in
a dataset. Predictions will be inaccurate in such cases. Adapted with
permission from [53]. Copyright 2020 American Chemical Society.
(c) Extrapolation to parameter regimes outside the dataset range very
generally leads to total prediction failures. Here the network learned
photonic structures with up to 20 perturbations that typically feature
very high optical transmission. The design network extrapolated in
the shown example to a device with > 150 perturbations, leading in
reality to almost zero transmission of the device. Adapted with per-
mission from [68]. Copyright 2021 American Chemical Society.

ically fine-tuned on arxiv pre-print abstracts, rendering it ca-
pable to produce perfectly convincing, yet fake research de-
scriptions. I invite the readers to have a look for themselves
on https://thispaperdoesnotexist.netlify.app/, keeping in mind
that the latest generations of LLMs are incomparably more
capable in their reasoning proficiency and processing capac-
ity. Modern models are able to process and generate tens to
hundreds of pages of self-consistent, high quality text [3].

VI. STRENGTHS

Apart from quite a number of risks and dangers that a re-
sponsible user should be aware of, there is a reason for the
current hype around deep learning. The approach does offer a
number of very interesting strengths. A selection is illustrated

https://thispaperdoesnotexist.netlify.app/
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in figure 4b.
a. Problems that are hard for conventional algorithms

Deep learning is often very effective at solving problems that
are extremely hard to approach with conventional algorithms.
In fact, today’s AI hype started with an application on such a
type of problem: Image classification. Since 2012, no other
algorithm could beat deep learning methods in this problem
category [10, 98]. Countless further examples could be found
alone in computer vision. This ranges from classification tasks
like tomato plant disease recognition from images of leafs
[63], over painting style extraction and its transfer to other
images [99] to entirely generative tasks like bicycle design
[100].

b. Very specific problems Similarly, yet to be distin-
guished from the former point, deep learning performs excep-
tionally well and is typically very easy to apply on problems
that can be defined very specifically. This point is particu-
larly true in the case of small and moderate dataset sizes as the
amount of required data scales non-linearly with the complex-
ity of a problem. Network models that generalize well usually
require gigantic datasets and large efforts in hyper-parameter
optimization.

“Fine-tuning” or “transfer learning” are common strategies
that exploit the fact that very specific problems are easy to
learn. Both of these terms describe similar approaches in
which models that have previously been pre-trained on a very
large, generic data set are, in a second step, trained on a much
smaller data set that contains entirely new samples. The goal
is to learn a new, very specific task, either with the same input
and output dimensions (fine tuning), or with data of different
dimensions that are still of a similar type of problem (transfer
learning). This is used for example in computer vision, where
pre-trained models learn to interpret images in general [101],
and fine-tuning is used subsequently to learn identification of
specific, new objects [102, 103]. In natural language process-
ing, fine-tuning is used on models that were pre-trained on a
large, yet unspecific data corpus, to learn performing very spe-
cific tasks, for instance following explicit, complex instruc-
tions, instead of predicting just the next word in a text [104].
In physics and photonics, fine-tuning or transfer learning can
be used for example to first teach the general physics to a neu-
ral network model through “cheap” simulated or analytically
calculated data, and fine-tune it subsequently on specific ex-
perimental results that are “expensive” to generate [105]. An-
other application of transfer learning is to migrate concepts
between different applications of similar physics, for example
from multi-layered planar to multi-shell spherical geometries
[106].

c. Low stake, rapid approximations A great strength of
deep learning is its capability to deliver rough approximations,
fast. In time critical applications where stakes are low, this
can be an outstanding advantage. An everyday application,
that many of us have grown used to, are smartphone tools like
automatic spelling correcting or next word prediction [107]. It
is very useful to get such propositions fast, and a wrongly sug-
gested next word is of no big harm. In photonics, equivalent
applications can be tools for the rapid estimation of optical
performances [108–110], to obtain a rough first suggestion

encoder decoder

latent
x x̂z

(b) the latent space

x y

(c) differentiability

analytical function:
f(x) = y

(a) inference speed

calculate derivatives

Figure 6. The key capabilities and concepts of deep learning in the
opinion of the author. (a) the high inference speed of a trained model.
(b) the concept of the latent space together with various available
regularization schemes. (c) the analytical character of deep learning
models, enabling for example physics informed neural networks or
to learn differentiable empirical models even from experimental data.
Picture of number “2” from the MNIST database of handwritten dig-
its [116].

for photonic device designs [111–113], or up-scaling tech-
niques for cheap microscopy equipment [114, 115]. But just
like the predicted next word on our smartphone app is, such
deep learning predictions should always be carefully double-
checked.

