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Improving Operational Accuracy of a Mobile Manipulator by Modeling
Geometric and Non-Geometric Parameters

Thanh D. V. Nguyen1,2,∗, Vincent Bonnet1,3, Pierre Fernbach2, Thomas Flayols1, Florent Lamiraux1

Abstract— This paper aims to address two intrinsic phe-
nomena encountered in mobile manipulator robots, but often
neglected, with the objective of improving the overall accuracy
of end-effector pose estimation. Firstly, after performing state-
of-the-art geometric calibration of the arm, we propose two
identifiable mathematical models to account for non-geometric
effects: a model for the mobile base suspension system and a
model of non-linear inaccuracies of joint angles estimates. The
latter is due to backlash and misaligned encoders mounting.
Then, the proposed models were experimentally validated on
the mobile manipulator TIAGo using a stereophotogrammetric
system. Overall, the end-effector pose accuracy was improved
by 60% when compared to the nominal manufacturer model,
with root mean square errors (RMSE) of 5.7mm and 2.7deg
for positional and orientational errors, respectively.

I. INTRODUCTION

The agility and adaptability of mobile base collaborative
robots make them invaluable assets in real-life applications
ranging from manufacturing to healthcare. However, their
relatively light and often inexpensive construction could
compromise their operational accuracy, posing significant
challenges in applications requiring accurate and precise
positioning and manipulation. The inaccurate positioning
prediction issues faced by mobile base collaborative robots
could be caused by various factors. Notably, these include the
absence of proper geometric calibration, where users often
over-rely on the geometric specifications initially provided
without re-calibrating after extended usage [1]. Furthermore,
in many cases, imperfect manufacturing or natural degra-
dation can significantly impact the performance of mobile
manipulators. The lack of accountability for these unmod-
eled phenomena can also contribute to worsened accuracy.
Among the deteriorating behaviors in mobile manipulators,
the most critical ones include the undesired backlash in
mechanical transmission gears, the unknown dynamics of
the base suspension, the joint flexibility, and occasionally
the misaligned mounting of encoders at the joint. It is
essential to address all of these phenomena for achieving an
efficient operational performance with mobile manipulators.
In the existing literature, researchers have offered solutions
aimed at enhancing the operational accuracy of mobile ma-
nipulators, focusing primarily on refining kinematic models
through experimental methods such as hand-eye calibration
[2], fusion of camera measurements with 2D lidar [1], and
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Fig. 1. Overview of the models proposed for improving mobile manipulator
accuracy.

self-calibration using measured contact data with point cloud
registration [3]. However, to the authors’ knowledge, there
has been minimal exploration of other structural issues,
such as those mentioned previously, which could also have
a significant impact on the mobile manipulator accuracy.
Consequently, it is evident that there exists a gap in the
current research pertaining to these aspects.

A robotic system comprises rigid links interconnected by
joints, with a drive motor transferring power through gears.
When there is a clearance between mating gear teeth, back-
lash occurs. While a certain mount of backlash can be crucial
for smooth movement, it can also increase with gear wear,
eventually leading to transmission disruptions and inaccura-
cies in end-effector positioning. In the field of mechanics,
the study of backlash has been thoroughly conducted with
various proposed models as well as experimental verification
methods. For instance, studies by Sakkar et al. [4], which an-
alyzed joint output torque using a torque sensor, and by Stein
et al. [5], which examined output speed using a mounted
tachometer, emphasized the analysis of impact-vibration.
They noted that the contact between gear teeth could disturb
the measured output signal in speed or joint torque, leading
to the inference of backlash detection and estimation. In
robotics, backlash investigation has been limited to some
specific use cases of industrial manipulators. Slamani et al.
[6] proposed a polynomial-based approximation for backlash
estimation at the tool center point, rather than modeling
backlash at each individual joint of an industrial manipulator.
Other studies have modeled and identified backlash as a
contributing factor to the elastic behavior of robot joints,
alongside friction and hysteresis [7]. Additionally, Giovan-
nitti et al. [8] introduced an innovative method for estimating
backlash using only encoders by analyzing the disturbances
caused by stimulated movement. These results were obtained



