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Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff
games, that runs in polynomial time with high probability, on any input where each payoff is chosen
independently from a sufficiently random distribution and the underlying graph of the game is
ergodic.

This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian,
showing for the first time that deterministic two-player games can be solved efficiently, in the sense
of smoothed analysis.

More generally, we devise a condition number for deterministic discounted and mean-payoff
games played on ergodic graphs, and show that our algorithm runs in time polynomial in this
condition number.

Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [18] and
later retracted [19]. It stands in contrast with a recent counter-example by Christ and Yannakakis
[24], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time
on stochastic single-player mean-payoff games.

Our approach is inspired by the analysis of random optimal assignment instances by Frieze and
Sorkin [39], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and
Hochart [6].
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1 Extended Abstract

1.1 A history of discounted and mean-payoff games
John von Neumann proved his minimax theorem in 1928, founding game theory by showing
the existence of optimal strategies in zero-sum matrix games. In 1953, Lloyd Shapley [75]
considered what happened if two players repeatedly played a zero-sum matrix game. The
overall game proceeds as follows. We have n states, and to each state i ∈ [n] corresponds
a zero-sum matrix game Gi. At each round, the two players are in some state i ∈ [n] and
play the corresponding game Gi, with each player simultaneously choosing an action out of
a finite set of possible actions. The two players’ choice of actions determines not just the
payoff, but also the state at the next round. This is repeated ad-infinitum.

In these games, randomness is possible in two different ways. First, the state at the next
round can be chosen stochastically, or deterministically, based on the current state and on
the players’ chosen actions. This gives us two variants: stochastic games, and deterministic
games, with the latter being a special case of the former. Second, the players’ choice of
action can itself be pure (a single action), or mixed (a distribution over the possible actions).

In an infinite game such as this there are two natural ways of determining the winning
player. In the discounted variant, payoffs received at round t are multiplied by a discount
factor of γt (for some 0 6 γ < 1), and we wish to know the total discounted payoff in the
limit as the number of rounds goes to infinity. This is equivalent to saying that the game is
forced to stop after every round with probability 1− γ, and asking for the expected payoff
at the limit. In the mean-payoff variant, we measure the liminf or limsup, as the number
of rounds goes to infinity, of the average payoff received so far (i.e. total payoff divided by
the number of rounds). Shapley [75] proved the existence of a value and optimal (mixed)
strategies for the stochastic, discounted variant.

Concurrently to Shapley’s work, Bellman [16] studied a class of problems which he termed
Markov Decision Processes (MDPs). MDPs model decision making when the result of one’s
actions can be partly random, and they can be seen as single-player variant of stochastic
games. At each round, the player finds himself in a given state out of a finite number of
states, and chooses an action. Depending on his choice he receives a payoff, and transitions
to a different state. This transition can be either deterministic or stochastic. The player’s
goal is to maximize the discounted payoff or mean payoff at the limit, as the number of
rounds goes to infinity. Bellman provided a method to find an optimal pure strategy in the
discounted variant.

In both MDPs and in discounted games the optimal strategies can be made memoryless, in
that the choice of what to do only depends on the current state i, and not on the past history.
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In the general case of discounted stochastic games where the players play simultaneously, the
optimal memoryless strategies must be mixed. In the case of MDPs, the optimal memoryless
strategy can further be made pure.

As for the mean-payoff variant, Gillette [42] gave an example of a mean-payoff two-player
game, where the players play simultaneously at each round, whose optimal strategies cannot
be memoryless.1 With this in mind, Gillette introduced a turn-based variant of Shapley’s
infinite game, where two players play in turns. At each round, the game is in some state i,
and one of the players (depending on i) chooses an action, which determines the next state
(stochastically or deterministically) and a resulting payoff. One player is trying to maximize
the payoff at the limit, and the other tries to minimize it. Gillette claimed that turn-based
two-player games have a value and that optimal strategies exist for both players which are
both memoryless and pure. Gillette’s proof was actually wrong, but it was later corrected
by Liggett and Lippman [60], so the statement is true. It also implies the corresponding
statement for the mean-payoff variant of MDPs, as a special case.

