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Petri nets : introduction

Caracterisation of a class of discrete event dynamic systems

Invented by Carl Adam Petri (1962)

Bipartite Graph

Two types of elements : places and transitions

Well-suited to model distributed systems
▶ Concurrency
▶ Synchronisation
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Elementary nets

A net is a tuple N = (P,T ,F ) :

1. P is the set of places ;

2. T is the set of transitions ; (P ∩ T = ∅)

3. F ⊆ (P × T ) ∪ (T × P) is a set of arcs.

t0

p0

p1
t1

p2

t2

t3

p3

t4

p4

p5

t5

P = {p0, . . . , p5}

T = {t0, . . . , t5}

F = {(t0, p0), (p0, t1),
(p1, t1), . . . }
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Marking of a net : tokens

Places model resources, tokens model their current use.
A marking M is a function P → N that states how many tokens
currently use the resources of the system.

t0

p0

p1
t1

p2

t2

t3

p3

t4

p4

p5

t5

The current marking M of the
net is :

M(p0) = 1

M(p1) = 1

M(p2) = 0

M(p3) = 0

M(p4) = 3

M(p5) = 0
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Petri nets

A (marked) Petri net is a tuple (P,T ,F ,W ,M0) where :

1. (P,T ,F ) is a net,

2. M0 is a initial marking,

3. W is a weight function : W : F → N.

t0

p0

p1
t1

p2

t2

t3

p3

t4

p4

p5

t5

2

2
1

1

1
1

1

1
1 1

2

1

Weights :

W (t0 → p0) = 2

W (p0 → t1) = 2

W (p1 → t1) = 1

W (t1 → p2) = 1

...

A (marked) net is a Petri net with all the weights set to 1.
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Enabled Transitions

A Petri net evolves by firing transitions that update the current
marking. A transition can be fired only if it is enabled.

Preset of transition t :

pre(t) = •t = {p ∈ P : W (p, t) > 0}

Postset of transition t :

post(t) = t• = {p ∈ P : W (t, p) > 0}

Transition t is enabled in the marking M iff :

∀p ∈ pre(t),M(p) ≥ W (p, t)

“There are enough tokens in the preset to feed the incoming arcs
of the transition”
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Enabled Transitions : examples

Case 1
p0

p1

t1

p22 1

1

Case 2
p0

p1

t1

p22 1

1

Case 3

t0

p0
2

case 1 : t1 is enabled
(M(p0) = 3 > W (p0, t1) =
2)

case 2 : t1 is not enabled
(M(p0) = 1 < W (p0, t1) =
2)

case 3 : t0 is enabled (empty
preset, independent from
any marking M)
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Transition firing

Let t be a transition that is enabled in the current marking M.
Firing t means updating the current marking M to a new marking
M ′, only the marking of places in the pre/post of t are updated.

M
t−→ M ′

The marking of any place p not involved in pre/post of t
remains unchanged :

∀p ∈ P \ (pre(t) ∪ post(p)),M ′(p) = M(p)

Empty the places in the preset and feed the ones in postset :

∀p ∈ pre(t) ∪ post(p),M ′(p) = M(p)−W (p, t) +W (t, p)
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Transition firing : examples

Case 1
p0

p1

t1

p22 1

1

Case 2
p0

p1

t6

p2

p4

2 1

31

Case 3

t8

p0
2

1

Case 1
p0

p1

t1

p22 1

1

Case 2
p0

p1

t6

p2

p4

2 1

31

Case 3

t8

p0
2

1

IX International Summer School on Fault Diagnosis of Complex Systems (Girona, July 2022)



Let us see the model of a system as a Petri
net

About the system : a set of conveyors moving boxes

Two levels, two conveyors per level

A lift between the two levels.

Boxes from level 1 are dispatched on the conveyors of level 0
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Marking graph

A marking M is reachable from an initial marking M0 of a Petri
net P if there exists a sequence of transition fires :

M0
t0−→ M1

t1−→ . . .
tn−→ Mn = M

The set of reachable markings M ∈ R(P,M0) can be explored
through the marking graph :
Marking graph G = (Q, T , E , q0)

Q = R(P,M0) set of reachable markings

T is the set of transitions M
t−→ M ′ where M ∈ R(P,M0)

and t is fired in M to lead in marking M ′.