through experimentation of industrial manipulators where
the amount of backlash is extremely small compared to
that of mobile manipulators. For light weight robots such
as mobile manipulators, not only gear backlash but also
misaligned encoders mounting have unfortunately not been
given proper consideration. Even though, the eccentricity of
a rotary absolute encoder due to the misalignment can lead
to a periodic non-linear measurement error [9] which directly
affecting the reliability of measurements, this phenomenon
has not been considered seriously in calibration process
for robots. Quantifying these errors altogether can certainly
improve the operational accuracy of mobile manipulators.

In most mobile manipulators, suspension systems are
intrinsic components designed to withstand different terrains.
These suspension systems can be either carefully designed
with springs and dampers or presented in the form of
compliant elements such as tires. The identification of sus-
pension models in robotics remains largely unexplored. No-
table exceptions include Sujan et al. [10], who investigated
suspension dynamics of a rover for rough terrain exploration.
Their approach involved using a joint torque sensor and an
inclinometer to virtually identify a generalized 6D spring-
damper model. However, their results were limited since
the experiment was restrained by observability constraints
of their sensor options. A more comprehensive study would
offer benefits and applicability.

In this context, we propose a procedure to improve op-
erational accuracy by considering both geometric and non-
geometric phenomena in modeling a mobile manipulator
robot. Hypothesized models are first investigated and for-
mulated for the base suspension system, the gear back-
lash and other non-geometric phenomena at the joint level.
Experimentation on the mobile manipulator robot TIAGo
will demonstrate these behaviors as well as validate the
hypothesized models in isolated manner, and in integrated
manner with a geometric calibration process to verify the
overall effectiveness on improving the operational accuracy.
Finally, results from experimentation will be discussed.

II. METHODS

This paper proposes to analyze the contribution to the
end-effector pose accuracy of a mobile manipulator robot
of three causes: the geometric parameters, the effect of the
suspension at the robot base, and backlash, joint flexibility,
and misaligned encoder mounting. As described in Fig. 1
four models were developed:

• Nominal model: The nominal geometric model pro-
vided by the robot manufacturer, i.e. without any cali-
bration performed.

• Model 1: This model includes a suspension model at
the robot base.

• Model 2: This model includes the suspension model at
the robot base and the full-kinematic calibrated model.

• Model 3: This model includes the suspension model
at the robot base, the full-kinematic calibrated model,
and the model of the gear backlash and non-geometric
phenomena.

The base of the TIAGo robot features six wheels: two
driving wheels and four supporting caster wheels, as depicted
in Fig. 3.a. First, let us denote the following frames to
formulate our problem: the world frame as F0, the frame
attached to the robot as Fr, where F0 and Fr are identically
located at the base link of the robot in its resting state,
as illustrated in Fig. 3.b, the wheel frame Fwi with i =
{1, ..., 6} for each of six wheels. In addition, we also define
the measurement frames as following: the reference frame of
measurement system Fm, the measurement frame attached
to the robot base Fb, the measurement frame attached to the
robot shoulder Fs, and the measurement frame attached to
the robot gripper Fg , as illustrated in Fig. 2.

Fig. 2. Frames definition and experimental setup.

A. Suspension Model Identification

Fig. 3. Illustration of (a) the caster and driving wheels inducing flexibilities
at the base of the robot, showing displacement of the base due to the
suspension in the nominal robot configuration (b) and when the arm is
fully extended on the left side (c).

