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Abstract: For over a decade, machine learning (ML) models have been making strides in computer 

vision and natural language processing (NLP), demonstrating high proficiency in specialized tasks. 

The emergence of large-scale language and generative image models, such as ChatGPT and Stable 

Diffusion,  has  significantly  broadened  the  accessibility  and  application  scope  of  these 

technologies. Traditional predictive models are typically constrained to mapping input data to 

numerical values or predefined categories, limiting their usefulness beyond their designated tasks. 

In  contrast,  contemporary  models  employ  representation  learning  and  generative  modeling, 

enabling them to extract and encode key insights from a wide variety of data sources and decode 

them to create novel responses for desired goals. They can interpret queries phrased in natural 

language to deduce the intended output. In parallel, the application of ML techniques in materials 

science has advanced considerably, particularly in areas like inverse design, material prediction, 

and atomic modeling. Despite these advancements, the current models are overly specialized, 

hindering their potential to supplant established industrial processes. Materials science, therefore, 

necessitates the creation of a comprehensive,  versatile model capable of interpreting human-

readable  inputs,  intuiting  a  wide  range  of  possible  search  directions,  and  delivering  precise 

solutions. To realize such a model, the field must adopt cutting-edge representation, generative,  

and foundation model  techniques  tailored to  materials  science.  A pivotal  component  in  this  

endeavor is the establishment of an extensive, centralized dataset encompassing a broad spectrum 

of research topics. This dataset could be assembled by crowdsourcing global research contributions 

and developing models to extract data from existing literature and represent them in a homogenous 

format. A massive dataset can be used to train a central model that learns the underlying physics of 

the target  areas,  which can then be connected to a  variety of  specialized downstream tasks. 

Ultimately, the envisioned model would empower users to intuitively pose queries for a wide array 
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of desired outcomes. It would facilitate the search for existing data that closely matches the sought-

after solutions and leverage its understanding of physics and material-behavior relationships to 

innovate new solutions when pre-existing ones fall short.
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1. Introduction

Machine  learning  (ML)  has  experienced  remarkable  advancements  in  recent  times, 

solidifying its role as a multifaceted instrument utilized in various fields. It harnesses the power of 

large datasets  and algorithms that  are  trained to  identify complex and non-obvious patterns, 

enabling the development of sophisticated predictive models. These models often outperform 

human insight and conventional analytical techniques [1, 2]. The widespread integration of these 

models has led to significant innovations in areas such as image recognition[3-5], medical research

[6-8], natural language processing[9, 10], and robotics[11-13]. 

Nevertheless, these advanced predictive models are not without their limitations, primarily 

due to their narrow focus. For example, without an additional computational tuning effort, a model 

adept at identifying cats  will  be incapable of processing different types of images[14]. Such 

models often depend on deep neural networks (DNNs), which process input data through a cascade 

of intricate, nonlinear operations, tuning their parameters through training, as illustrated in Figure 

1. However, even minor alterations in the input data, such as changes in dimensionality or requests 

for divergent outputs, can compromise the effectiveness of these predictive models. Enhancing a 

model’s capabilities typically requires additional data and extended training periods, yet this often 

results in only slight usability enhancements[15, 16]. Moreover, the data demands for accurately 

training DNN-based predictive models are substantial, frequently necessitating tens of thousands 

to millions of labeled training examples, which makes the training both resource-intensive and 

time-consuming[2]. As a result of these factors—the high costs associated with data and the 

models’  limited  adaptability—predictive  ML algorithms  have  historically  been  powerful  but 

highly specialized tools.

The plethora of internal parameters that DNNs learn during training can reach into the 

billions, or even trillions for the largest language models, adding layers of complexity and opacity 

to the model. Consequently, the decision-making process of these models often resembles a black 

box, obscuring their predictive reasoning. This opacity can render DNN-based models particularly 



inaccessible to individuals without a background in programming or data analysis.  This also 

implies a trust problem, since the predictions of such models can never be totally relied on, without 

additional verification. In contrast, alternative predictive models like those based on decision trees 

typically offer greater transparency in their predictions [17]. Efforts are underway to imbue more 

complex models with this level of interpretability  [18]. Data collection and labeling represent 

significant hurdles in the training of predictive models. Despite the abundance of both labeled and 

unlabeled  data,  the  challenge  lies  in  harnessing  this  data  effectively,  and  homogenizing  its 

representation format. This is a prerequisite for being able to train a model. Furthermore, it would 

be ideal to enhance its adaptability and ease of use. Thus, developing efficient strategies to glean 

valuable insights from the available data and improve the models’ versatility and user-friendliness 

stands as a pivotal goal for the ongoing evolution of artificial intelligence (AI).