A pure, memoryless strategy for such games is called a policy, and it is a finite object:
one can represent it as a finite function σ : States → Actions specifying the chosen action
at each state. In this paper, we will not concern ourselves with simultaneous two-player
games, and only consider single-player games and turn-based two-player games. We will use
the informal nomenclature “deterministic/stochastic single-player/two-player discounted/
mean-payoff game” to denote each of the eight variants of (non-simultaneous) games just
mentioned. Let us also use the term “discounted and mean-payoff games” to refer to these
games as whole.

1.2 Algorithms
The above results show that all eight variants have a value, and that optimal strategies
are policies, hence finite objects. It then makes sense to consider the algorithmic problem
of solving such a game: given as input a specification of the game with rational weights
(and with rational discount factor, if applicable), compute the value of the game, and
optimal policies for the players.2 The study of discounted and mean-payoff games has always
been accompanied by the development of algorithms for solving them. Most algorithms
for solving discounted and mean-payoff games can be broadly classified into three families:
value-iteration algorithms3, algorithms for MDPs that use linear programming4, and, of
particular importance to us, policy iteration algorithms.

Policy iteration algorithms have been invented for solving all variants of games described
above. These algorithms maintain a policy in memory, and proceed by repeatedly modifying
the policy, so that its quality improves monotonically according to some measure, until it
can no longer be improved, at which point the measure must guarantee that we have found
an optimal strategy for both players.

The first policy iteration algorithm was invented by Howard [52], and finds an optimal

1 In fact, it was only in the 1980s [63] that simultanous-move mean-payoff games were proven to have
a value. For every ε > 0, optimal (not memoryless) strategies exist for each player ensuring that the
payoff is ε-close to the value.

2 It can be shown that the value of such a game with rational weights (and discount factor) is a rational
number of comparable size.

3 The first algorithm ever invented was a value iteration algorithm [16]. For a modern value-iteration
algorithm for single-player games, see [76], which contains a historical overview in Section 2. For two
players see, e.g., [79, 54, 23, 13, 8].

4 See, e.g., Chapter 2 of [37], or various sections of [68].
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strategy for deterministic (and some stochastic) Markov Decision Processes. This was
later extended by Denardo and Fox [30] to work on all stochastic MDPs. The method
was first extended to two-player mean-payoff games by Hoffman and Karp [50], and two-
player discounted games by Denardo [29], with later developments by many other authors
[70, 67, 25, 40, 69, 26]. A good historical overview with more technical details appears in
[3], where a policy iteration algorithm first appeared that can handle all the variants of
mean-payoff games. In the case of discounted games, an optimal strategy can be found in
time polynomial in 1

1−γ [78, 47]. Otherwise, for mean-payoff games, or for discount factors γ
exponentially close to 1, no upper-bound is known on the number of iterations, significantly
better than the number of policies, which is exponential in the number n of states. More
precisely, the best upper-bound on the number of iterations is 2Õ(

√
n) [46, 48].

1.3 Policy iteration versus the simplex method
When one first studies policy iteration algorithms, one gets a sense of familiarity, as if policy
iteration algorithms are analogous to the simplex method for linear programming. The
intuitive sense is that the choice of policy plays the same role as the choice of basic feasible
solution in the simplex method, with a change in policy being analogous to a pivot operation.

In fact, in some cases, this analogy can be formally established. It is possible to express
a MDP by a particular linear program, and in this particular case the connection is perfect:
a simplex pivoting rule gives us a policy iteration algorithms for MDPs, and any policy
iteration algorithm that switches a single node at a time gives us a pivoting rule for applying
simplex on this particular program.

As a result, many known counter-examples for the simplex method, showing that certain
pivoting rules require an exponential number of pivots, were devised by first finding examples
of MDPs for which certain policy-iteration algorithms need an exponential number of
iterations, and then translating the counter-example to work for the simplex algorithm, by
the above connection [38, 33].

More broadly, it turns out that deterministic two-player mean-payoff games are exactly
equivalent to tropical linear programming, i.e., solving systems of “linear” inequalities over
the tropical (min,+) semiring. This was first explicitly shown by Akian, Gaubert, and
Guterman [4], strengthening earlier connections between these problems that were made in
the literature on tropical algebra (such as [40, 32, 58]) and in works on scheduling problems
[64].5

Furthermore, tropical linear programs can be reduced to linear programs over the non-
Archimedean field of convergent generalized power series [31, 11].6 This characterization has
been exploited to show that, if there exists a strongly-polynomial-time pivoting rule for the
simplex algorithm, where the choice of basis element to pivot is semialgebraic in a certain
technical sense (and this is the case for many pivoting rules), then the entire algorithm can
be tropicalized, to get a polynomial-time algorithm for deterministic two-player mean-payoff
games [10].