In this section, we model each wheel as a simple spring-
damper and establish the resulting relation between the
motion of the base and the wrench applied by the ground
on the robot. We assume that the driving wheels are blocked
either by some brakes or by a static motor control. When
the robot performs motion with the arm or is subjected to
an external wrench, the suspension is excited and the base
slightly moves with respect to the fixed reference frame as



illustrated in Fig.3.c. Then we denote the displacement of
frame Fr with respect to F0 by a position vector t ∈ R3

and a rotation matrix R ∈ SO(3). We denote by θ ∈ R3

the vector satisfying R = exp([θ]×), where [θ]× is the
skew-symmetric matrix corresponding to the vector product
by θ. As the displacement is of small magnitude, we may
approximate R as follows: R ≈ I+ [θ]×.

For each wheel frame Fwi
presented in Fig.3.a, we denote

by ri the constant pose of the wheel frame origin expressed
in Fr. As Fr is displaced by the excitation, the wheel frame
Fwi

also undergoes displacement. This local displacement,
expressed in the fixed frame F0, can be calculated as:

∆ri ≜ Rri + t− ri ≈ t+ [θ]×ri = t− [ri]×θ (1)

Consider modeling each wheel as a suspension system
consisting of a linear spring-damper and a torsional spring-
damper. The local displacement of the wheel can be viewed
as the displacement of the spring-dampers from their equilib-
rium position. The force exerted by the linear spring-damper
has the following form:

0Fi = Kti∆ri +Cti∆ṙi (2)

where Kti = diag(ktix, ktiy, ktiz) is the linear stiffness
matrix, Cti = diag(ctix, ctiy, ctiz) is the linear damp-
ing matrix. Similarly, the moment exerted by the torsional
spring-damper can be calculated as:

0Mi = Kθi
θ +Cθi

θ̇ + ri ×0 Fi (3)

where Kθi
= diag(kθix, kθiy, kθiz) is the torsional

stiffness matrix, Cθi
= diag(cθix, cθiy, cθiz) is the

torsional damping matrix. The estimates of the ground
reaction force and moment applied by the ground to the
robot are calculated by the sum of all forces and moments
due to the excitation in Equation (2), (3) and the nominal
force 0FN = {FNx, FNy, FNz} and moment 0MN =
{MNx,MNy,MNz} in the resting state. This is achieved
by substituting Equation (1) into Equations (2) and (3):

0F̂ =0 FN +

6∑
i=1

(Kti(t− [ri]×θ) +Cti(ṫ− [ri]×θ̇))

0M̂ =0 MN +

6∑
i=1

(Kθi
θ +Cθi

θ̇ + [ri]×Kti(t− [ri]×θ)

+ [ri]×Cti(ṫ− [ri]×θ̇))

=0 MN +Kθθ +Cθθ̇ +

6∑
i=1

([ri]×Kti(t− [ri]×θ)

+ [ri]×Cti(ṫ− [ri]×θ̇))
(4)

In Equation (4), the parameters Kθi
and Cθi

representing
the torsional spring and damper system at each individual
wheel should be grouped into two sets of 3 generalized

torsional parameters Kθ =
6∑

i=1

Kθi
and Cθ =

6∑
i=1

Cθi
. This

grouping acknowledges that these parameters are not indi-
vidually observable and does not compromise the generality
of the model.

We denote τ s ∈ R6Ns as the concatenated vector repre-
senting measurements of ground reaction force and moments
over Ns number of samples. A corresponding estimation
vector of the same size τ̂ s is calculated by Equation (4). We
now can formulate the identification problem that estimates
a set of parameters P = {Pt1, ...,Pt6,Pθ,

0 FN,0 MN} ∈
R48, where Pti = {kt1x, kt1y, kt1z, ct1x, ct1y, ct1z} are
parameters of the linear spring-damper model at wheel
Wi, and Pθ = {kθx, kθy, kθz, cθx, cθy, cθz} are parameters
representing the generalized torsional spring-damper. The
parameters set P is estimated by minimizing the error
between the measurement vector of the ground reaction force
and moment τ s and its corresponding estimation vector τ̂ s

as:
min
P

∥τ s − τ̂ s(P)∥2

s.t. Pti ≥ 0, i = {1, ..., 6}
Pθ ≥ 0

(5)

B. Backlash and Non-geometric Phenomena In Joint Trans-
mission System

Motor
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Fig. 4. Illustration of (a) the three phases of the backlash phenomenon [8]
and (b) mounting of the drive chain including the motor the shaft and the
relative and absolute encoders.