In the past five years, the field of ML has witnessed the emergence of novel applications, 

particularly  in  the  representation  and  generation  of  text  and  image,  heralding  promising 

advancements towards achieving these goals. These innovations have significantly lowered the 

barriers to entry, enabling wider public access to the capabilities of AI, with notable strides in text 

and image-based models. Two areas where breakthroughs have been particularly impactful are 

representation learning and generative modeling. Representation learning shifts the focus from 

directly categorizing input data to learning a lower-dimensional representation of its essential 

features. This representation can then be applied to a broader range of downstream tasks [19]. This 

approach is versatile, accommodating both supervised and unsupervised learning paradigms. For 

instance,  contrastive  representation  learning  trains  models  to  discern  distinctions  between 

unlabeled data samples [20]. Generative models, on the other hand, are designed to understand the 

underlying statistical distributions of data, enabling them to generate new, convincing samples, be 

it images or text, that closely mimic the characteristics of the data they were trained on [21]. These 

advancements are not just  technical  marvels but also pivotal  steps towards making AI more 

versatile and accessible.

Models such as Stable Diffusion and DALL-E 2 are prime examples of generative models, 

utilizing diffusion-based mechanisms to generate novel images from textual prompts  [22, 23]. 

Similarly,  ChatGPT and GPT-4[24],  which operate on the generative pre-trained transformer 

architecture,  facilitate  a  broad spectrum of  user  interactions  through text  inputs  [25].  These 

interactions range from generating creative content, browsing the internet and summarizing key 



information,  to  engaging in  basic  conversations  [26].  All  these models  utilize  representation 

learning to encode the text inputs into a latent dimension that contains all the most important info. 

This latent representation is then fed into the generative parts of the model where the final output is 

then constructed. This latent representation translates an input into an encoding, and the generative 

architectures decode that encoding into the final generated output. It is the parallel development of 

these two strategies, paired with massive amounts of homogenously formatted data, that have 

enabled the powerful performance of recent models. 

What  makes these models particularly user-friendly is  their  ability to understand and 

process requests phrased in everyday language, delivering results that align closely with the user's 

intentions.  This  accessibility  opens  the  door  to  users  without  specialized  machine  learning 

knowledge, democratizing the use of AI. Provided they can form a basic understanding of a 

problem from a huge amount of data, these generative models also develop efficient learning 

abilities. An initial pre-training on a large dataset to establish an underlying base model of the 

target domain is first needed. After this initial pre-training, however, large models require only a 

limited number of examples to learn to recognize new patterns[27]. Given a database expansive 

enough to cover a wide array of subjects, these models can attain a more general-purpose utility.  

The availability of massive amounts of well-formatted data, enabled by the internet, is one of the 

key factors that has allowed the latest models to advance in size and obtain remarkable results [28]

. Users can interact with these systems using natural language, and the models can deduce their  

intentions and respond appropriately. This intuitive interface has sparked a surge in AI's popularity 

across various sectors,  with its  transformative effects already becoming evident in numerous 

industries.

2. Breakthroughs of deep generative models

ML’s application has been extending beyond its notable success in computer vision and 

natural  language  processing  (NLP),  making  considerable  inroads  into  various  scientific 

disciplines.  In the realm of materials  science,  the past  decade has witnessed the use of  ML 

algorithms to tackle a diverse array of challenges[29-31]. These applications range from designing 

energy materials [32, 33] and metamaterials [34-36], for phase and component prediction[37-40], 

and material behavior prediction[41-44]. 



