

Module T7. Discrete-Event systems

Diagnosis with Petri nets

Yannick Pencolé 7th July 2022 LAAS-CNRS, France

Preliminaries on Petri nets

Petri nets : introduction

- Caracterisation of a class of discrete event dynamic systems
- Invented by Carl Adam Petri (1962)
- Bipartite Graph
- Two types of elements : places and transitions
- Well-suited to model distributed systems
 - Concurrency
 - Synchronisation

Elementary nets

A **net** is a tuple N = (P, T, F):

- 1. *P* is the set of **places**;
- 2. *T* is the set of **transitions**; $(P \cap T = \emptyset)$
- 3. $F \subseteq (P \times T) \cup (T \times P)$ is a set of arcs.

Marking of a net : tokens

Places model resources, **tokens** model their current use. A marking M is a function $P \to \mathbb{N}$ that states how many tokens currently use the resources of the system.

The current marking M of the net is :

- $M(p_0) = 1$
- $\bullet M(p_1) = 1$
- $\bullet M(p_2)=0$
- $\bullet M(p_3)=0$
- $M(p_4) = 3$
- $\bullet M(p_5) = 0$

Petri nets

A (marked) Petri net is a tuple (P, T, F, W, M_0) where :

- 1. (P, T, F) is a net,
- 2. M_0 is a initial marking,
- 3. W is a weight function : $W : F \to \mathbb{N}$.

A (marked) net is a Petri net with all the weights set to 1.

%₽

Enabled Transitions

A Petri net evolves by firing transitions that update the current marking. A transition can be fired only if it is **enabled**.

Preset of transition t :

$$\mathit{pre}(t) = \ ^{ullet}t = \{ p \in P : \mathcal{W}(p,t) > 0 \}$$

Postset of transition t :

$$post(t) = t^{\bullet} = \{p \in P : W(t,p) > 0\}$$

Transition t is **enabled** in the marking M iff :

$$\forall p \in pre(t), M(p) \geq W(p, t)$$

"There are enough tokens in the preset to feed the incoming arcs of the transition"

Enabled Transitions : examples

Case 3

- case 1 : t_1 is enabled $(M(p_0) = 3 > W(p_0, t_1) = 2)$
- case 2 : t_1 is not enabled $(M(p_0) = 1 < W(p_0, t_1) = 2)$
- case 3 : t₀ is enabled (empty preset, independent from any marking M)

Transition firing

Let t be a transition that is enabled in the current marking M. Firing t means updating the current marking M to a new marking M', only the marking of places in the pre/post of t are updated.

$$M \stackrel{t}{\longrightarrow} M'$$

The marking of any place p not involved in pre/post of t remains unchanged :

$$\forall p \in P \setminus (pre(t) \cup post(p)), M'(p) = M(p)$$

Empty the places in the preset and feed the ones in postset :

$$orall p \in \mathit{pre}(t) \cup \mathit{post}(p), \mathit{M}'(p) = \mathit{M}(p) - \mathit{W}(p,t) + \mathit{W}(t,p)$$

Transition firing : examples

%₽

Let us see the model of a system as a Petri net

About the system : a set of conveyors moving boxes

- Two levels, two conveyors per level
- A lift between the two levels.
- Boxes from level 1 are dispatched on the conveyors of level 0

Marking graph

A marking M is **reachable** from an initial marking M_0 of a Petri net P if there exists a sequence of transition fires :

$$M_0 \stackrel{t_0}{\longrightarrow} M_1 \stackrel{t_1}{\longrightarrow} \ldots \stackrel{t_n}{\longrightarrow} M_n = M$$

The set of reachable markings $M \in R(P, M_0)$ can be explored through the marking graph :

Marking graph $G = (Q, T, E, q_0)$

- $Q = R(P, M_0)$ set of reachable markings
- \mathcal{T} is the set of transitions $M \xrightarrow{t} M'$ where $M \in R(P, M_0)$ and t is fired in M to lead in marking M'.
- \mathcal{E} set of transitions of the Petri net N.
- $q_0 = M_0$ the initial marking.