VII. KEY CAPABILITIES

Beyond the above list of assets, I personally believe that
three specific key attributes of deep learning models, are the
most important strengths, that make deep learning stand out
with respect to other (statistical) methods. Those points are
summarized in figure 6.

a. Inference speed There’s little to add on this funda-
mental aspect of trained deep learning models: Their evalu-
ation is in general very fast. This is probably the main key
strength that is exploited in almost every application.

b. The latent space One of the, if not the, most crucial
concept in deep learning is the idea of the latent space. A
latent description of some thing or concept is a condensed,
representative depiction of the object. For instance, the word
“fish”, a fish-symbol or also the according Chinese letter
are each in fact some latent description for this kind of ani-
mal. The appealing capacity of deep learning is, to automati-
cally find latent descriptions via statistical analysis of a large
dataset. This can even be done on unlabeled, raw data, us-
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ing unsupervised learning approaches like variational autoen-
coders (VAEs) or generative adversarial networks (GANs)
[117, 118], often used to tackle inverse problems in photonic
materials design [119, 120]. Such approaches are similar to
classical principle component analysis [121], yet the nonlin-
ear, hierarchical character of deep learning models renders
them potentially far more powerful. Using appropriate reg-
ularization techniques, it is possible to extract from the latent
space actually meaningful information, like identifying spe-
cific properties of persons on portrait pictures (like age, the
amount, length or color of hair, the gender, ...) [122–124].
The latent space is also the key concept behind generative
deep learning. It can be regularized such that every point in a
learned latent space corresponds to meaningful generated con-
tent or enable smooth interpolation between distant samples in
latent space [4, 118, 125].

In physics, learning latent representations can be used for
example to identify meaningful coordinate systems. For cen-
turies people believed that the earth is the center of the so-
lar system, yes even of the universe. The debate whether
it wouldn’t rather be the sun came up, when describing the
trajectories of the other planets turned out to be a nightmare
in the geocentric coordinate system. With their trajectories
forming almost perfect circles in a heliocentric model, the
search for adequate coordinate systems has proven to be of
crucial importance. Training a network with low dimensional
latent space can be helpful to identify such coordinate sys-
tems, in which better description of high dimensional, raw
observations is possible [126], or it allows dimensionality re-
duction in other problems [127–129]. Such reduced repre-
sentation then often allows an easier identification of correla-
tions in a large dataset. One can also include a further, small
neural network, into the latent space of a larger mode. This
can for instance allow to learn mappings between different
latent descriptions, for example to understand system dynam-
ics (by mapping static to dynamic representations) or to dis-
cover linear approximations for non-linear physics phenom-
ena [130, 131].

A latent space can be learned to categorize data, otherwise
difficult to parametrize. In nanophotonics for example, low-
dimensional parametrizations can be learned from top-view
images of planar nanostructures or of meta-atoms for pho-
tonic metasurfaces [41, 70, 71]. Furthermore, thanks to the
analytical nature of the entire deep learning pipeline (which
is a requirement for training via backpropagation), it is possi-
ble to include operations like geometric transformations in a
model or to work on dynamic discretizations like non isotropic
meshes (e.g. from finite element method simulations). Such
mesh description can either be learned, or implemented al-
gorithmically, for example via graph neural networks or via
hard-coded coordinate transforms [132–135]

The latent space does not necessarily need to describe a
single property or a single physical object. So-called multi-
modal latent models can be built, that map multiple observ-
ables, representations or objects into the same latent space
[136]. Multi modal physics models can for instance com-
bine different optical properties like far-field and near-field
in a single latent space to facilitate according mappings. It

prompt

chat-GPT output (GPT 3.5)

Formulate a results paragraph for a nano-photonics 
paper discussing the following:
- single crystalline gold, chemical syntehsized flakes
- helium ion milling created gold nanostructures
- individually positioned using AFM tip
- designed a 5x5 micrometers metasurface
- demonstrate to focus incident 600nm light with NA 0.5 

In this study, we present the successful fabrication and
characterization of a novel metasurface based on single 
crystalline gold flakes synthesized via a chemical route. 
These gold flakes were precisely shaped into intricate 
nanostructures using helium ion milling, allowing for the 
controlled manipulation of their geometry. Remarkably,
the individual positioning of these gold nanostructures 
was achieved with unparalleled precision using an Atomic 
Force Microscopy (AFM) tip, enabling the creation of a 
metasurface spanning 5x5 micrometers. Our results 
indicate that this metasurface demonstrates the unique
capability to effectively focus incident 600nm light with a 
numerical aperture (NA) of 0.5. These findings 
underscore the potential of our approach for 
advancing nano-photonics applications and open 
new avenues for the design and engineering of
metasurfaces with superior light manipulation 
capabilities.