Despite these advances, the current research landscape primarily relies on conventional 

predictive  models.  Models  dedicated  to  material  design  and  behavior  prediction  are  often 

constrained to specific paradigms, anchored by assumptions about design factors or environmental 

conditions. For instance, metamaterials’ inverse design models [45-47] have shown proficiency in 

predicting designs that replicate arbitrary spectra [48-50], and suggesting new designs that rival the 

best existing ones for certain applications [51, 52]. In atomic modeling, neural networks have been 

trained  to  forecast  material  properties  like  heat  capacity  [53-55] as  well  as  interatomic 

potentials[56-59] and synthesis conditions[60], offering an alternative to density functional theory 

simulations. Once trained, these models can generate predictions almost instantaneously, a stark 

contrast to the consistent computational costs of traditional simulations. However, changing any of 

the parameters that the training sets are based on often necessitates building an entirely new model 

with new data, which can be extremely time consuming. 

Transfer learning (TL) emerges as a promising technique to enhance the training efficiency 

for related tasks. It involves transferring the knowledge or weights from a pre-trained network to a 

new network,  offering  a  head start  compared to  initializing  weights  randomly (Fig.  2).  For 

example, the insights from a model trained to identify cats can be transferred to a new model aimed 

at recognizing lions. If the tasks share common predictive features, this can reduce the training time 

and the number of training samples required. In large language models (LLMs), this is a very 

common approach for a model to learn specific language skills, after having it pre-trained on a vast 

corpus of raw text. For example, understanding instructions is a task that the current iteration of 

ChatGPT was taught via transfer learning of the underlying GPT3.5 model. Also, image generation 

models can learn secondary tasks from small amounts of additional data in this way, for example  

drawing in the style of an artist which was not present in the pre-training dataset[61]. While TL can 

mitigate the data and training demands for closely related tasks, its effectiveness has its limits [62, 

63]. In some scenarios, the efficiency gains are minimal, and TL falls short when it comes to 

predicting tasks that  are vastly different,  particularly when the source model is  trained on a 

similarly narrow task.

The next frontier for AI applications in materials science lies in expanding their scope,  

generalizability, and ease-of-use, taking cues from the recent advancements of generative models 

in other domains. Envisioning a system where more valuable insights can be drawn from a broader 

array of data inputs and be encoded into a compact representation for diverse downstream tasks is 



crucial. Since general material types and their properties comprise a vastly heterogeneous dataset, 

multi-modal deep learning techniques will be necessary[64]. This evolution would also involve 

creating intuitive user interfaces that allow queries in standard language, enabling searches for 

materials, compositions, or designs tailored to specific requirements.

Imagine a scenario where a user could simply articulate a desired material property, such as 

“a material that reflects all light between 300nm and 700nm,” or input a chemical formula to 

predict its electronic ground state. The AI system would then discern the topic, understand the type 

of response sought, and either retrieve or generate appropriate information. Similarly, users could 

be able to input design parameters or compositions of proposed materials and receive accurate 

predictions of their behaviors and feasibility assessments for fabrication.

Such an AI model would not only bridge the vast array of existing material and atomic data 

but also integrate data related to the underlying physics. This dual functionality would empower 

the model to act both as a comprehensive search engine for existing solutions within online 

databases and as a generative model, capable of generalizing to entirely new inputs, significantly  

enhancing the field’s predictive and exploratory capabilities.

3. All-in-one materials model

In this section we discuss the main challenges towards our vision of a true “foundation 

model” for materials sciences, that understands and is capable to predict materials in a broad sense, 

both in terms of the material type (molecule, crystal, meta-material, etc.) and of its properties  

(optical, thermic, mechanical, etc.). We foresee two large challenges that need to be overcome for a 

large material model to be feasible. The first and most important challenge is the data, the second 

challenge is the different,  more heterogeneous, and more quantitative nature of the problem, 

compared with language or vision tasks.

3.1 Data

To realize the vision of a comprehensive, all-encompassing materials model, a significantly 

expanded data repository is essential. Analogous to models like ChatGPT, which leverage vast 

quantities of unlabeled text data scraped from social media and other platforms to accurately 

represent natural language patterns and topics, materials science requires a similar breadth of data. 