The analogy between policy iteration and the simplex method is also seen in practice. The

5 Stochastic two-player mean-payoff games, on the other hand, are equivalent to tropical semidefinite
programming [14].

6 A linear program over such a field can be thought of as a parametric family of linear programs over
R. It follows from the above reduction that deterministic mean-payoff games can be encoded as linear
programs with coefficients of exponential bit-length. Such an encoding was first derived by Schewe [73],
without reference to non-Archimedean fields.
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aforementioned counter-examples show that policy-iteration algorithms run in exponential
time in the worst-case. And yet, various benchmarks have shown that policy-iteration
algorithms are very efficient at solving real-world instances, both for single-player [41, 27, 59]
and two-player games [32, 21]. This difference between worst-case and real-life performance
is also what happens with the simplex method. And in both cases it begs the question: why?

1.4 Smoothed analysis
In the case of the simplex method, the generally accepted explanation was proposed by
Spielman and Teng [77]. They have shown that, if one takes any linear programming instance
max{c · x | A · x > b} of dimension n, and perturbs each entry of A, b and c by a Gaussian
with mean 0 and standard deviation 1

φ , then the simplex method, with a particular choice of
pivoting rule, will solve the resulting perturbed system in time poly(φ · n) [77, 28]. It is then
reasonable to expect the simplex method to work efficiently on real-world instances, since
they incorporate real-world data which is prone to such perturbations. It was this result
of Spielman and Teng that founded the area of smoothed analysis, where one studies the
efficiency of algorithms on such perturbed inputs.

The question then naturally follows: are policy-iteration algorithms efficient in the sense
of smoothed analysis?

Recent evidence seems to indicate that no, they are not. The first policy-iteration
algorithm for single-player games (MDPs), by Howard [52], determines for the current policy
σ : States → Actions, and for each state i of the game, if a local improvement is possible:
would a different choice of action at i improve the value of the game when starting at i, if
the game were to be played according to σ at every other state? The algorithm then changes
the action σ(i) at every state i where such a local improvement is possible, to the best
possible local improvement. This is sometimes called Howard’s policy iteration, or the greedy
all-switches rule.

Last year, Christ and Yannakakis [24] showed a remarkable lower bound. They showed
that 2Ω(nc) iterations are necessary on a certain family of stochastic MDPs (single-player
games), even when the payoffs are perturbed. In fact, the lower bound holds not only
probabilistically, where each payoff is independently perturbed by a Gaussian with standard
deviation 1

poly(n) , but even adversarily, where each payoff is perturbed by any value within
± 1

poly(n) .
It is surprising that such a bound can be proven at all. However, their result only holds

for stochastic games, and does not necessarily apply to deterministic games, where it has
been previously conjectured that Howard’s rule is efficient [49]. Also, this result shows that
a particular way of improving the policy, the greedy all-switches rule, does not give us an
efficient algorithm (in the sense of smoothed analysis). This is analogous to saying that a
particular pivoting rule in the simplex algorithm is not efficient, and does not exclude the
possibility that other ways of improving the policy might work.

Exploiting any one of these caveats could in principle allow for a smoothed analysis for
policy iteration. Our main result exploits both: we show that for deterministic two-player
games, a slightly different policy-improvement method will be efficient, in the sense of
smoothed analysis.

I Theorem 1 (our main theorem). There exists a policy-iteration algorithm for solving n-state
deterministic two-player (discounted or mean-payoff) games played on ergodic graphs, which
runs in time poly(φ ·n) with high probability, on an input where normalized payoffs in [−1, 1]
have been independently perturbed by a Gaussian with mean 0 and standard deviation 1

φ .

ICALP 2024
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Figure 1 A hierarchy of NP search problems. Det2PG and Sto2PG refer to deterministic,
respectively stochastic, two-player games. Arrows denote inclusion or containment. By inclusion of
a search problem in the classes UP ∩ coUP and NP ∩ coUP of decision problems, we mean that the
problem of deciding each bit of the unique answer can be computed in these classes.