Fig. 4.a shows a simplified representation of the backlash
phenomenon. It can be divided into 3 phases [8]. In the
first phase, the driving gear and the driven gear teeth are
in contact. In the second phase, the two teeth of two gears
disengage and the driving gear travels across the gap while
losing contact during the travel. In the third phase, the
two teeth reengage, and a new contact is recovered on the
opposite side. The gap, or the clearance between mating
gears, is often referred to as the backlash phenomenon,
which results in lost motion, or a lag between input and
output movement when the direction of movement changes,
and displayed as a non-linear hysteresis loop in input-output
position graph. Ideally, the gap value is often modeled as
a constant value. However, in some exceptional cases, for
example, at the wrist of TIAGo, the two joints arm 6 and
arm 7 are driven by a differential face gear system. This
coupling would make the value of backlash gap at joint



arm 6 and arm 7 would vary depending of the relative
configuration of the face gears.

Moreover, as illustrated in Fig. 4.b, flexible shaft in the
drive chain and imperfect mounting of the absolute encoders
would contribute to the discrepancy between the input joint
position θM and the output joint position θL, which are
measured on the motor side and on the link side, respectively.
Consequently, the observed gap at a joint would actually have
different values depending on the torque τ applied to the joint
and the joint configuration. Thus, it is crucial to model these
behaviors incorporated with the backlash phenomenon.

We propose a model using a combination of sigmoid
function and polynomials to describe these phenomena. The
sigmoid function can represent the hysteresis loop of the
backlash while maintaining the smoothness of the model
[11]. This is of importance for the latter control and for
the convergence of the identification method. The change of
moving direction or the change in the sign of joint velocity
is used as an activation in the sigmoid function subject to
constant gain. Secondly, the polynomial function of joint
position and torque, is used to approximate for the entangled
phenomena including the flexibility of the drive chain and
the misalignment of the encoder, and the effect of using
differential gear. The hypothesized model of the discrepancy
between the input and output positions at the joint k is
presented as:

∆θ̂LMk
= Cr(θMk

, τk)S(θ̇Mk
) + Cl(θMk

, τk)(1− S(θ̇Mk
))

(6)

where

• polynomial Cr(θMk
, τk) =

m∑
i=1

n∑
j=1

Akijθ
i
Mk

τ jk

• polynomial Cl(θMk
, τk) =

m∑
i=1

n∑
j=1

Bkijθ
i
Mk

τ jk

• Ak, Bk: coefficients of the polynomial functions
• τk: estimated joint torque at joint k
• m,n: orders of the polynomial
• sigmoid function S(θ̇Mk

) = 1
1+e(−ρθ̇Mk

)

• ρ: the gain of sigmoid function.
With Nbl measurements of input and output joint posi-

tions by dual encoders on the motor side and on the link
side of 7 arm joints from joint arm 1 to joint arm 7, the
discrepancy between these two quantities can be calculated
by subtraction and is represented by vector θLM ∈ R7×Nbl .
An identification problem can be formulated to estimate the
constant parameters set {A,B, ρ} in the model Equation (6)
as:

min
A,B,ρ

∥∆θLM −∆θ̂LM(A,B, ρ)∥2

s.t. ρ > 0
(7)