To get an idea of the vast quantities of data used for LLM training, META’s latest model “Llama2” 



was trained on text comprising around 2 trillion words. Among other sources, the full multi-lingual 

Wikipedia text data is included, however, Wikipedia text only corresponds to roughly 1% of the 

full  training data[65].  Gathering enough data is  therefore a  key challenge towards a general 

materials  foundation  model. In  material  science  currently,  a  wealth  of  research  data,  both 

experimental and simulated, is generated, but most of it remains underutilized post-publication. 

The data employed in existing models represent just a sliver of the global repository, resulting in 

models with limited predictive breadth, even the most precise ones (Fig. 3). To create a large 

database  of  materials  data,  we  suggest  two  approaches  that  should  ideally  be  followed 

simultaneously.

Open data repository

As a first means for gathering worldwide generated materials data we suggest the creation 

of a centralized database where researchers worldwide can deposit their data. We foresee two main 

challenges in this endeavor: first, to harness this data effectively, some degree of standardization 

and manual labeling is imperative to ensure consistency and homogeneity, which would be basic 

requirements for a high model accuracy. Initiatives to amass such data are in progress[66], but 

further progress is needed. Also, to efficiently handle these extensive, heterogenous datasets, the 

development  of  advanced  deep  learning  architectures  is  paramount  (see  below).  Second: 

researchers have little time. Data often remains unpublished not because of confidentiality, but 

because it costs time to clean the data structure, write meta-information, upload, and label the 

repository,  etc.  A  system  to  reward  participation  will  therefore  be  necessary  to  motivate 

researchers to participate in data sharing. National research foundations and other funding agencies 

today often pay open access publication fees under the condition that the data is shared openly. 

These programs need to be reinforced and appended on the condition that data is provided in a 

standardized format on an approved dissemination channel. A data repository could also provide a 

licensing  platform,  which  could  guarantee  that  contributing  researchers  are  required  to  be 

acknowledged by the authors of models that are trained using their data, as well as guarantee open 

and transparent access to the platform.

Automatic scrapers for research data and articles



The goal is to establish a user-curated database that aggregates datasets and findings from 

all publications within pertinent fields. However, this ideal solution may be impractical in the near 

term because it will take time to convince researchers worldwide to standardize and contribute their 

data. As a secondary measure, leveraging NLP models to mine the vast corpus of peer-reviewed 

papers presents a more attainable approach for constructing a large-scale database. These models 

have already proven capable of ingesting thousands of scientific articles to distill key insights[67, 

68].  This  methodology  can  be  extended  to  extract  material-behavior  relationships  from 

experimental and theoretical studies across various material types. While this approach might not 

offer  the  comprehensive  dataset  that  would  be  necessary  for  general  component  prediction, 

material design, or atomistic modeling, it can efficiently facilitate the search for existing solutions. 

This bypasses the labor-intensive task of manually reviewing the entire body of relevant literature. 

Additionally, NLP models can be employed to extract other material-related information, such as 

experimental findings like indices of refraction, mechanical attributes, electronic properties, etc.  

Last-generation large language models could be specifically fine-tuned on scientific literature for 

pertinent, quantitative data extraction. This fine-tuning would require a moderate labeling effort,  

where quantitative data needs to be provided in the desired format, following the specifications for 

the global dataset. After fine-tuning on this training corpus of publications, the model will become 

capable to analyze scientific papers and extract the datasets quantitatively and in a standardized 

way. Note that a vision-capable model would be necessary to extract results also from figures. In 

the automatic dataset generation, in order to extract useful features from papers that have no “hard” 

labels, but are described by prose text, strategies of contrastive representation learning can also be 

used[69].

An essential problem that would need to be addressed is the possibility for models like 

ChatGPT to generate fake, but convincing sounding information. At the core of the system, the  

model is attempting to convincingly produce language similar to the language it has been trained 

on. In a sense it may end up prioritizing producing text that sounds like it is correct, rather than  

being correct. This would pose a much larger problem in the realm of materials science, as any 

quantitative falsities would make its predictions for real world applications entirely useless or 

infeasible to fabricate.  Preventing generative models from creating falsities is still an ongoing 

development in natural language processing[70], particularly relevant in scientific writing[71-73], 



so any development of a similar large scale generative model would need to keep up with the 

ongoing improvements in research.