E set of transitions of the Petri net N.

q0 = M0 the initial marking.
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Petri net → Marking Graph example

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

t2 t8

t9

t10

t11 t3 t4

t5 t6
t12

t13

t7

In this example, all arcs have a weight = 1.
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Petri net → Marking Graph example

Petri net extract : 1 enabled transition

p1

p2

p8

t1

Computation of the Marking graph : step 1

M0 = (1 0 0 0 0 0 0 0 0 0 0)T = {p1}start
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Petri net → Marking Graph example

Petri net extract : fire of t1

p1

p2

p8

t1

Computation of the Marking graph : step 2

M0 = {p1}start M1 = {p2, p8}
t1
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Petri net → Marking Graph example

Petri net extract : now t2 and t5 are enabled

p1

p2

p8

p3

p9t1

t2

t5

Computation of the Marking graph : step 2

M0 = {p1}start M1 = {p2, p8}
t1
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Petri net → Marking Graph example

Petri net extract : fire t2, t5 still enabled

p1

p2

p8

p3

p9t1

t2

t5

Computation of the Marking graph : step 3

M0 = {p1}start M1 = {p2, p8} M2 = {p3, p8}
t1 t2

IX International Summer School on Fault Diagnosis of Complex Systems (Girona, July 2022)



Petri net → Marking Graph example

Petri net extract : t2 fired, fire t5

p1

p2

p8

p3

p9t1

t2

t5

Computation of the Marking graph : step 4

M0 = {p1}start M1 = {p2, p8} M2 = {p3, p8} M3 = {p3, p9}
t1 t2 t5
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Petri net → Marking Graph example

Petri net extract : fire t5 then fire t2 from M1

p1

p2

p8

p3

p9t1

t2

t5

Computation of the Marking graph : steps 5 and 6

M0 = {p1}start M1 = {p2, p8} M2 = {p3, p8} M3 = {p3, p9}

M4 = {p2, p9}

t1 t2 t5

t5 t2

Transitions t2 and t5 are concurrent : interleaving
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Petri net → Marking Graph : finally

In this example, the marking graph has 25 states and 59
transitions.

Component name = 
State Number= 25

Transition Number= 59

p1 p2p8t1

p3p8

t2

p2p9

t5

p3p9

t5

p4p8

t8

t6

t2
p10p2t12

t6

p10p3
t12

p4p9
t8

t5

p6p8t11

p5p8

t9

t2

p11p2

p11p3

p10p4t8

t6

t12

p6p9

t11

p5p9

t9

t5

p7p8

t3

t10

t5

t7

t2

t7

p11p4

t8

p10p6

t11

p10p5

t9

t6

t12 p7p9

t3

t10t6

t12

t4

t5
t7

p11p6
t11

p11p5

t9

p10p7
t3

t10

t6
t4

t12

t7
p11p7

t3

t7
t10

t4
t7

t4

Remarks :

1. The number of states (reachable markings) in G is
exponential to the number of places in the bounded worst case

2. The number of states in G might be unbounded
3. Classes of Bounded/Unbounded PN
4. Classes of k-Bounded Petri nets. (safe = 1-bounded)
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Diagnosis/Diagnosability of bounded PNs

Finite marking graph G is a finite automaton

Faults → faulty transitions : a subset of Petri Net transitions

Observables → observable transitions : a subset of Petri Net
transitions

It follows that : any fault diagnosis/diagnosability method
on automaton can be used on the marking graph of any
bounded Petri Net. (see lecture from this morning)

Belief states, Sampath’s diagnoser, Twin Plants...
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Extensions to Labeled Petri Nets

A Labeled Petri net is a Petri net with a labelling function ℓ of
the transitions.