C. Geometric Calibration

The geometric calibration is performed on the kinematic
chain from frame Fb located at the base of the robot to
frame Fg at its gripper, consisting of 8 joints including:
{torso, arm 1, arm 2, arm 3, arm 4, arm 5, arm 6, arm 7},
by that order. Forward kinematics algorithm allows us to

calculate the estimated pose Ŷg ∈ R6 of Fg expressed in
the frame Fb as a function joint configuration q ∈ R8 and a
parameter vector ∆X ∈ R60 consisting of the sub-vector
∆Xi = [∆pxi,∆pyi,∆pzi,∆ϕxi,∆ϕyi,∆ϕzi] represent-
ing the variation of the i− th joint placement, and two other
sub-vectors of 6 parameters describing the transformations
from Fb to the first joint frame of the kinematic chain, and
from its corresponding last joint frame to Fg . By performing
the first-order Taylor expansion, we approximate the linear
relation between the variation vector ∆X and the vector
∆Ŷg ∈ R6Ng representing the resultant change of estimated
poses ∆Ŷg as:

∆Ŷg = Rg∆X (8)

where
• Ng: number of measurements
• Rg ∈ R6Ng×60: observation matrix mapping ∆X to

∆Ŷg

To remove the redundancy in the model, QR decomposi-
tion is applied on the matrix Rg, in which it would remove
and group co-linear columns together forming a full-rank
regressor matrix Rb ∈ R6Ng×nb with its corresponding
vector of grouped parameters ∆Xb ∈ Rnb [12] with nb

as the number of base parameters, expressed in the Equation
(9).

∆Ŷg = Rb∆Xb (9)

The minimal set of identifiable parameters ∆Xb represent-
ing so-called base parameters, can be estimated by minimiz-
ing the squared error between the measured poses vector
Yg and the corresponding estimated poses vector Ŷg, as
presented in the Equation (10).

min
∆Xb

∥Yg − Ŷg(∆Xb)∥2 (10)

In our study, Levenberg-Marquardt (LM) algorithm provided
by numerical library scipy [13] was chosen to solve the
least-squares problems in Equations (5), (7), (10) thanks to
its effectiveness by combining the stability of the gradient
descent method with the fast convergence of the Gauss-
Newton method.

III. EXPERIMENTATION

A. Experimental Setup

Experiments were conducted using a commercial version
of the TIAGo robot, featuring a mobile base with 2 driving
wheels, 4 caster wheels, a vertical-lifting 1-DOF torso, and
a 7-DOF manipulating arm, a gripper. On-board sensors
included relative encoders at each joint’s motor side and
absolute encoders at all joints’ link side, except for the lifting
torso joint.

To obtain accurate external kinematics data, a marker
based stereophotogrammetric system (VICON, Vero v2.2,
120Hz) was used. Clusters of three retro-reflective markers
were located at three locations on the robot to create frames
at the gripper, the base, and the shoulder level. The external
ground reaction wrench was measured below the robot using
a laboratory grade force plate (AMTI OR6, 120Hz) with an



undeformable metallic material plate. Additionally, in order
to create more dynamic excitation, an additional object with
known dimensions and weight was added to the end-effector
(see Fig. 2).

B. Protocol

Fig. 5. 21 optimal exciting postures, generated using FIGAROH [14],
used to calibrate suspension and geometric models.

1) Geometric calibration with optimally exciting postures:
The experimental protocol comprised three distinct phases.
First, a classical geometric calibration was performed using
the calibration toolbox FIGAROH [14] for parameter iden-
tification and optimal exciting posture generation.

As depicted in Fig. 5, 21 optimally exciting postures were
used for a total experimental time of 5 minutes to calibrate
the robot kinematic model. These postures were generated to
maximize the determinant of the information matrix I(q) =
Rb(q)

TRb(q) of the kinematic calibration model, which is
also equivalent to optimizing the optimality criterion O1 [15].
In this first phase, the gripper position was expressed in the
frame Fb created from the base markers. This was done
to isolate the effect of the suspension as the base markers
directly measured the base pose.

For each posture, absolute joint encoder readings and
positional measures of the two marker sets at the base and
the gripper were recorded. Using only the positional data of
gripper marker, 31 geometric parameters have been identi-
fied, including 6 parameters representing transformation from
base marker frame Fb to the robot reference frame F0. The
geometric calibration yielded a RMSE of 3.3mm.