Figure 7. Case study to test the capabilities of chat GPT as an edit-
ing assistant in scientific research article writing. Top: Bullet point
list summarizing a fictitious photonics materials research is used as
input together with the instruction to formulate a results paragraph
for a paper in nano-photonics. Bottom: The text generated by chat-
GPT (freely accessible version, running on GPT-3.5). Remarkably,
chat-GPT inserted novelty claims and exaggerated praising (italic,
underlined) as well as a meaningless babble concluding sentence
(bold), not given in the brief summary. Experiment performed in
October 2023.

could also be possible to combine optical properties of pho-
tonic devices with other physical properties like mechanical
or thermodynamical attributes. Related approaches have been
recently used to infer the optical response in a specific fre-
quency range from data of a different frequency regime [137],
or to understand physics across multiple length scales in one
model [138, 139].

c. Differentiability The third key property of deep learn-
ing is the analytic nature of the approach. Remember that an
artificial neural network is nothing else than a gigantic math-
ematical function. In consequence, a deep learning model is
analytically differentiable. This is the key behind so-called
physics informend neural networks (PINNs) [72, 140] and
neural operators [141–143], which aim at learning an approxi-
mating to the solution of partial differential equations (PDEs).
Using the analytical derivatives of the network predictions,
these models can test the validity of a solution within a PDE
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to arbitrary accuracy, without the need of pre-calculated data.
In optics, this concept can be used to find approximate so-
lutions to Maxwell’s equations [144], the Hemholtz or wave
equation [145, 146], but also for physics-based regularization
of data-based models [74].

Also aside from PINNs and neural operator networks, the
differentiability is a very appealing property. Actually, if
enough experimental data is available, but the observations
cannot be described with a conventional model, deep learning
offers the possibility to train an analytical, empirical model
based on actual experimental observation. Such differentiable
model allows more sophisticated applications than numeri-
cal simulations, for example derivatives can help to assess
the robustness of solutions against small perturbations [147].
It also enables gradient based inverse design [41, 71, 148].
And since the entire calculation pipeline is necessarily analyt-
ical and differentiable, it is possible to include other kinds of
mathematical operations in the data processing, for example
geometry transformations, to render problem descriptions or
parametrizations more compact and efficient [132].

d. Writing and editorial tools Last but not least, I be-
lieve that aside from direct applications in physics or research
on photonic materials, today’s deep learning tools can be ex-
tremely useful for the daily routine in research. Especially
LLMs like chat-GPT can be powerful writing tools, in par-
ticular for non-english native speakers, that struggle with the
language barrier for the dissemination of their research – pro-
vided they are used in an honest way [149].

An example to illustrate both the potential as well as the
dangers associated with such application is shown in figure 7.
Chat-GPT was instructed to write a paper paragraph given
a bullet point list, that describes a fictitious research project
about a plasmonic metasurface. The generated text is perti-
nent and contains all provided information in an eloquently
written English. However, the writing style follows more what
would be expected for an abstract and not for a results para-
graph. Still, this may be due to the lack of sufficient informa-
tion. It is far more alarming though, that the model inserted
various exaggerated novelty and performance assertions that
were not given in the prompt (highlighted by underlining).
Finally, chat-GPT even added meaningless prattle to conclude
its paragraph (indicated in boldface) – quite apparently the
language model was trained on a corpus of very typical re-
search articles.

VIII. CONCLUSIONS

Since the invention of the computer, numerical tools like
statistical data processing or physics simulations have en-
abled unimaginable research insights and opened access to
new knowledge [150, 151]. However, computers and tech-
nology in general have accelerated the world drastically. This
has a strong impact on all aspects of our lives [152]. Driven
by technology and digitalization, also research is accelerating
fast, the number of published articles is growing exponentially
every year [42]. Today, deep learning starts to be used in more
and more fields of research – and deep learning is clearly a

tool, designed to accelerate. This development is likely to put
additional pressure on every participant in the system, leading
to even more self-amplification of these accelerations. More-
over, methods of increased efficiency are usually accompanied
by a high level of abstraction. This often implies a certain
detachment from reality, which in turn carries serious ethical
risks [153].

To conclude I would therefore like to raise some questions:
What impact will the increased use of accelerating tools like
deep learning have on the thoroughness, the integrity and
eventually on the quality of research? What will be the im-
pact on the meaningfulness of average scientific publications?
Will scientists be soon overtaken by the operation speed of
their numerical tools? Or will big-data driven research rather
lead to spectacular new discoveries, comparable to achieve-
ments enabled by the era of computer-based simulations?