In this example, all arcs have a weight = 1.

Petri net extract : 1 enabled transition

Computation of the Marking graph : step 1

start \rightarrow **M**₀ = (1000000000)^T = { p_1 }

Petri net extract : fire of t_1

Computation of the Marking graph : step 2

start
$$\rightarrow$$
 $M_0 = \{p_1\}$ $\xrightarrow{t_1}$ $M_1 = \{p_2, p_8\}$

Petri net \rightarrow Marking Graph example

Petri net extract : now t_2 and t_5 are enabled

Computation of the Marking graph : step 2

start
$$\rightarrow$$
 $M_0 = \{p_1\}$ $\xrightarrow{t_1}$ $M_1 = \{p_2, p_8\}$

Petri net \rightarrow Marking Graph example

Petri net extract : fire t_2 , t_5 still enabled

Computation of the Marking graph : step 3

start
$$\rightarrow$$
 $M_0 = \{p_1\}$ $\xrightarrow{t_1}$ $M_1 = \{p_2, p_8\}$ $\xrightarrow{t_2}$ $M_2 = \{p_3, p_8\}$

Petri net \rightarrow Marking Graph example

Petri net extract : t_2 fired, fire t_5

Computation of the Marking graph : step 4

start
$$\rightarrow$$
 $M_0 = \{p_1\}$ $t_1 \rightarrow$ $M_1 = \{p_2, p_8\}$ $t_2 \rightarrow$ $M_2 = \{p_3, p_8\}$ $M_3 = \{p_3, p_9\}$

Petri net extract : fire t_5 then fire t_2 from M_1

Computation of the Marking graph : steps 5 and 6

$\textbf{Petri net} \rightarrow \textbf{Marking Graph}: \textbf{finally}$

In this example, the marking graph has **25** states and **59** transitions.

Remarks :

- 1. The number of states (reachable markings) in *G* is exponential to the number of places in the bounded worst case
- 2. The number of states in G might be unbounded
- 3. Classes of Bounded/Unbounded PN
- 4. Classes of k-Bounded Petri nets. (safe = 1-bounded)

Diagnosis/Diagnosability of bounded PNs

- Finite marking graph G is a finite automaton
- \blacksquare Faults \rightarrow faulty transitions : a subset of Petri Net transitions
- \blacksquare Observables \rightarrow observable transitions : a subset of Petri Net transitions
- It follows that : any fault diagnosis/diagnosability method on automaton can be used on the marking graph of any bounded Petri Net. (see lecture from this morning)
- Belief states, Sampath's diagnoser, Twin Plants...

Extensions to Labeled Petri Nets

A Labeled Petri net is a Petri net with a labelling function ℓ of the transitions.

$$\ell: T \to \mathcal{E}$$

A transition is associated with an event label. An event label may be associated with several transitions.

I abels

$$\bullet \ \ell(t_0) = \mathbf{a} = \ell(t_3)$$

$$\ \ \ell(t_1) = \mathbf{b}, \ \ell(t_2) = \mathbf{b}, \ \ell(t_4) = \mathbf{c}$$

 \blacksquare Generated langage of a LPN : $\mathcal{L} \subseteq \mathcal{E}^*$

• ex :
$$\sigma = \ell(t_0)\ell(t_1)\ell(t_0)\ell(t_2) =$$

abad $\in \mathcal{L}$

Fault diagnosis in Petri nets : a model-checking approach

Diagnosis LPN model : an example

A diagnosis problem in LPN

- Consider a diagnosis LPN model Θ.
- Consider one fault **f** labeling a set of faulty unobservable transitions T_f .
- Consider a sequence of observations σ produced by Θ .
- Has *f* definitely occurred or not?.

A model-checking method

Model-checking problem :

- 1. Given a transition system and a property $\boldsymbol{\Phi}$
- 2. Checking whether property Φ holds
 - If yes, the model-checker will say yes.
 - If no, the model-checker will provide a behaviour of the system that does not respect Φ. (counter-example)
- Translate a diagnosis LPN problem into a model-checking problem
- Let the model-checker do the computational job.