2) Identification of suspension system subjected to exci-
tation motion: In the second phase, the robot was placed
in the middle of the rigid force plate. During this phase, the
robot maintained the lifting torso joint static while subjecting
the arm to various exciting sinusoidal motions varied in:
frequency between 0.2 - 1Hz, amplitude of 0.7rad, and direc-
tions exploring vertical, horizontal, and diagonal planes with
respect to the floor. Both the resultant force and moment data

TABLE I
CALIBRATED GEOMETRIC PARAMETERS

x[m] y[m] z[m] roll[rad] pitch[rad]yaw[rad]

base 0.0191 -0.2005 -0.3147 0.0050 0.0103 0.0529
arm 1 0 0 0 -0.0010 -0.0030 0
arm 2 0.0020 0 0 -0.0003 0 0.0005
arm 3 -0.0027 0 0.0033 0.0005 0 -0.0120
arm 4 0 -0.0021 -0.0061 0 -0.0167 -0.0028
arm 5 0 -0.0109 0.0017 0 0.0470 0.01486
arm 6 0 -0.0333 0.0107 0 -0.0046 -0.0713
arm 7 0 0 0.0381 0 0 0
gripper -0.0264 -0.0002 -0.1517 ” ” ”

and the tracking and measurement of two marker clusters
at the shoulder and the base were recorded simultaneously
at 120 Hz by the software system NEXUS v2.12 [16].
Along with that, joint angles measured by onboard relative
encoders were also recorded via a ROS node at 100 Hz, then
synchronized with the resampled external data.

Utilizing previous results from the geometric calibration
process, the transformation between the marker measure-
ment frame Fb and the robot reference frame Fr could
be established. Using the software Pinocchio [17], which
implemented the rules of Lie theory and group in rigid-body
dynamic modeling, allowed us to calculate the floating base
pose and its kinematic derivatives, then to transform them in
the same frame with dynamic measures by the force plate,
and vice versa.

3) Backlash and discrepancy of encoder measures profil-
ing: Finally, in the third phase, repetitive position-controlled
motions were applied to all arm joints to discern the backlash
model. These motions were designed to encompass a wide
range of joint configurations and torque levels. For each
run at a specific joint velocity (from 0.1rad/s to 1rad/s,
each joint was move incrementally by a step of 0.2rad
from upper joint angle limit to lower joint angle limit and
reverse the whole range. This process was repeated from all
arm joints from arm 1 to arm 7. By varying the frequency
and amplitude of the motions, we ensured the excitation
of different dynamic regimes, crucial for a comprehensive
analysis of backlash and related phenomena.

Both readings from relative encoder on motor side and
absolute encoder on driven link side were collected at 100
Hz by a ROS node for approximately 5 minutes per each
joint. Kinematic derivatives were computed by center finite
differentiation after a layer of low-pass filtering applied.
Since there is no onboard torque sensor, joint torques were
estimated using inverse dynamics algorithm. The parameters
of the polynomial functions in Equation (6) can be identified
by performing non-linear regression techniques.

IV. RESULTS AND DISCUSSION

A. Suspension Model Identification

The identified stiffness and damping parameters of the sus-
pension model are presented table II. As not all parameters
of retained multi-wheel suspension model can be observed,
some parameters being linearly dependent upon one another,
we set unobservable parameters to zero. Since there is a lack



Fig. 6. Representative comparison of measured and estimated ground
reaction forces and moments when using the identified suspension model.

of true nominal values for the suspension parameters, the
evaluation of the identified model should be based on its
prediction performance on a validation dataset.