It should be emphasized that the lower bound of Christ and Yannakakis holds even for the
single-player case, and our result could be contrasted with theirs, even if we only had proved
it for the single-player case. However, our policy-iteration algorithm (our upper-bound)
works even for two-player games, which are much harder. Our policy-improvement rule is
similar to the greedy all-switches rule, except that the choice of switches is allowed to depend
on an additional parameter (a discount factor) which evolves over time.

1.5 Computational complexity

Our result should also be contrasted with the case of the simplex algorithm for linear
programming. Recall that we do know polynomial-time algorithms for linear programming,
it is only the simplex algorithm which fails to run efficiently in the worst case. However,
it should be emphasized that we do not know any polynomial-time algorithms for solving
two-player discounted or mean-payoff games.

Indeed, solving one-player discounted and mean-payoff games reduces to linear program-
ming, so we have polynomial-time algorithms. But the complexity of solving two-player
discounted and mean-payoff games is one of the great unsolved problems in computational
complexity, first posed by Gurvich, Karzanov, and Khachiyan [44]. For any of the two-player
variants, the respective decision problem (what is the i-th bit of the value) is in UP ∩ coUP
[56], and the search problem (find an optimal strategy) is in the computational complexity
class UEOPL (Unique End-of-Potential-Line) [53, 35]. In fact it is in the promise version of
this class, which we denote pUEOPL. Even within the class pUEOPL, the problem of solving
two-player discounted and mean-payoff games seems to be only a special, simple case: the
sought optimal policies can be obtained from the unique fixed point of a simple monotone
operator. This places the search problem in the class Tarski. The two complexity classes
pUEOPL and Tarski sit at the bottom of a large hierarchy of complexity classes [34, 43]. This
hierarchy stratifies the broad class TFNP of NP search problems [55, 62, 66]. See Figure 1.

In this sense, the problem of solving two-player discounted and mean-payoff games is the
simplest known problem in NP, which is not yet known to be solvable in polynomial time
(or even in time 2no(1)). For any problem which is not known to be in P, one may ask the
question: is the problem still hard on a random instance? Many hard problems have been
conjectured to have this property, of being hard to solve even for a random instance. This is
the case for SAT [74, 36] and subset sum [72], but also for other, not necessarily NP-hard,
problems in NP, such as lattice problems [2]. There is a broad belief that natural problems
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which are hard, remain hard on random inputs.7 In contrast, our main theorem generalizes
to show that solving deterministic two-player games is easy, for any sufficiently random input
distribution.

I Theorem 2 (generalization). Consider distributions on n-state deterministic two-player
discounted or mean-payoff games played on an ergodic graph, where each payoff is chosen
independently according to a (not necessarily identical) distribution with mean in [−1, 1] and
standard deviation 6 1

φ and with probability density functions satisfying f(y) 6 φ for all
y ∈ R. (This includes, for example, payoffs perturbed by a Gaussian, or payoffs sampled from
a uniform interval of length > 1

φ .)
There exists a policy-iteration algorithm which runs in time poly(n, φ), with high probab-

ility, on games sampled according to any such distribution.

1.6 A previous approach and our approach
A first, naive attempt at proving Theorem 1 could proceed along the same lines as the
Mulmuley, Vazirani and Vazirani’s isolation lemma [65]. We think of what happens to the
game when all of the payoffs of all the actions are fixed, except for one, which is sampled
independently according to some distribution as above. Let us suppose that the free payoff
is for an action of some state i. As it turns out, when every other payoff is fixed, the value
of the game at state i is a piecewise linear function of the free payoff, and one can then
hope that it has few break points. If this were indeed the case, that there were only poly(n)
break points, one could then argue similarly to the MVV isolation lemma, to show that
approximating the random payoffs using O(log(n)) bits of precision is enough to isolate the
linear piece (in the piecewise linear function). From this it would follow that optimal policies
for the truncated payoffs are also optimal for the untruncated payoffs. One could then invoke
a pseudo-polynomial-time value-iteration algorithm [79] on the truncated payoffs, and this
would run in polynomial time.

The conference version of the paper of Boros, Elbassioni, Fouz, Gurvich, Makino and
Manthey [18] outlines a similar proof strategy. Among other results, a result similar to our
Theorem 1 was claimed [18, Theorem 4.6]. Their proof works for the one-player case, and the
authors claimed, without a careful proof, that the two-player case also follows. This claim
was later retracted in the journal version [19].8 Indeed, it turns out that the two-player case
is significantly more subtle.