Synthesis of the model checking problem (1)

Synthesis of the model checking problem : place KO (1)

As soon as a token is in KO, fault f_1 has occurred Non intrusive modification

%₽

Synthesis of the model checking problem : adding observations (2)

Synthesis of the model checking problem : transition fusion for event a (3)

%₽

Synthesis of the model checking problem : transition fusion for 1st event b (4)

Synthesis of the model checking problem : transition fusion for 2nd event b (5)

‰₽

Synthesis of the model checking problem : transition fusion for event c (6)

Synthesis of the model checking problem : place NOMOREOBS (7)

Model checking problem : final model to check

Ş∕F

IX International Summer School on Fault Diagnosis of Complex Systems (Girona, July 2022)

Summary

By construction of the previous model :

• KO : as soon as there is a token, the trace is faulty :

 $KO \ge 1$

OBS : as soon as there is a token, the trace produced the observation abbc :

$$OBS = 1$$

NOMOREOBS : as long as there is no token, the trace does not produce more observation than abbc

NOMOREOBS = 0

Properties to check on the model

Property FAULTY : is every trace consistent with abbc a faulty trace ? Formally in LTL (linear temporal logic) :

 $\Box [(\textit{OBS} = 1 \land \textit{NOMOREOBS} = 0) \rightarrow (\textit{KO} \ge 1)]$

If the model-checker answers YES, we are DONE : f_1 has definitely occured. If NOT, we check a second property :

Property HEALTHY : is every trace consistent with abbc a healthy trace ?

 $\Box[(OBS = 1 \land NOMOREOBS = 0) \rightarrow (KO = 0)]$

If the model-checker answers YES, we are DONE : f_1 has definitely NOT occured. If NOT, we are DONE : there is an ambiguity.

Solutions

For this example : $\sigma = \mathbf{abbc}$

- FAULTY is false
- HEALTHY is false
- the occurrence of f_1 is ambiguous

For another example : $\sigma = \mathbf{abbcc}$

- FAULTY is true
- the occurence of f_1 is certain

Summary of the method

- Translation of a diagnosis problem into a couple of model checking problems
- The translation is not complex (quadratic manipulations on LPN, transition fusions)
- No complex ad'hoc search algorithms
- No computation of belief states, just about the occurrence of a fault
- The complexity is in the model-checking phase :
 - Very efficient tools (ex : model-checker TINA (LAAS))
 - Perform symbolic encodings, partial-order reductions, symmetry

Diagnosability : a model-checking problem

- Diagnosability checking is a model-checking problem
- Used for diagnosability of automaton and LPN
- For LPN : pretty similar to the previous method
 - 1. Consider a LPN Θ and add the KO place.
 - 2. Duplicate it : Θ' and KO'
 - 3. Transition fusions of the observable transition Θ and Θ' : twin-plant
 - 4. Property to check : is there a critical pair ? Looks like this :

 $\Box[(\mathit{KO} \ge 1) \to \Diamond(\mathit{KO'} \ge 1 \lor \mathit{deadlock})]$

Answer YES : Diagnosable Answer NO : the given counter-example is a critical pair

Diagnoser based on a basis reachable graph (BRG)

Motivation

- Always the same issue : combinatorial state explosion
- How to design a diagnoser that does not require the computation of the marking graph
- Definition of an abstraction : Basis Reachable Graph
- BRG : Finite-state machine that store minimal necessary explanations
- Assumption : no unobservable transition cycles in the underlying LPN.
- Based on the notion of firing vectors.