ℓ : T → E

A transition is associated with an event label. An event label may
be associated with several transitions.

t0

a p0

p1
t1

b p2

t2

d

t3

a p3

t4

c

2

2
1

1

1
1

1

1
1 1

Labels

ℓ(t0) = a = ℓ(t3)

ℓ(t1) = b, ℓ(t2) = b, ℓ(t4) = c

Generated langage of a LPN :
L ⊆ E∗

ex : σ = ℓ(t0)ℓ(t1)ℓ(t0)ℓ(t2) =
abad ∈ L
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Fault diagnosis in Petri nets : a
model-checking approach
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Diagnosis LPN model : an example

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d
a,b, c,d observable labels

f1, f2 faults
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A diagnosis problem in LPN

Consider a diagnosis LPN model Θ.

Consider one fault f labeling a set of faulty unobservable
transitions Tf .

Consider a sequence of observations σ produced by Θ.

Has f definitely occurred or not ?.

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d
a,b, c,d observable labels

f1, f2 faults

Example :

Fault f1 on transitions
Tf = {t11}
Observations : σ = abbc

Has f1 occurred if abbc is
observed ?

What about if σ = abbcc ?
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A model-checking method

Model-checking problem :

1. Given a transition system and a property Φ
2. Checking whether property Φ holds

• If yes, the model-checker will say yes.
• If no, the model-checker will provide a behaviour of the

system that does not respect Φ. (counter-example)

Translate a diagnosis LPN problem into a model-checking
problem

Let the model-checker do the computational job.
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Synthesis of the model checking problem (1)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d
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Synthesis of the model checking problem :
place KO (1)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d

KO

As soon as a token is in KO, fault f1 has occurred

Non intrusive modification
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Synthesis of the model checking problem :
adding observations (2)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBSto1

a

to2

b

to3

b

to4

c
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Synthesis of the model checking problem :
transition fusion for event a (3)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBSto2

b

to3

b

to4

c

Transition fusion :
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Synthesis of the model checking problem :
transition fusion for 1st event b (4)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

(t2, to2)

b

t8

e1 t9

e2t10

e3

t11

f1

(t3, to2)

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBSto3

b

to4

c

Transition fusion :
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Synthesis of the model checking problem :
transition fusion for 2nd event b (5)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

(t2, to2)

b
(t2, to3)

b

t8

e1 t9

e2t10

e3

t11

f1

(t3, to2)

b
(t3, to3)

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBSto4

c

Transition fusion :
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Synthesis of the model checking problem :
transition fusion for event c (6)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

(t2, to2)

b
(t2, to3)

b

t8

e1 t9

e2t10

e3

t11

f1

(t3, to2)

b
(t3, to3)

b

(t4, to4)

c

(t5, to4)

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBS

Transition fusion :
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Synthesis of the model checking problem :
place NOMOREOBS (7)

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

(t2, to2)

b
(t2, to3)

b

t8

e1 t9

e2t10

e3

t11

f1

(t3, to2)

b
(t3, to3)

b

(t4, to4)

c

(t5, to4)

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBS

As soon as a token is in NOMOREOBS,

the current trace is not consistent with the observations abbc

NOMOREOBS
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Model checking problem : final model to check

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

(t1, to1)

a

(t2, to2)

b
(t2, to3)

b

t8

e1 t9

e2t10

e3

t11

f1

(t3, to2)

b
(t3, to3)

b

(t4, to4)

c

(t5, to4)

c

t6

d

t12f2

t13

e4

t7

d

KO

o1 o2 o3 o4 OBS

NOMOREOBS

IX International Summer School on Fault Diagnosis of Complex Systems (Girona, July 2022)



Summary

By construction of the previous model :

KO : as soon as there is a token, the trace is faulty :

KO ≥ 1

OBS : as soon as there is a token, the trace produced the
observation abbc :

OBS = 1

NOMOREOBS : as long as there is no token, the trace does
not produce more observation than abbc

NOMOREOBS = 0
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Properties to check on the model

Property FAULTY : is every trace consistent with abbc a
faulty trace ? Formally in LTL (linear temporal logic) :

□[(OBS = 1 ∧ NOMOREOBS = 0) → (KO ≥ 1)]

If the model-checker answers YES, we are DONE : f1 has definitely
occured. If NOT, we check a second property :

Property HEALTHY : is every trace consistent with abbc a
healthy trace ?