 Potential challenges related with quantitative data

A further potential problem concerns the fact that the most impressive large models today 

are language and vision models, both being rather qualitative domains. Materials science on the 

other hand is more strictly quantitative. An LLM-based data extraction procedure may thus face 

unforeseeable difficulties that are not relevant for common language or vision tasks, but substantial 

for quantitative data extraction and processing. One potential remedy might involve a strategic 

shift in the training data utilized. Generative models generally employ a semi-supervised learning 

approach, blending unsupervised data (abundant but unlabeled) with supervised data (scarce but 

accurately labeled)  to  establish robust  associations between the data  and accurate  outcomes.  

Specifically, ChatGPT relies on unsupervised data for initial pre-training, followed by supervised 

data for subsequent fine-tuning. Diffusion vision models also use a mix of supervised training 

(labeled text/image pairs) and unsupervised denoising. To mitigate the generation of inaccuracies, 

any prospective materials science model may need to emphasize supervised data to a greater  

extent. 

This would necessitate a more stringent selection process for vetting published data and 

setting  elevated  standards  for  user-contributed  data  to  ensure  higher  fidelity  in  the  model's  

predictions. This would involve the formatting standards set by a central body for an open data 

repository. Additionally, analogous to so-called “alignment” efforts, that aim at reducing biases in 

LLMs, a reinforcement learning-based strategy can be employed to improve its factual accuracy 

metrics[74, 75]. Human feedback can be used to fine-tune the model. This can apply to using 

preference modeling to improve the helpfulness of responses the way current LLMs do[76], as well 

as constructing rewards based on the agreement between proposed quantitative solutions and 

experimental verification.

A further complication arises from the variable quality and applicability of results, sourced 

directly from scholarly papers. Simulation outcomes are particularly sensitive to the assumptions 

made regarding environmental conditions, the dielectric properties of involved materials, or the 

chosen meshing strategies. Similarly, experimental results can vary significantly depending on the 



methodologies and equipment utilized. Compounding this issue is the fact that some findings may 

be subsequently refuted or deemed non-reproducible.

For a comprehensive model, designed to aggregate data by mining existing literature, a 

sophisticated NLP component is essential. Contrastive Language-Image Pre-training (CLIP) pairs 

natural language supervision with image modeling to efficiently encode visual information[69]. A 

similar  strategy may be employed,  targeted at  language-material  pre-training to  better  target  

information for improving predictive power. This component must not only contextualize research 

findings in light of the employed methods, but also develop the capability to assess the relative 

credibility of different results.  Even a centralized database, populated by datasets voluntarily 

submitted by researchers would necessitate mechanisms to evaluate the outcomes in relation to the 

adopted methodologies. Ideally, such a system would evolve to discern the reliability of results 

based  on  the  employed  methodologies,  thereby  enhancing  the  robustness  and  utility  of  its 

predictions. Just as models like DALL-E and ChatGPT have featured multiple generations that  

have continually improved results, an all-in-one materials model would be fine-tuned over multiple 

iterations, punishing and deprioritizing poor results to improve performance, and implementing 

architectural improvements or novel deep learning concepts.

3.2. Deep Learning techniques

Foundation model architectures

As mentioned already above, bridging the gap between the use of ML in materials science 

and that in natural language processing and computer vision is not possible alone by training 

existing models to new data. The models themselves need to be adapted. Computer vision often 

uses convolutional neural networks (with extensions like the attention mechanism[23]). Further 

CNNs have been recently proposed, demonstrating that modern network design approaches can 

lead  to  parity  performance  compared  with  vision  transformers[77].  However,  convolutional 

networks are most efficient for array-like, structured data, which an all-encompassing material 

network won’t be restricted to.

NLP foundation models use different architectures, today mostly transformers[25]. The 

latter architecture is highly flexible with regards to the data format, but it doesn’t scale ideally with 

its dimension since self-attention layers are essentially fully-connected. However transformers are 

extremely strong at generalizing, provided huge amounts of data are available for training [78]. 