In the one-player case it can be shown that for every action there exist at most n break
points, and hence an isolation lemma can be proven. One can then conjecture, for the
two-player case, a poly(n) upper-bound on the number of break points. As it turns out, this
conjecture is wrong. An exponential example can be created using the construction of [17]
that was also used in [12] to prove that interior point methods for linear programming are
not strongly polynomial. This construction gives us a deterministic two-player game with n
states such that, leaving the payoffs of all but one of actions fixed, as the free payoff varies
between −1 and 1, the value of the game is a piecewise-linear function with 2Ω(n) break
points.

7 The distributions which are considered hard must be chosen carefully to avoid trivial cases, e.g. CNF
formulas with too many or too few clauses, but there are often simple and natural distributions.

8 In their paper, the breakpoints are chosen so that between any two breakpoints the value of the optimal
strategy and the value of the second-best strategy are sufficiently far apart. This works for the single
player-case, but the argument we just presented, where we only keep track of the number of break
points in the value function, is simpler and also works.

ICALP 2024
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So what do we do instead? One natural thing to try is to show that the number of break
points is poly(n), with very high probability, for randomly-chosen payoffs. This could well
be true, and an argument in the style of the MVV isolation lemma would then follow. But
we were unable to show it.

Instead, our results depend on a deeper analysis of deterministic two-player games. We
also prove an isolation lemma, but using an approach different to MVV. Instead of attempting
to isolate an optimal policy among all possible policies, we show that sufficiently random
payoffs, with high probability, isolate a Blackwell-optimal policy. Blackwell-optimal policies
are policies that arise in discounted games with discount factor γ close to 1. Blackwell-optimal
policies are part of a family of policies which are induced by an object called a bias. Not all
optimal policies are Blackwell-optimal, or even bias-induced. Nonetheless, every two-player
discounted game has a Blackwell-optimal policy [60]. Furthermore, there exist policy-iteration
algorithms for finding a Blackwell-optimal policy [57, 51] (that are inefficient in the worst
case).

We are then able to show that, if the payoffs are sufficiently random, then with high
probability it will happen that there is a unique bias-induced policy, which must then be
the Blackwell-optimal policy. Furthermore, from the proof of this theorem we devise a
condition number ∆(r), associating a number in [0,+∞] to any given choice r of payoffs. The
uniqueness proof generalizes to show that a deterministic two-player game with sufficiently
random payoffs will have a small condition number (∆(r) 6 poly(n)) with high probability.

This is a condition number in the same sense as the known condition numbers that govern
the complexity of algorithms for solving linear equations, semidefinite feasibility, etc, and
broadly measure the inverse-distance to ill-posedness (see [20]). Although, strictly speaking,
our condition number does not measure inverse-distance to some set, it does have the property
that ∆(r) is finite if and only if the game with payoffs r has a unique bias-induced policy,
and that every payoff r̃ ∈ B∞(r, δ), within a ball of size δ 6 1

poly(∆(r)) around r, will also
have a unique bias-induced policy. So, at least intuitively, we can think of ∆(r) as an
inverse-distance between r and the set of games with multiple bias-induced policies.

Finally, it can be shown that, taking a discount rate γ > 1− 1
poly(n,∆) (i.e., sufficiently

close to 1), the only optimal policy is the Blackwell-optimal policy. We can then use the
results of [78, 47] to obtain a policy iteration algorithm for finding the Blackwell optimal
policy in time poly(n,∆). This algorithm runs in polynomial smoothed time, because, as
mentioned above, sufficiently random payoffs have small condition number. This includes
any fixed choice of payoffs that has been randomly perturbed by a Gaussian.

1.7 Related work
There is not a lot of work on the complexity of discounted and mean-payoff games with
random payoffs. Besides the papers of Boros et al. [18, 19] and Christ and Yannakakis
[24], which we mentioned above, we only know of a paper by Mathieu and Wilson [61].
They do not provide an algorithm, but they analyze the distribution of the value of a
deterministic single-player mean-payoff game (deterministic MDP) played on a complete
graph with i.i.d. exponentially distributed payoffs. Our algorithm will also work on such a
payoff distribution.