In order to find positive answers to these these questions, I
believe it is advisable to be prudent. Especially regarding the
dissemination of effusive claims about the capabilities of deep
learning methods in science. I am convinced that deep learn-
ing is not the solution to everything. It is rather merely a tool,
yet unquestionable a powerful one, with tremendous potential
for numerous applications. Particularly in an age of abundant
available data, it bears the potential to reveal hidden correla-
tions, for example through latent space methods, or to allow
developing differentiable empirical models from raw observa-
tions. In the meanwhile it is essential to keep double-checking
results, since deep learning models are black boxes, impossi-
ble to be categorically trusted. As a last comment, I would like
to remind that deep learning cannot create knowledge from
nowhere, but relies on hidden information in large datasets.
Ideally, its capability to correlate, classify and interpolate in-
tricate data will inspire researchers in their critical thinking
and as a result guide the human scientists to the discovery of
new phenomena.
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Appendix A: Data quality

As discussed above, high quality data is the foundation of
any good deep learning model, and problems with data can
have a huge impact on model performance. Furthermore, as
data problems stand in the very beginning of the process, they
can be very hard to identify in the final model [154]. Therefore
I want to briefly discuss common problems with the data and
possible approaches to alleviate them:
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Missing parameter regions / Biased data If parameter re-
gions are uncovered by the training data, the model will ex-
trapolate in the inference task. This leads to poor, faulty re-
sults. Similarly, an over-representation of certain regions in
parameter space can lead to reproduction of these biases. In
cases where it is hard to estimate if such problems exist, ma-
chine learning techniques can be used to assess whether a
model extrapolates (e.g. comparing latent space projections
of predictions and representative training set samples).

Redundancies: If some samples are occurring multiple
times, it distorts the statistics, making these samples appear
more important than they actually may be. There are more
or less sophisticate approaches to identify and remove dupli-
cates, depending for instance on whether duplicates are iden-
tical copies or have slightly different signatures [155].

Errors / Outliers: Too many such samples break the sta-
tistical assumption of the training. Again, latent space em-
beddings can be used to remove outliers. Data that clusters in
latent space are kept, while samples between clusters are re-
moved [156, 157]. In such cases it is crucial to make sure that
the data between clusters are actually outliers and not in fact
relevant for the problem. Similarity learning or metric learn-
ing can help to assess data with difficult statistical properties
[158].

Noise: With noisy data, the predictions may become
noisy as well, reducing the accuracy of the results. But in
case of random noise, the statistics are still valid, so gener-
ating more (noisy) data will improve the situation. Enough
training data will then eventually even result in smooth pre-

dictions. It may also be possible to apply denoising before
training.

Inconsistent data: These could be for example incorrect
labels, non-converged simulations, a systematic temporal drift
in a measurement setup, imperceptible random components
of the data source (e.g. in stock market prizes [159]), data
that partly comes from other generative models [160] etc... It
is important to identify such problems since they potentially
break the correlations between input and output features. Sta-
tistical correlation tests can give a hint of such problems [161].
Also machine learning methods such as confident learning ex-
ist, that can be used to assess data label quality [162].

Irrelevant information: Samples that are not related with
the actual task can reduce the accuracy on the target prob-
lem. This can be particularly problematic with small models
and little data. Beginning with a thorough definition of the
task can help avoiding such problems and is actually crucial
in low-data scenarios.

Quite generally, a few preventive recommendations can be
given that will help avoiding the most frequent problems with
data quality.

• Define the problem well, including a clear data format

• Think about data verification early in the process

• Perform (conventional) statistical analysis of your data

• Verify and document your data sources

Extensive further discussions on data problems and coun-
termeasures can be found in literature [163].

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Win-
ter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, in Advances in Neural Infor-
mation Processing Systems, Vol. 300 (2020) pp. 1877–1901,
arxiv:2005.14165.

[2] N. Team, M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad,
K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht,
J. Maillard, A. Sun, S. Wang, G. Wenzek, A. Youngblood,
B. Akula, L. Barrault, G. M. Gonzalez, P. Hansanti, J. Hoff-
man, S. Jarrett, K. R. Sadagopan, D. Rowe, S. Spruit, C. Tran,
P. Andrews, N. F. Ayan, S. Bhosale, S. Edunov, A. Fan,
C. Gao, V. Goswami, F. Guzmán, P. Koehn, A. Mourachko,
C. Ropers, S. Saleem, H. Schwenk, and J. Wang, “No Lan-
guage Left Behind: Scaling Human-Centered Machine Trans-
lation,” (2022), arxiv:2207.04672 [cs].

[3] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke,
E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg,
H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of
Artificial General Intelligence: Early experiments with GPT-
4,” (2023), arxiv:2303.12712 [cs].

[4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer, “High-Resolution Image Synthesis with Latent Diffusion
Models,” (2022), arxiv:2112.10752 [cs].