In conclusion, we believe that the heterogeneous character of parametrizations of materials and 

their  properties  cannot  be  ideally  solved  with  a  single  architecture.  An  all-in-one  scientific 

materials  model  will  rather  be composed of  multiple,  interconnected models,  each relatively 

specialized. All their respective predictions may then very well be processed by a global multi-

modal model (see also below), that may potentially be a transformer.

Tokenizer

The “tokenizer” in LLMs is an independent model that performs a kind of translation pre-

processing step, converting the natural language input into a compressed, learned representation. In 

materials, the tokenizer would be a model that converts the bare material and property inputs into a 

latent representation. This can then be easier processed by further deep learning models. The 

choice of tokenizer model can have a severe impact on the full model’s performance. For instance, 

in multi-lingual LLMs, an English-only tokenizer does in fact work, but the full model then 

performs significantly worse compared to using a dedicated, multi-lingual tokenizer [79]. The use 

of latent representations to compress input data has been explored in some works in this field[80],

[62] but further advancement in this area is necessary. Advancement will involve understanding 

how to  encode  most  efficiently  information  specific  to  materials  tasks,  such  as  atomic  and 

structural properties.

Multimodality

As stated before, even if high-quality materials data were available at a similar scale, due to 

their heterogeneity, the approaches that lead to the tremendous success of LLMs and computer 

vision foundation models cannot be directly applied. On the one hand, various very different types 

of material families with totally different parametrization format must be dealt with, on the other 

hand a plethora of physical and chemical properties needs to be described, again requiring also 

different description formats. The problem is thus comparable to recent attempts of combining 

language with vision or audio models, which is generally described as “multimodal deep learning”

[64].  In  fact,  our  perspective  for  a  universal  materials  tokenizer  is  by  itself  a  multimodal 

representation model [81] Multimodality concepts will need to be applied throughout the entire 

model design, to allow for a universal deep learning neural network to treat all possible types of  



different materials and their properties. Since it will be impossible to design from the start an all-

encompassing architecture that comprises all potential possibilities, focusing the development also 

on extensibility will as well be an important criterion.

Applicable techniques that go beyond language and vision foundation models include also 

incorporating physics-based knowledge into modeling, which can yield more meaningful features. 

Physics informed neural networks (PINNs) or neural operators may for instance be used (for 

adequate materials families or property categories), either for regularization or for full downstream 

predictions in corresponding branches of the global model[82-85]. The path to such a proposed all-

in-one model would require many steps (Fig. 4). A massive training dataset would be built, using 

the methods discussed in the previous sections. Data would be fed in, comprised of materials 

descriptions such as molecular compositions, lattice information, geometric parameters, paired 

with their corresponding physical or chemical behavior. One could even imagine including info 

about experimental methods or simulation conditions in the dataset, such that the global model can 

learn to propose experiments or simulations methods for the characterization of a material.  This 

totality of data could then be parametrized in a homogenous format. 

On the DL side, different models are needed for different parts of the process. First, a 

unique  tokenizing  model  to  convert  qualitative  and  quantitative  data  about  materials,  their 

properties and their behavior to numerical values and compress them to a latent representation.  

This strategy is already employed with models such as LLMs, but adapting the architectures to 

account for differences in the target domains can greatly improve their performance. Next, a central 

foundation model can be trained. This will require the largest amount of data. If the dataset is 

massive enough, a suitably large model can develop a global understanding of the problem, such 

that it becomes able to learn efficiently from few-shot data, like large language models, and use 

results from similar classes of tasks to assist in training. 

Finally, numerous submodule models can be connected to the central pre-trained model 

that are specified for narrower tasks. A statistical model will always have some amount of error,  

and deep learning furthermore is a black-box method, so predicted results always need to be  

verified. It may therefore be interesting to train a second input pre-processor model on the task to 

search for potentially available existing data.  This would prevent the chance of generating an 

approximate solution when an exact one is already known. The portion of data corresponding to 

existing solutions would comprise a portion of the total predictive power of the model (Fig. 5), that 



would be, on average, more accurate. Technically, such a model could be granted access to a 

database,  looking  for  similarities  in  the  tokenized  material  descriptions.  Self-prompting 

techniques,  in  which  a  model  refines  its  output  by  iteratively  adding  externally  acquired 

information to its input, could further enhance performance for queries on totally new inputs[86]. 