A paper of Allamigeon, Benchimol, and Gaubert [9] analyzes efficiency in a different
random model. The shadow vertex rule is known to be efficient on average under any
distribution over linear feasibility problems, which is symmetric up to changing of the sign
in each linear inequality [1]. Allamigeon et al. tropicalize this result, to show that a certain
tropical analogue of the shadow vertex rule will solve deterministic two-player mean-payoff
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games in a bipartite graph in expected polynomial time, if the distribution over the payoff
matrix is invariant under transposition (this is the tropical analogue of the above symmetry).
In particular, if the payoffs of some given fixed input obey the same symmetry, their algorithm
runs in polynomial time. Of course, in general, perturbed payoffs need not be symmetric in
this way.

It was a paper of Frieze and Sorkin [39] that gave us the first idea of how to approach the
problem. Frieze and Sorkin analyse the gap between optimal and second-optimal assignment
in the assignment problem, using a bound on the reduced costs of the associated linear
program at the optimum solution [39, Theorem 3]. In the simplex algorithm, the reduced
cost works as a gradient, telling us the improvement in the objective function obtained by
changing the current basic solution in a given direction. Frieze and Sorkin show that, at
an optimum basic solution of a random assignment problem, every reduced cost is large,
which implies that there is a large difference between the optimum and second-best solution.
This large difference implies that the optimum solution is stable under perturbations. In
the case of deterministic two-player games, biases will play the role of dual variables, which
allows us define an analogous notion of reduced costs at the optimal solution. We then show,
analogously, that, with high probability for a random instance, every reduced cost is large at
the optimum policy, which also implies stability. Our condition number is the (normalized)
inverse of the smallest reduced cost.

Our analysis of discounted and mean-payoff games is based on the operator approach to
study these games. Using this approach, Akian, Gaubert, and Hochart [6] have previously
shown that a generic two-player mean-payoff game has a unique bias (which must then
equal the Blackwell bias). More precisely, they show that for any stochastic or deterministic
two-player mean-payoff game, the set of payoffs where the bias is not unique has measure
zero. We give a more precise version of this result, for deterministic two-player mean-payoff
games, by showing that the policies induced by the unique bias are also unique. This further
allows us the measure “how far from having multiple bias-induced policies” is a given choice
of payoffs.

The operator approach was also used by Allamigeon, Gaubert, Katz and Skomra [13],
who define a condition number for the value iteration algorithm. Computer experiments
indicate that value iteration converges quickly for random games [14], which strongly suggests
that the condition number of [13] is small for random games, but there is currently no formal
proof of this claim. Even though our condition number and the one from [13] are based on
the bias vector, it is not clear how these two conditions numbers compare to each other.
In particular, we do not know if the value iteration algorithm has polynomial smoothed
complexity and we leave this problem as an open question.

2 Technical summary

For the sake of simplicity, we restrict our attention to deterministic mean-payoff games played
on an ergodic weighted directed graph ~G = ([n], E, r), where |E| = m and [n] is split into
vertices controlled by players Max and Min, [n] = VMax]VMin. The ergodicity is taken in the
sense of [45, 5, 7]: a graph is called ergodic if the value of any mean-payoff game played on
this graph is independent of the initial state of the game.9 A typical example of such a graph
is a complete bipartite graph, in which the bipartition is formed by VMax, VMin. Ergodic

9 This is a notion similar to strong connectivity, but for two-player games. Intuitively, a graph is ergodic
if no player can play in such a way as to force the game to get stuck on a sub-graph.
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graphs are representative for the difficulty of mean-payoff games, because solving games on
general graphs reduces to solving games on complete bipartite graphs [22]. We note however
that it is not clear if this reduction can be done in the smoothed analysis setting. We leave
the problem of extending our results to non-ergodic graphs as a question for future research.

The weights rij of the edges in our model are chosen randomly: we suppose that (rij)
are independent absolutely continuous variables with densities fij . We further suppose that
weights are normalized — E(rij) ∈ [−1, 1] — and that there exists a number φ > 0 such that
fij(y) 6 φ for all i, j, y and Var(rij) 6 1/φ2. As an example, if the weights r are taken by
perturbing some fixed weights r̄ij ∈ [−1, 1] by Gaussian noise, so that rij ∼ N (r̄ij , ρ2), then
we can take φ := 1/ρ.

Under the ergodicity assumption, it is known [44, 7] that the following ergodic equation
has a solution (λ, u) ∈ Rn+1 for all choices of weights:{

∀i ∈ VMax, λ+ ui = max(i,j)∈E{rij + uj} ,
∀i ∈ VMin, λ+ ui = min(i,j)∈E{rij + uj} .