[5] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn,
J. Müller, J. Penna, and R. Rombach, “SDXL: Improving La-
tent Diffusion Models for High-Resolution Image Synthesis,”
(2023), arxiv:2307.01952 [cs].

[6] S. Sanyal, A. Khandekar, and S. Sanyal, Reuters (2023).
[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning

(MIT Press, 2016).
[8] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne,

M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier,
R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis,
and P. Gurram, in 2017 IEEE SmartWorld, Ubiquitous Intel-
ligence & Computing, Advanced & Trusted Computed, Scal-
able Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2017) pp.
1–6.

[9] T. J. Sejnowski, Proceedings of the National Academy of Sci-
ences 117, 30033 (2020).

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Advances in
Neural Information Processing Systems 25 , 1097 (2012).

[11] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, in Pro-
ceedings of the Thirty-First AAAI Conference on Artificial In-
telligence (2016) pp. 4278–4284, arxiv:1602.07261.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, in Advances in Neural
Information Processing Systems, Vol. 27, edited by Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger
(Curran Associates, Inc., 2014) arxiv:1409.3215 [cs].

http://arxiv.org/abs/2005.14165
http://dx.doi.org/10.48550/arXiv.2207.04672
http://dx.doi.org/10.48550/arXiv.2207.04672
http://dx.doi.org/10.48550/arXiv.2207.04672
http://arxiv.org/abs/2207.04672
http://dx.doi.org/ 10.48550/arXiv.2303.12712
http://dx.doi.org/ 10.48550/arXiv.2303.12712
http://dx.doi.org/ 10.48550/arXiv.2303.12712
http://arxiv.org/abs/2303.12712
http://dx.doi.org/ 10.48550/arXiv.2112.10752
http://dx.doi.org/ 10.48550/arXiv.2112.10752
http://arxiv.org/abs/2112.10752
http://dx.doi.org/ 10.48550/arXiv.2307.01952
http://dx.doi.org/ 10.48550/arXiv.2307.01952
http://dx.doi.org/ 10.48550/arXiv.2307.01952
http://arxiv.org/abs/2307.01952
http://dx.doi.org/ 10.1109/UIC-ATC.2017.8397411
http://dx.doi.org/ 10.1109/UIC-ATC.2017.8397411
http://dx.doi.org/ 10.1109/UIC-ATC.2017.8397411
http://dx.doi.org/ 10.1109/UIC-ATC.2017.8397411
http://dx.doi.org/ 10.1109/UIC-ATC.2017.8397411
http://dx.doi.org/10.1073/pnas.1907373117
http://dx.doi.org/10.1073/pnas.1907373117
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1409.3215


10

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All
You Need,” (2017), arxiv:1706.03762 [cs].

[14] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov,
O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek,
A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov,
R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Bergham-
mer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli, and D. Hassabis, Nature 596, 583
(2021).

[15] L. Ferreira, C. J. Conselice, K. Duncan, T.-Y. Cheng, A. Grif-
fiths, and A. Whitney, The Astrophysical Journal 895, 115
(2020).

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature 529,
484 (2016).

[17] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and
H. Suchowski, Light: Science & Applications 7, 60 (2018).

[18] M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao,
R. R. Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, ACS
Nano 11, 12742 (2017).

[19] D. Liu, Y. Tan, E. Khoram, and Z. Yu, ACS Photonics 5, 1365
(2018).

[20] W. Ma, F. Cheng, and Y. Liu, ACS Nano 12, 6326 (2018).
[21] P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, Nature

Nanotechnology 14, 237 (2019).
[22] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, Nano

Letters 18, 6570 (2018).
[23] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li,

L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A.
Richardson, T. Gu, J. Hu, and H. Zhang, ACS Photonics 6,
3196 (2019), arxiv:1906.03387.

[24] F. Wen, J. Jiang, and J. A. Fan, ACS Photonics 7, 2098 (2020),
arxiv:1911.13029.

[25] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G.
Johnson, SIAM Journal on Scientific Computing 43, B1105
(2021).

[26] S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou,
Y. Dong, M. Haerinia, A. M. Agarwal, C. Rivero-Baleine,
M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, and
H. Zhang, Advanced Optical Materials , 2102113 (2021),
arxiv:2102.01761.

[27] T. Gahlmann and P. Tassin, Physical Review B 106, 085408
(2022).

[28] S. Gladyshev, T. D. Karamanos, L. Kuhn, D. Beutel, T. Weiss,
C. Rockstuhl, and A. Bogdanov, Nanophotonics 12, 3767
(2023).

[29] H.-X. Xu, G. Hu, X. Kong, Y. Shao, P. Genevet, and C.-W.
Qiu, Light: Science & Applications 12, 78 (2023).