In the future, it may also be interesting to incorporate NLP models to parse a user’s human readable 

input to understand the intended request in natural language and convert it into quantitative values 

as input for the rest of the model. Likewise, a separate module for converting the final predicted 

suggestion back into easily human-readable language would also be helpful to make the model 

accessible for a large audience. By adopting these advancements in ease-of-use and scope, AI in  

materials science can unearth its full potential, and enable innovative transformations across many 

applications, revolutionizing how we design, discover, and use materials.

4. Conclusions

In conclusion, while not yet there, we foresee that machine learning in materials research 

will find itself taking a similar trajectory as research in natural language processing and computer 

vision, two fields that have garnered significant interest since the inception of the field. A few years 

ago, the most powerful state-of-the-art models in NLP and vision were still limited to highly 

specialized predictions, given a well curated set of labeled data. In remarkably short time, however, 

researchers developed models that  could efficiently encode insights  from significantly larger 

datasets and mostly unlabeled, raw samples, spanning a far larger scope of potential inputs and 

outputs.  Developments  in  representation  learning  have  allowed  for  useful  intermediary 

representations of data to be learned for both supervised and unsupervised tasks, which can be 

mapped to a wide range of tasks. This has helped address data concerns as well as increase the 

generalizability of models, two key drawbacks of standard predictive modeling. 

Likewise, breakthroughs in generative modeling have allowed for unparalleled potential in 

the creation of new data aimed at specific tasks. These large-scale generative models have begun a 

revolution of large language and image generation models. They can accomplish a wide range of  

tasks with input in everyday language. This has also allowed non-technical users to leverage its 

power  for  their  own  needs.  We  claim  that,  as  materials  research  is  approaching  a  similar 

crossroads, models start to become sufficiently complex and well-designed to allow for high 

performance on a wide range of, for now, well specified tasks. At the same time, there is a large 



wealth  of  high-quality  data,  both  labeled and unlabeled,  being generated constantly  through 

worldwide research efforts, albeit not as easily accessible as text and images are on the internet.  

Establishing a centralized repository would enable researchers around the world to contribute their 

data, fostering a collaborative environment for the advancement of materials science. Utilizing this 

data to train an all-in-one model tailored for domain specific needs would allow for revolutionary 

advancement in many applications. Collective efforts by the community. careful design of the 

models,  as  well  as  an  intelligent  combination  of  techniques  of  NLP  and  computer-vision 

foundation models, can allow this knowledge to be properly harnessed and pave the way for  

transformative effects in research and application.
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Figure 1:  Basic architecture of  a standard feedforward neural  network.  Values in the neurons in one layer are  

transformed to  the  values  in  the  next  layer  based  on  the  weight  connections  between each  node.  The  overall  

transformation is dependent on the dimension of the input and output values.



Figure 2: Diagram of basic transfer learning operation between models with similar input and slightly different outputs. 

The first model is trained (left) and the weight connections after training are transferred to a new model (right) rather 

than initializing the values randomly.

Figure 3: Diagram representing the difference in scope of potential materials models. Currently, models with a singular 

focus are trained on a small portion of all available global data. These models can both accurately retrieve solutions  

based on existing data (green), as well as offer suggestions for novel solutions (blue) within limited constraints. 



Figure 4: Challenges to be solved for a hypothetical all-in-one model. A massive central homogenously formatted  

dataset is needed. This can be sourced from an open-access repository as well as developing advanced models to scrape 

published  results.  On  the  modeling  side,  advancements  are  needed  to  efficiently  tokenize  and  represent  key 

information from materials data. A central foundation model needs to be built that can learn the underlying working 

principles and physics. This can then be connected in a modular fashion to numerous sub-models trained for more 

specific tasks.



Figure 5: Diagram representing the scope of an idealized all-in-one model. Such a hypothetical model would be able to 

search a large range of existing data and learn underlying patterns to generate new solutions for a wider variety of tasks.
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