TABLE II
IDENTIFIED PARAMETERS OF THE SPRING-DAMPER SUSPENSION MODEL

Ktxi

[N
m
]

Ktyi

[N
m
]

Ktzi

[N
m
]

Ctxi

[N.s
m

]

Ctyi

[N.s
m

]

Ctzi

[N.s
m

]

WL 0.0 11498.47 323108.31 0.0 814.51 10722.72
WR 0.0 992.0 82919.08 0.0 698.77 5220.64
WBL 6538.43 1.37 0.0 384.64 1381.43 0.0
WBR 2136.63 4270.54 0.0 438.14 59.38 0.0
WFL 6717.31 0.0 0.0 3730.7 0.0 26796.87
WFR 4059.41 0.0 261792.46 526.1 0.0 11435.88

Kθx

[Nm
rad

]

Kθy

[Nm
rad

]

Kθx

[Nm
rad

]

Cθx

[Nm.s
rad

]

Cθy

[Nm.s
rad

]

Cθz

[Nm.s
rad

]

0.0 19252.57 127726.41 0.0 4949.37 10798.45
FNx

[N ]
FNy

[N ]
FNz

[N ]
MNx

[Nm]
MNy

[Nm]
MNz

[Nm]

2.99 2.61 764.66 6.33 26.29 2.92

Fig. 6 shows a comparison of the predicted values of
ground reaction forces and moments using the identified sus-
pension model against the corresponding measured values on
a separate validation dataset. In this figure, the corresponding
RMSE were of 1.6N and 1.0N.m for forces and moments,
respectively. The authors would argue that the high frequency
fluctuations in Fy, Fz,Mz are not well estimated due to the
small variation in the estimated transformation between the
floating base F0 and Fb and/or to the fact that the robot
inertial parameters were not properly identified. However, the
proposed model appears sufficient to estimate any fluctuation
with influential magnitudes to the robot.

B. Backlash And Non-geometric Phenomena Estimation

As mentioned previously in II-B, the gap between two
gears would theoretically remain constant, but due to the
flexibility of the transmission shaft and/or due to the mis-
alignment of the encoder placements as well as the coupling
in certain pairs of joints, the value of the backlash gap varies
depending on the joint configuration and on the applied
joint torque. In Fig. 7, the offsets between absolute encoder
measures and relative encoder measures for each joint from
arm 1 to arm 7 are represented in blue dots. The prediction
of the backlash using the identified model are represented
using red dots. The actual backlash values are observable on
the z axis of these figures and in Fig.7.h.

The backlash detection and estimation are considered to
be appropriate when the red dots are well-aligned with the
blue dots in the 3D plots. As it can be seen from the Fig.
7, the erupt change in straight vertical line indicated the
occurrence of the backlash, and the proposed model is able to
track this behavior effectively using the approximation with
sigmoid functions. The rest of the data can be described as
two portions, upper and lower 3-D profiles. Each of these
portion is expressed by a 5-th degree multivariate polynomial
function of joint angles and joint torques. The coefficients of
polynomials were obtained by solving the regression problem
with the parametric model described by (6). The order of
the polynomials was determined based on the benchmark of
statistical performance criteria in a regression problem such
as R-Squared value and RMS error, along with the required
computation resource of the regression problem. Let us take
the regression result on data of arm 6 as an demonstrative
example, as shown in Fig. 8, the 5-th orders [5, 5] on both
polynomials fell into a sweet spot where it offered an R-
Squared value of 0.9 and an RMSE of 0.003rad, while the
computation would only take up to a few minutes, comparing
to almost half of an hour of higher orders for similar criteria
values.

The model performed well on most of the joints, except
for the arm 7 joint. The jerky changes were indeed related
to backlash behavior, but also its joint torque values could
not be very well estimated due to the joint coupling, leading
to inaccurate estimation of backlash gap. However, due to the
fact that joint arm 7 is located at the end of the arm, the
estimation error of backlash in joint arm 7 would contribute
much less in magnitude compare to preceding joints.