□[(OBS = 1 ∧ NOMOREOBS = 0) → (KO = 0)]

If the model-checker answers YES, we are DONE : f1 has definitely
NOT occured. If NOT, we are DONE : there is an ambiguity.
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Solutions

For this example : σ = abbc

FAULTY is false

HEALTHY is false

the occurence of f1 is ambiguous

For another example : σ = abbcc

FAULTY is true

the occurence of f1 is certain
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Summary of the method

Translation of a diagnosis problem into a couple of model
checking problems

The translation is not complex (quadratic manipulations on
LPN, transition fusions)

No complex ad’hoc search algorithms

No computation of belief states, just about the occurrence of
a fault

The complexity is in the model-checking phase :
▶ Very efficient tools (ex : model-checker TINA (LAAS))
▶ Perform symbolic encodings, partial-order reductions,

symmetry
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Diagnosability : a model-checking problem

Diagnosability checking is a model-checking problem

Used for diagnosability of automaton and LPN

For LPN : pretty similar to the previous method

1. Consider a LPN Θ and add the KO place.
2. Duplicate it : Θ′ and KO ′

3. Transition fusions of the observable transition Θ and Θ′ :
twin-plant

4. Property to check : is there a critical pair ? Looks like this :

□[(KO ≥ 1) → ♢(KO ′ ≥ 1 ∨ deadlock)]

Answer YES : Diagnosable
Answer NO : the given counter-example is a critical pair
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Diagnoser based on a basis reachable graph
(BRG)
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Motivation

Always the same issue : combinatorial state explosion

How to design a diagnoser that does not require the
computation of the marking graph

Definition of an abstraction : Basis Reachable Graph

BRG : Finite-state machine that store minimal necessary
explanations

Assumption : no unobservable transition cycles in the
underlying LPN.

Based on the notion of firing vectors.
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Incidence matrix

Transition fire, remainder :

∀p ∈ pre(t) ∪ post(p),M ′(p) = M(p)−W (p, t) +W (t, p)

and M ′(p) = M(p) otherwise (i.e. when W (p, t) = W (t, p) = 0)

Factorization as an incidence matrix C :

C =


W (t1, p1)−W (p1, t1) · · · W (tn, p1)−W (p1, tn)
W (t1, p2)−W (p2, t1) · · · W (tn, p2)−W (p1, tn)

...
...

W (t1, pm)−W (pm, t1) · · · W (tn, pm)−W (pm, tn)


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Incidence matrix : example

p1

p2

p3

t1

t2

2 1

1

1
1

2

C =

0− 2 2− 0
0− 1 1− 0
1− 0 0− 1

 =

−2 2
−1 1
1 −1


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Incidence matrix : reachable marking

p1

p2

p3

t1

t2

2 1

1

1
1

2

p1

p2

p3

t1

t2

2 1

1

1
1

2

M1 = M0+C

(
1
0

)
=

2
1
0

+

−2 2
−1 1
1 −1

(
1
0

)
=

2
1
0

+

−2
−1
1

 =

0
0
1


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Incidence matrix : reachable marking

p1

p2

p3

t1

t2

2 1

1

1
1

2

p1

p2

p3

t1

t2

2 1

1

1
1

2

M2 = M1+C

(
0
1

)
=

0
0
1

+

−2 2
−1 1
1 −1

(
0
1

)
=

0
0
1

+

 2
1
−1

 =

2
1
0


M2 = M0.
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Incidence matrix : firing vectors (Parikh)

Remark :

M2 = M1 + C

(
0
1

)
= M0 + C

(
1
0

)
+ C

(
0
1

)
= M0 + C

(
1
1

)
In this example, generally :

M0 = M0 + C

(
k
k

)
M1 = M0 + C

(
k + 1
k

)

Vectors

(
0
1

)
,

(
1
0

)
,

(
k
k

)
,

(
k + 1
k

)
are firing vectors (kind of

Parikh vectors) : number of transition fires of every ti .
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Possibly reachable markings

Let M be a marking, if M is reachable from M0 then there exists a

firing vector X =

x1
...
xn

, xi ≥ 0 such that :

M = M0 + CX

Necessary but not sufficient condition !