Furthermore, the number λ is unique and it is the value of the game (which does not
depend on the initial state because of ergodicity)10. The vector u ∈ Rn, called a bias, is
never unique because the set of solutions contains at least one line: we can always add a
constant to all coordinates of u. In general, the set of biases may consist of more than one
line. We say that a pair of policies σ : VMax → V (of Max) and τ : VMin → V (of Min) is
bias-induced if there is a bias u such that the edges used by σ, τ achieve the maxima and
minima in the ergodic equation. Bias-induced policies are optimal [44], but not every optimal
policy is bias-induced. To study the behavior of random games, we introduce the sets

Pσ,τ := {r ∈ Rm : (σ, τ) is the only pair of bias-induced policies
in the MPG with weights r},

for any pair (σ, τ) such that the resulting graph ~Gσ,τ has a single directed cycle. We denote
by Ξ the set of all such pairs of policies. We also put U := ∪Pσ,τ . Using the techniques
from [6] we are then able to show the following proposition. This proposition strengthens [6,
Theorem 3.2] for deterministic games by showing that each maximum and minimum in the
ergodic equation is generically achieved by a single edge.

I Proposition 3 (cf. [6, Theorem 3.2]). The sets Pσ,τ are open polyhedral cones. Moreover,
these cones are disjoint and Rm \U is included in a finite union of hyperplanes. In particular,
this set has Lebesgue measure zero. Furthermore, if r ∈ U , then the ergodic equation has a
single solution (up to adding a constant to the bias), and each maximum and minimum in
the ergodic equation is achieved by a single edge.

This motivates the introduction of the following condition number ∆, which measures the
difference between the edge that achieves a maximum or minimum in the ergodic equation
and the “second best” edge, relatively to the spread of the weights around the value:

I Definition 4. Given r ∈ U , we put

∆(r) := max{|rij − λ| : (i, j) ∈ E}
min{|rij − λ+ uj − ui| : (i, j) ∈ E, rij − λ+ uj − ui 6= 0} .

10This is a fundamental result which appeared already in [44]: in the paper’s only theorem, p(v) is the
value and c′

ij = rij + uj − ui are the payoffs modified by u. In the reference [7], the existence of λ and
u is line (iii) of the much more general Theorem 2.1, which applies to additive eigenvectors of additively
homogeneous monotone operators.
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When defined in such a way, the condition number does not change when the weights are
multiplied by a positive constant, or when the same constant is added to all the weights.

To analyze the behavior of random games, we introduce the following random variables.
If i is a vertex controlled by Min, then for any edge (i, j) ∈ E we put

Zij = inf{x ∈ R : (x, r−ij) ∈ U and the MPG with weights (x, r−ij) has a pair
of bias-induced policies (σ, τ) ∈ Ξ such that τ(i) 6= j} .

Here, (x, r−ij) is the vector obtained from r by replacing the ijth coordinate with x. We
analogously define the variables Zij for vertices controlled by Max, changing inf to sup. Since
the variable Zij does not depend on rij , we get the estimate

I Lemma 5. For any α > 0, P(∃ij, |rij − Zij | 6 α) 6 2αmφ.

Furthermore, the variables Zij are related to the ergodic equation in the following way.

I Lemma 6. Suppose that r ∈ Pσ,τ for some (σ, τ) ∈ Ξ. Then, for every (i, j) ∈ E that is
not used in (σ, τ) we have Zij = λ+ ui − uj.

The two lemmas above improve the conclusion of Proposition 3: not only each maximum
and minimum in the ergodic equation is achieved by a single edge, but with high probability
the difference between the best edge and the second best edge is large. In particular, this
shows that bias-induced policies do not change when the random weights are truncated, and
it gives an estimate of the condition number.

I Theorem 7. Let δ := 1/(4n(2n+ 1)mφ). Then, with probability at least 1− 1/n, the whole
`∞ ball B∞(r, δ) is included in a single polyhedron Pσ,τ .

I Theorem 8. Random mean payoff games are well conditioned with high probability. More
formally, for every ε > 0 we have P

(
∆ > 8m

ε (φ+
√

2m
ε )
)
6 ε.