C. Operational Positioning Accuracy Improvement

Lastly, after performing geometric calibration and com-
plementary framework identifying the suspension model of
the base and the non-geometric phenomena at the joints,
the improvement of absolute positioning accuracy can now
be assessed. Fig. 9 presents the distribution of the absolute
errors between predicted values and measured values of
marker position at the gripper expressed in the reference
frame Fm of the motion capture system using different
models mentioned in Fig. 1.

During the validation experiment, a periodic sinusoidal
motion was executed on the arm joints. Table III describes
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Fig. 7. Backlash estimation and offsets between two encoder values.

Fig. 8. Comparison of RMS error and R-Squared value between backlash
models with increasing degree of polynomial.

the 4 models used for comparison, and their corresponding
RMSE as well as mean absolute error (MAE) on a validation
dataset composed of 500 samples. Table III shows that the
RMSE and MAE values are relatively close. It indicates that
there is no particular outlier in our validation dataset since
RMSE is often much more sensitive to outlier errors than
MAE.

Clearly, it can be observed that the accuracy improved
each time when an identified model is added. Firstly, the

Fig. 9. Absolute errors between measured values and predicted values of
the gripper marker position expressed in motion capture frame.

errors on the manufacturer’s nominal model are relatively
large with an average RMSE of 13.3mm for estimating
the end-effector position. The added suspension model im-
proves this result by diminishing the RMSE by 24% to
10.1mm. The key in drastically improving the accuracy was
to use the geometrically calibrated model, that used the
joint backlash/flexibility model as input data. In this case



TABLE III
AVERAGE RMSE AND MAE OF THE END-EFFECTOR POSITIONAL

ESTIMATION ACCURACY

positional
RMSE [m]

positional
MAE [m]

orientational
RMSE [deg]

orientational
MAE [deg]

Nominal model 0.0133 0.0111 8.57 7.89
Identified model 1 0.0101 0.0078 7.77 7.58
Identified model 2 0.0062 0.0049 4.92 3.81
Identified model 3 0.0057 0.0041 2.71 2.58

the RMSE was reduced by 57% to a RMSE of 5.7mm.
In terms of orientation estimates, the RMSE reduced from
8.57deg to 2.71deg. Especially, a decrease of 44% in RMSE
between model 2 and model 3, of which the non-geometric
phenomena were identified in the latter, has clearly shown the
significant impact of the large discrepancy at joint 5 due to
non-geometric phenomena, even though it reduced only 8%
in positional RMSE. This non-proportional error reduction
can be explained by the fact that joint 5 is located closely
to the end-effector.

V. CONCLUSION

In this paper, we have proposed three different models
to improve mobile manipulator accuracy: a state-of-the-art
calibrated kinematic model, a suspension of the robot’s
base model and non-linear joint model to reduce backlash,
flexibility and encoder sensor misaligned mounting effects.
The merit of this paper is to push further the use of a purely
model based approach. It allows fast calculation for online
trajectory generation and requiring little identification data,
at contrary to purely data based approach. We demonstrated
experimentally the improved accuracy of the absolute end-
effector pose estimation of the mobile manipulator TIAGo
the position and orientation error were reduced from 13.3mm
to 5.7mm and 8.57deg to 2.71deg, respectively. On average,
it is a reduction of 60% of the end-effector pose estimation
error. Improvements given by the proposed approach could
be crucial for projects where heavy objects or a large external
wrench are to be used with a mobile manipulator robot while
requiring high task accuracy. Indeed, these will emphasize
the phenomenon observed in this paper. Nevertheless, even
if the proposed models go beyond the literature, one can
still observe some residual errors. It is likely that we reach
the limit of the model-based approach with models that
can be evaluated in real-time. Thus, to further compensate
these errors future works will aim to combine a data driven
approach together with the proposed model to cancel out the
remaining residue. Indeed, it has been shown that using data
driven approach to learn only over the remaining residue,
observed after classical calibration, has the merit to reduce
the number of samples required for learning [18] and reduces
the size of the neural network.
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