If a marking M is such that M = M0 + CX, then M is a possibly
reachable marking but not necessarily reachable.

Now, here is the trick : if the Petri net is not cyclic, it becomes
a sufficient condition.
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Diagnosis problem : same as before

p1

p2 p3 p4

p5

p6 p7

p8

p9

p10 p11

t1

a t2

b

t8

e1 t9

e2t10

e3

t11

f1

t3

b

t4

c

t5

c

t6

d

t12f2

t13

e4

t7

d
a,b, c,d observable labels

f1, f2 faults
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Computation of the Basis Reachable Graph :
step (1)

M0,

(
0
0

)
start

Initial marking M0 = {p1}

Firing vector X0 =

(
0
0

)
about the feasible faulty

trajectories from M0 :
1. Compute any marking M and firing vector X from M0 such

that
M = M0 + CuX,X(f1) > 0,X(f2) > 0,

Cu incidence matrix restricted to unobservable transitions of
the model. M is reachable due to acyclicity

2. If for a computed X, the number of occurences of fi is greater
than 0 then X0(fi ) = 1 otherwise X0(fi ) = 0

3. In this case, X0 =

(
0
0

)
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Computation of the Basis Reachable Graph :
step (2)

M0,

(
0
0

)
start M1,

(
0
0

)
a, 0

a, 0 = a,E0
min = [0, 0, 0, 0, 0, 0]T

a first observable that can fired after M0

M1 basis reachable marking from M0

E0
min is the minimal explanation (firing vector)
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Computation of the Basis Reachable Graph :
basis reachable marking

M0,

(
0
0

)
start M1,

(
0
0

)
a, 0

M1 basis reachable marking from M0

M0
τ1−→ ...

τn−→ M1

with
1. τi , i < n are unobservable (ℓ(τi ) ∈ Eu)
2. ℓ(τn) = a

3.
τ1−→ ...

τn−1−→ is minimal
4. No subsequence of

τ1−→ ...
τn−1−→ leads to the observation of

a and reaches M1

5. In other words,
τ1−→ ...

τn−1−→ is necessary to reach M1 by
transition τn
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Computation of the Basis Reachable Graph :
minimal explanation

M0,

(
0
0

)
start M1,

(
0
0

)
a, 0

M1 basis reachable marking from M0

M0
τ1−→ ...M1

′ τn−→ M1

▶ τ1−→ ...
τn−1−→ is minimal

▶ E0
min is the firing vector of

τ1−→ ...
τn−1−→ called the minimal

explanation :

M1
′ = M0 + CuE

0
min

▶ E0
min minimal number of occurrences per unobservable

transitions between M0 and M1.
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Computation of the Basis Reachable Graph :
minimal explanation

M3,

(
1
0

)
M5,

(
0
0

)b, E3
min

M5 basis reachable marking from M3

M3 = {p3p8}
M5 = {p7p8}
E3
min is the firing vector :

[1t8 0t9 0t10 1t11 0t12 0t13 ]
T

Faulty transition : t11 (f1) necessarily occurs as it is in the
minimal explanation between M3 and M5

IX International Summer School on Fault Diagnosis of Complex Systems (Girona, July 2022)



Basis Reachable Graph

M0,

(
0
0

)
start

M1,

(
0
0

)

M2,

(
0
1

)

M3,

(
1
0

)

M4,

(
1
1

)

M6,

(
0
1

)

M5,

(
0
0

)

Firing vectors

e1 fires f2 once

e2 fires no faults

e3 fires f1 once

a, 0

c, 0d, e1 → f2 d, 0

b, 0

b, 0

b, e3 → f1

b, e2

c, 0

b, e2

b, e3 → f1

d, e1 → f2 d, 0

c, 0

d, e1 → f2
d, 0

c, 0

c, 0
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Use of the BRG as a diagnoser (1)

Case 1 : we observe nothing ε.