Incidence matrix

Transition fire, remainder :

$$orall p \in pre(t) \cup post(p), M'(p) = M(p) - W(p, t) + W(t, p)$$

and $M'(p) = M(p)$ otherwise (i.e. when $W(p, t) = W(t, p) = 0$)

Factorization as an incidence matrix C :

$$\mathbf{C} = \begin{pmatrix} W(t_1, p_1) - W(p_1, t_1) & \cdots & W(t_n, p_1) - W(p_1, t_n) \\ W(t_1, p_2) - W(p_2, t_1) & \cdots & W(t_n, p_2) - W(p_1, t_n) \\ \vdots & & \vdots \\ W(t_1, p_m) - W(p_m, t_1) & \cdots & W(t_n, p_m) - W(p_m, t_n) \end{pmatrix}$$

Incidence matrix : example

%₽

Incidence matrix : reachable marking

Incidence matrix : reachable marking

Incidence matrix : firing vectors (Parikh)

Remark :

$$\mathbf{M}_{\mathbf{2}} = \mathbf{M}_{\mathbf{1}} + \mathbf{C} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathbf{M}_{\mathbf{0}} + \mathbf{C} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mathbf{C} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathbf{M}_{\mathbf{0}} + \mathbf{C} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

In this example, generally :

$$\mathbf{M_0} = \mathbf{M_0} + \mathbf{C} \begin{pmatrix} k \\ k \end{pmatrix} \qquad \mathbf{M_1} = \mathbf{M_0} + \mathbf{C} \begin{pmatrix} k+1 \\ k \end{pmatrix}$$

Vectors $\begin{pmatrix} 0\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\0 \end{pmatrix}$, $\begin{pmatrix} k\\k \end{pmatrix}$, $\begin{pmatrix} k+1\\k \end{pmatrix}$ are firing vectors (kind of Parikh vectors) : number of transition fires of every t_i .

Possibly reachable markings

Let **M** be a marking, if **M** is reachable from **M**₀ then there exists a firing vector
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $x_i \ge 0$ such that :

 $\mathbf{M}=\mathbf{M_0}+\mathbf{C}\mathbf{X}$

Necessary but not sufficient condition !

If a marking M is such that $M = M_0 + CX$, then M is a **possibly** reachable marking but not necessarily reachable.

Now, here is the trick : if the Petri net is not cyclic, it becomes a sufficient condition.

Diagnosis problem : same as before

%₽

Computation of the Basis Reachable Graph : step (1)

start
$$\rightarrow M_0, \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

- Initial marking $\mathbf{M}_{\mathbf{0}} = \{p_1\}$
- Firing vector $\mathbf{X}_{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ about the **feasible faulty**

trajectories from M₀:

1. Compute any marking $\boldsymbol{\mathsf{M}}$ and firing vector $\boldsymbol{\mathsf{X}}$ from $\boldsymbol{\mathsf{M}}_0$ such that

$$\mathbf{M} = \mathbf{M}_{\mathbf{0}} + \mathbf{C}_{\mathbf{u}}\mathbf{X}, \mathbf{X}(f_1) > 0, \mathbf{X}(f_2) > 0,$$

 \bm{C}_u incidence matrix restricted to unobservable transitions of the model. \bm{M} is reachable due to acyclicity

- 2. If for a computed **X**, the number of occurences of \mathbf{f}_i is greater than 0 then $\mathbf{X}_0(f_i) = 1$ otherwise $\mathbf{X}_0(f_i) = 0$
- 3. In this case, $\mathbf{X}_{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ IX International Summer School on Kault Diagnosis of Complex Systems (Girona, July 2022)

Computation of the Basis Reachable Graph : step (2)

start
$$\rightarrow M_0, \begin{pmatrix} 0\\0 \end{pmatrix} \xrightarrow{a,0} M_1, \begin{pmatrix} 0\\0 \end{pmatrix}$$

a, **0** = **a**,
$$\mathbf{E}_{min}^{0} = [0, 0, 0, 0, 0, 0]^{T}$$

- \blacksquare a first observable that can fired after M_0
- M₁ basis reachable marking from M₀
- **E**⁰_{min} is the **minimal explanation** (firing vector)