[30] J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt,
D. Kim, J. Leger, A. M. Urbas, M. Ossiander, Z. Li, and
F. Capasso, “All-glass 100 mm Diameter Visible Metalens for
Imaging the Cosmos,” (2023), arxiv:2307.08186 [astro-ph,
physics:physics].

[31] G. Palermo, A. Lininger, A. Guglielmelli, L. Ricciardi,
G. Nicoletta, A. De Luca, J.-S. Park, S. W. D. Lim, M. L.
Meretska, F. Capasso, and G. Strangi, ACS Nano 16, 16539
(2022).

[32] D. T. Jones and J. M. Thornton, Nature Methods 19, 15 (2022).

[33] T. Kanade, C. Thorpe, and W. Whittaker, in Proceedings
of the 1986 ACM Fourteenth Annual Conference on Com-
puter Science, CSC ’86 (Association for Computing Machin-
ery, New York, NY, USA, 1986) pp. 71–80.

[34] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, IEEE Expert
6, 31 (1991).

[35] T. M. Mitchell, AI Magazine 18, 11 (1997).
[36] J. Michels, A. Saxena, and A. Y. Ng, in Proceedings of the

22nd International Conference on Machine Learning, ICML
’05 (Association for Computing Machinery, New York, NY,
USA, 2005) pp. 593–600.

[37] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller,
and H. Winner, IEEE Intelligent Transportation Systems Mag-
azine 6, 6 (2014).

[38] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, Jour-
nal of Field Robotics 37, 362 (2020).

[39] T. Mickle, C. Metz, and Y. Lu, The New York Times (2023).
[40] T. Higgins, Wall Street Journal (2022).
[41] A. Khaireh-Walieh, D. Langevin, P. Bennet, O. Teytaud,

A. Moreau, and P. R. Wiecha, Nanophotonics aop (2023),
10.1515/nanoph-2023-0527, arxiv:2307.08618 [physics].

[42] L. Bornmann and R. Mutz, Journal of the Association for In-
formation Science and Technology 66, 2215 (2015).

[43] J. Jiang, M. Chen, and J. A. Fan, Nature Reviews Materials 6,
679 (2021), arxiv:2007.00084.

[44] M. K. Chen, X. Liu, Y. Sun, and D. P. Tsai, Chemical Reviews
(2022), 10.1021/acs.chemrev.2c00012.

[45] P. Covington, J. Adams, and E. Sargin, in Proceedings of the
10th ACM Conference on Recommender Systems, RecSys ’16
(Association for Computing Machinery, New York, NY, USA,
2016) pp. 191–198.

[46] W. Fedus, B. Zoph, and N. Shazeer, The Journal of Machine
Learning Research 23, 120:5232 (2022).

[47] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann,
P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,
B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard,
G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat,
S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omer-
nick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz,
E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,
B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-
Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,
“PaLM: Scaling Language Modeling with Pathways,” (2022),
arxiv:2204.02311 [cs].

[48] D. Yalalov, “GPT-4’s Leaked Details Shed Light on its Mas-
sive Scale and Impressive Architecture,” (2023).

[49] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale,
D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull,
D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao,
V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou,
H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein,
R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith,
R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kam-
badur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat

http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/ 10.3847/1538-4357/ab8f9b
http://dx.doi.org/ 10.3847/1538-4357/ab8f9b
http://dx.doi.org/ 10.1038/nature16961
http://dx.doi.org/ 10.1038/nature16961
http://dx.doi.org/ 10.1038/s41377-018-0060-7
http://dx.doi.org/10.1021/acsnano.7b07504
http://dx.doi.org/10.1021/acsnano.7b07504
http://dx.doi.org/ 10.1021/acsphotonics.7b01377
http://dx.doi.org/ 10.1021/acsphotonics.7b01377
http://dx.doi.org/ 10.1021/acsnano.8b03569
http://dx.doi.org/ 10.1038/s41565-018-0346-1
http://dx.doi.org/ 10.1038/s41565-018-0346-1
http://dx.doi.org/ 10.1021/acs.nanolett.8b03171
http://dx.doi.org/ 10.1021/acs.nanolett.8b03171
http://dx.doi.org/10.1021/acsphotonics.9b00966
http://dx.doi.org/10.1021/acsphotonics.9b00966
http://arxiv.org/abs/1906.03387
http://dx.doi.org/10.1021/acsphotonics.0c00539
http://arxiv.org/abs/1911.13029
http://dx.doi.org/10.1137/21M1397908
http://dx.doi.org/10.1137/21M1397908
http://dx.doi.org/10.1002/adom.202102113
http://arxiv.org/abs/2102.01761
http://dx.doi.org/10.1103/PhysRevB.106.085408
http://dx.doi.org/10.1103/PhysRevB.106.085408
http://dx.doi.org/ 10.1515/nanoph-2023-0373
http://dx.doi.org/ 10.1515/nanoph-2023-0373
http://dx.doi.org/10.1038/s41377-023-01118-1
http://dx.doi.org/10.48550/arXiv.2307.08186
http://dx.doi.org/10.48550/arXiv.2307.08186
http://arxiv.org/abs/2307.08186
http://arxiv.org/abs/2307.08186
http://dx.doi.org/10.1021/acsnano.2c05887
http://dx.doi.org/10.1021/acsnano.2c05887
http://dx.doi.org/10.1038/s41592-021-01365-3
http://dx.doi.org/10.1145/324634.325197
http://dx.doi.org/10.1145/324634.325197
http://dx.doi.org/10.1145/324634.325197
http://dx.doi.org/ 10.1109/64.85919
http://dx.doi.org/ 10.1109/64.85919
http://dx.doi.org/10.1609/aimag.v18i3.1303
http://dx.doi.org/10.1145/1102351.1102426
http://dx.doi.org/10.1145/1102351.1102426
http://dx.doi.org/ 10.1109/MITS.2014.2336271
http://dx.doi.org/ 10.1109/MITS.2014.2336271
http://dx.doi.org/ 10.1002/rob.21918
http://dx.doi.org/ 10.1002/rob.21918
http://dx.doi.org/ 10.1515/nanoph-2023-0527
http://dx.doi.org/ 10.1515/nanoph-2023-0527
http://arxiv.org/abs/2307.08618
http://dx.doi.org/10.1002/asi.23329
http://dx.doi.org/10.1002/asi.23329
http://dx.doi.org/10.1038/s41578-020-00260-1
http://dx.doi.org/10.1038/s41578-020-00260-1
http://arxiv.org/abs/2007.00084
http://dx.doi.org/ 10.1021/acs.chemrev.2c00012
http://dx.doi.org/ 10.1021/acs.chemrev.2c00012
http://dx.doi.org/10.1145/2959100.2959190
http://dx.doi.org/10.1145/2959100.2959190
http://dx.doi.org/ 10.48550/arXiv.2204.02311
http://arxiv.org/abs/2204.02311
http://dx.doi.org/10.48550/arXiv.2307.09288


11

Models,” (2023), arxiv:2307.09288 [cs].
[50] W. Knight, Wired (2023).
[51] E. Strubell, A. Ganesh, and A. McCallum, “Energy and

Policy Considerations for Deep Learning in NLP,” (2019),
arxiv:1906.02243 [cs].

[52] R. Waters and T. Bradshaw, Financial Times (2023).
[53] P. R. Wiecha and O. L. Muskens, Nano Letters 20, 329 (2020),

arxiv:1909.12056.
[54] J. Noh, Y.-H. Nam, S.-G. Lee, I.-G. Lee, Y. Kim, J.-H. Lee,

and J. Rho, Photonics and Nanostructures - Fundamentals and
Applications 52, 101071 (2022).

[55] T. Ma, M. Tobah, H. Wang, and L. J. Guo, Opto-Electronic
Science 1, 210012 (2022).

[56] A. Khaireh-Walieh, A. Arnoult, S. Plissard, and P. R. Wiecha,
Crystal Growth & Design 23, 892 (2023).

[57] G.-X. Liu, J.-F. Liu, W.-J. Zhou, L.-Y. Li, C.-L. You, C.-W.
Qiu, and L. Wu, Nanophotonics 12, 1943 (2023).

[58] D. Gostimirovic, Y. Grinberg, D.-X. Xu, and O. Liboiron-
Ladouceur, ACS Photonics 10, 1953 (2023).

[59] T. Ma, H. Wang, and L. J. Guo, “OptoGPT: A Foundation
Model for Inverse Design in Optical Multilayer Thin Film
Structures,” (2023), arxiv:2304.10294 [physics].

[60] Z. Zhang, C. Yang, Y. Qin, H. Feng, J. Feng, and H. Li,
Nanophotonics 12, 3871 (2023).

[61] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
Harnessing Adversarial Examples,” (2015), arxiv:1412.6572
[cs, stat].

[62] S. J. Nightingale and H. Farid, Proceedings of the National
Academy of Sciences 119, e2120481119 (2022).

[63] M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta,
Procedia Computer Science International Conference on
Computational Intelligence and Data Science, 167, 293
(2020).

[64] H. Robbins and S. Monro, The Annals of Mathematical Statis-
tics 22, 400 (1951).