To propose an algorithm that exploits the condition number, we use the fact that every
mean-payoff game has a pair of Blackwell-optimal policies, i.e., policies that are optimal for
all discount factors γ close to 1. Such policies are induced by the Blackwell bias, which is
defined as u∗ := limγ→1(λ(γ) − λ)/(1− γ), where λ(γ) is the value of the discounted game
with discount factor γ. We then show that, for well-conditioned games, the Blackwell-optimal
policies can be already found when the discount factor is low.

I Theorem 9. Suppose that r ∈ Pσ,τ and fix 1 > γ > 1− 1
6n2∆(r) . Then, (σ, τ) is the unique

pair of optimal policies in the discounted game with discount factor γ.

Combining Theorems 8 and 9 with the results of [78, 47] showing that policy iteration
has polynomial complexity for discount factor γ < 1− 1

poly(n) , we get our final result.11

I Theorem 10. The greedy-all switches policy iteration rule combined with increasing
discount factor solves random instances of deterministic discounted or mean-payoff games in
polynomial smoothed complexity.

In the theorem above, “polynomial smoothed complexity” is defined as in [15, 71]: there
exists a polynomial poly(x1, x2, x3, x4) such that for all ε ∈ ]0, 1] the probability that the
number of iterations of our algorithm exceeds poly(n,m, φ, 1

ε ) is at most ε.

11To wit: since the pair of optimal policies is unique, we can find them using an algorithm for discount
factor γ < 1 − 1

poly(n,φ) , and the same policies will be optimal for any higher γ and also for the
mean-payoff game.
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3 Conclusion and future work

We gave an analysis of two-player discounted and mean-payoff games, that led to a condition
number, and a policy-iteration algorithm which is efficient on well-conditioned inputs. We
showed that random inputs are well-conditioned with high probability. A few remarks are in
order.

1. Our techniques work for two-player games played on ergodic graphs. In non-ergodic
graphs, the value λi is not necessarily the same at each vertex i. A folklore reduction,
appearing for example in [22], shows that computing the value vector of a non-ergodic game
reduces to computing the value of an ergodic game. So one can ask if our algorithms can be
used on non-ergodic games. The answer is not obvious. The reduction proceeds in rounds,
where in the first round one finds, say, the largest coordinate λi of the value vector, and then
discards the node i (which requires some care) and repeats. Now, if one takes a non-ergodic
game ~G with sufficiently random payoffs, and applies this reduction, the resulting game is
sufficiently random at the first round, but it is not clear what happens in the succeeding
rounds. So, as far as we can tell, the question remains open: Do deterministic two-player
discounted and mean-payoff games have polynomial smoothed complexity, when played on
non-ergodic graphs? A possible way of answering this question is by doing an analysis of
Blackwell-optimal policies in the non-ergodic case, similar to what we have done here for the
ergodic case.

2. Allamigeon, Gaubert, Katz and Skomra [13] show that a certain value-iteration algorithm
runs efficiently on all ergodic instances with value λ bounded away from zero. They use
maxi ui−mini ui

|λ| as a condition number. Can we use their result to show that value iteration
has polynomial smoothed complexity? I.e., is a sufficiently-random instance well-conditioned
as per their condition number? This was the central question left unanswered in their paper,
and we tried to solve it, or provide a counter-example, but have so far failed to do so.

3. Our policy-iteration rule is not one of the standard rules (Howard, lexicographic, Ran-
domFacet, etc). Do these standard rules also have polynomial smoothed complexity on
deterministic two-player games? How about other “combinatorial” algorithms?

4. Can we extend our results to stochastic two-player games? The counter-example of Christ
and Yannakakis shows that the Howard all-switches rule does not have polynomial smoothed
complexity on stochastic two-player games. This seems to indicate that the stochastic setting
is more delicate. On the other hand, our policy iteration rule is different to Howard’s. So
one could tentatively ask: is there a smoothed counter-example to the Howard rule also in
the deterministic (say, two-player) setting? This would show that our policy-iteration rule
cannot be replaced by the Howard rule.

5. How about other problems in UEOPL? Some of these problems are combinatorial, and
do not seem to be amenable to smoothed analysis. But one can consider, for example, the
P-Matrix Linear Complementarity Problem (P-LCP, see [35, Section 4.3]), and ask: does it
have polynomial smoothed complexity? More broadly speaking, one can make the conjecture
that every problem in UEOPL becomes easy under a suitable notion of perturbation. This
conjecture is broad and imprecise, but it might be an interesting starting point for further
research.
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