Initial marking in M0 :

(1 0 0 0 0 0 0 0 0 0 0)T = ”p1”

Based on BRG : we stay in state M0,

(
0
0

)
The firing vector

(
0
0

)
asserts that there is no run from the

silent closure after M0 where f1 or f2 has occurred.

Diagnosis : both f1 and f2 have not occurred.
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Use of the BRG as a diagnoser (2)

Case 2 : we observe ab.

From initial marking M0, we reach

M3 = (0 0 1 0 0 0 0 1 0 0 0)T = ”p3p8”

through transitions M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
From

a,0−→ and
b,0−→ : no fault has necessarily occurred

The firing vector

(
1
0

)
asserts that there is a run from the

silent closure after M3 where f1 has occurred.

Diagnosis : f1 may have occurred but not f2.
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Use of the BRG as a diagnoser (3)

Case 3 : we observe abbc.

From BRG : 3 possible sequences

1. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e2−→ M3,

(
1
0

)
c,0−→ M4,

(
1
1

)
2. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e3→f1−→ M5,

(
0
0

)
c,0−→ M5,

(
0
0

)
3. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e3→f1−→ M5,

(
0
0

)
c,0−→ M6,

(
0
1

)

Diagnosis : Both f1 and f2 may have occurred.
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Use of the BRG as a diagnoser (4)

Case 4 : we observe abbcc.

From BRG : 3 possible sequences

1. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e3→f1−→ M5,

(
0
0

)
c,0−→ M5,

(
0
0

)
c,0−→ M5,

(
0
0

)
2. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e3→f1−→ M5,

(
0
0

)
c,0−→ M5,

(
0
0

)
c,0−→ M6,

(
0
1

)
3. M0,

(
0
0

)
a,0−→ M1,

(
0
0

)
b,0−→ M3,

(
1
0

)
b,e3→f1−→ M5,

(
0
0

)
c,0−→ M6,

(
0
1

)
c,0−→ M6,

(
0
1

)

Diagnosis : f1 has certainly occurred and f2 may have
occurred.
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Summary of the BRG approach

Computation of a BRG
▶ smaller than a Marking Graph : (7 < 25 states, 18 < 59

transitions)
▶ a way to solve the combinatorial explosion problem

Abstraction of the problem
▶ Use of partial-order reduction technique (abstraction of

concurrent and unecessary unobservable transitions)
▶ Solving equations M = M0 + CX : efficient solvers
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Diagnosis of discrete event systems : some
extensions
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Extensions to patterns

In this lecture, a fault is the occurrence of a single event.

Can be extended to more complex events : patterns

p1

p2

t1f

3 occurrences of f

p1

p2 p3

t1e1 t2e2

3 occurrences of e1 ∨ e2

p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

3 occurrences of Req1 without Req2, twice

unbalanced behavior
bottom-left conveyors is more often used.
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Diagnosis of timed Discrete-Event Systems

In this lecture, time is represented as a sequence of events
abbccd

There exist a lot of very recent works on diagnosis about
timed Discrete-Event Systems
▶ timed sequence of events 1a3b3b4c3c2d is not

2a4b3b6c3c2d : same sequence but not the same dates
▶ Time is discriminant (delays...)
▶ Some work on time automata (Alur), time Petri Nets, time

event graphs (max,+) algebra
▶ Diagnosability of TDES
▶ ∆-diagnosability
▶ Ad’hoc algorithms, Model-Checking techniques, SMT-solvers

(SAT + arithmetic theory for time constraints)
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Diagnosis of stochastic DES systems

Stochastic DES : markov processes

Diagnosis : look for the most likely trajectories consistent with
the observations

Stochastic diagnosers

Definitions of a set of diagnosability problems on probabilistics
DES. (limits to probability 0)

Stochastic automaton, Stochastic Petri Nets

Use of firing probability laws.
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