[65] Y. Deng, S. Ren, K. Fan, J. M. Malof, and W. J. Padilla, Optics
Express 29, 7526 (2021).

[66] Y. Deng, S. Ren, J. Malof, and W. J. Padilla, Photonics and
Nanostructures - Fundamentals and Applications 52, 101070
(2022).

[67] R. Balestriero, J. Pesenti, and Y. LeCun, “Learning in
High Dimension Always Amounts to Extrapolation,” (2021),
arxiv:2110.09485.

[68] N. J. Dinsdale, P. R. Wiecha, M. Delaney, J. Reynolds,
M. Ebert, I. Zeimpekis, D. J. Thomson, G. T. Reed, P. Lalanne,
K. Vynck, and O. L. Muskens, ACS Photonics 8, 283 (2021),
arxiv:2009.11810.

[69] D. Melati, Y. Grinberg, M. Kamandar Dezfouli, S. Janz,
P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D.-X. Xu,
Nature Communications 10, 4775 (2019).

[70] Z. Liu, L. Raju, D. Zhu, and W. Cai, IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 10, 126
(2020), arxiv:1902.02293.

[71] Y. Augenstein, T. Repän, and C. Rockstuhl, ACS Photonics
10, 1547 (2023), arxiv:2302.01934 [physics].

[72] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Journal of
Computational Physics 378, 686 (2019).

[73] A.-P. Blanchard-Dionne and O. J. F. Martin, Optics Letters 45,
2922 (2020).

[74] M. Chen, R. Lupoiu, C. Mao, D.-H. Huang, J. Jiang,
P. Lalanne, and J. A. Fan, ACS Photonics 9, 3110 (2022).

[75] J. Su, D. V. Vargas, and S. Kouichi, IEEE Transactions on
Evolutionary Computation 23, 828 (2019), arxiv:1710.08864.

[76] N. Liu, M. Du, R. Guo, H. Liu, and X. Hu, ACM SIGKDD

Explorations Newsletter 23, 86 (2021).
[77] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, IEEE

Communications Surveys & Tutorials 22, 998 (2020).
[78] B. Nassi, J. Shams, R. B. Netanel, and Y. Elovici, “bAdver-

tisement: Attacking Advanced Driver-Assistance Systems Us-
ing Print Advertisements,” (2022), arxiv:2202.10080 [cs].

[79] K. Greshake, S. Abdelnabi, S. Mishra, C. Endres, T. Holz,
and M. Fritz, “Not what you’ve signed up for: Compromis-
ing Real-World LLM-Integrated Applications with Indirect
Prompt Injection,” (2023), arxiv:2302.12173 [cs].

[80] C. Molnar, Interpretable Machine Learning. A Guide for Mak-
ing Black Box Models Explainable, 2nd ed. (2022).

[81] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian,
and D. Dou, Knowledge and Information Systems 64, 3197
(2022).

[82] G. Ras, N. Xie, M. van Gerven, and D. Doran, Journal of
Artificial Intelligence Research 73, 329 (2022).

[83] C. Shorten and T. M. Khoshgoftaar, Journal of Big Data 6, 60
(2019).

[84] R. Balestriero, L. Bottou, and Y. LeCun, “The Effects of
Regularization and Data Augmentation are Class Dependent,”
(2022), arxiv:2204.03632 [cs, stat].

[85] M. T. Ribeiro, S. Singh, and C. Guestrin, “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier,”
(2016), arxiv:1602.04938 [cs, stat].

[86] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden,
and L. Fei-Fei, Proceedings of the National Academy of Sci-
ences 114, 13108 (2017).

[87] J. Zou and L. Schiebinger, Nature 559, 324 (2018).
[88] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, in Proceedings of

the IEEE International Conference on Computer Vision (2015)
pp. 1511–1519.

[89] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep
Anomaly Detection with Outlier Exposure,” (2019),
arxiv:1812.04606 [cs, stat].

[90] T. Karras, T. Aila, S. Laine, and J. Lehtinen,
arXiv:1710.10196 [cs, stat] (2017), arxiv:1710.10196
[cs, stat].

[91] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky,
“Few-Shot Adversarial Learning of Realistic Neural Talking
Head Models,” (2019), arxiv:1905.08233 [cs].

[92] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and
T. Aila, “Analyzing and Improving the Image Quality of Style-
GAN,” (2020), arxiv:1912.04958 [cs, eess, stat].

[93] C. Stupp, Wall Street Journal (2019).
[94] P. Wang, R. Angarita, and I. Renna, in Companion Proceed-

ings of the The Web Conference 2018, WWW ’18 (Interna-
tional World Wide Web Conferences Steering Committee, Re-
public and Canton of Geneva, CHE, 2018) pp. 1557–1561.
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