Computation of the Basis Reachable Graph : basis reachable marking

start
$$\rightarrow M_0, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a, 0} M_1, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \blacksquare M_1 basis reachable marking from M_0

$$\mathsf{M}_{\mathbf{0}} \stackrel{\tau_{1}}{\longrightarrow} ... \stackrel{\tau_{n}}{\longrightarrow} \mathsf{M}_{\mathbf{1}}$$

with

- 1. $\tau_i, i < n$ are unobservable $(\ell(\tau_i) \in \mathcal{E}_u)$
- 2. $\ell(\tau_n) = \mathbf{a}$
- 3. $\xrightarrow{\tau_1} \dots \xrightarrow{\tau_{n-1}}$ is minimal
- 4. No subsequence of $\xrightarrow{\tau_1} \dots \xrightarrow{\tau_{n-1}}$ leads to the observation of **a** and reaches M_1
- 5. In other words, $\xrightarrow{\tau_1} \dots \xrightarrow{\tau_{n-1}}$ is **necessary** to reach **M**₁ by transition τ_n

Computation of the Basis Reachable Graph : minimal explanation

start
$$\rightarrow M_0, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a,0} M_1, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \blacksquare M_1 basis reachable marking from M_0

$$\mathsf{M}_{0} \stackrel{\tau_{1}}{\longrightarrow} ... \mathsf{M}_{1}' \stackrel{\tau_{n}}{\longrightarrow} \mathsf{M}_{1}$$

 $\blacktriangleright \xrightarrow{\tau_1} \dots \xrightarrow{\tau_{n-1}} \text{ is minimal}$

► \mathbf{E}_{min}^{0} is the firing vector of $\xrightarrow{\tau_{1}} \dots \xrightarrow{\tau_{n-1}}$ called the minimal explanation :

$$\mathbf{M_1}' = \mathbf{M_0} + \mathbf{C_u}\mathbf{E}_{\textit{min}}^0$$

 E⁰_{min} minimal number of occurrences per unobservable transitions between M₀ and M₁.

%₽

Computation of the Basis Reachable Graph : minimal explanation

$$\mathbf{M}_{3}, \begin{pmatrix} 1\\ 0 \end{pmatrix} \xrightarrow{\mathbf{b}, \mathbf{E}_{\min}^{3}} \mathbf{M}_{5}, \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

- M₅ basis reachable marking from M₃
- $M_3 = \{p_3 p_8\}$
- $M_5 = \{p_7 p_8\}$
- \mathbf{E}_{min}^3 is the firing vector :

$$[1_{t_8} 0_{t_9} 0_{t_{10}} 1_{t_{11}} 0_{t_{12}} 0_{t_{13}}]^7$$

 Faulty transition : t₁₁ (f₁) necessarily occurs as it is in the minimal explanation between M₃ and M₅

Basis Reachable Graph

Use of the BRG as a diagnoser (1)

Case 1 : we observe nothing ε .

• Initial marking in M_0 :

 $(1000000000)^T = "p_1"$

Based on BRG : we stay in state $M_0, \begin{pmatrix} 0\\ 0 \end{pmatrix}$

The firing vector $\begin{pmatrix} 0\\0 \end{pmatrix}$ asserts that there is no run from the silent closure after **M**₀ where f_1 or f_2 has occurred.

Diagnosis : both f_1 and f_2 have not occurred.

Use of the BRG as a diagnoser (2)

Case 2 : we observe **ab**.

From initial marking M₀, we reach

 $\mathbf{M}_{3} = (0\,0\,1\,0\,0\,0\,0\,1\,0\,0\,0)^{T} = "\,p_{3}p_{8}"$

through transitions $\mathbf{M}_{0}, \begin{pmatrix} 0\\ 0 \end{pmatrix} \xrightarrow{a,0} \mathbf{M}_{1}, \begin{pmatrix} 0\\ 0 \end{pmatrix} \xrightarrow{b,0} \mathbf{M}_{3}, \begin{pmatrix} 1\\ 0 \end{pmatrix}$

From → and → : no fault has necessarily occurred
 The firing vector
 ¹
 0 asserts that there is a run from the silent closure after M₃ where f₁ has occurred.

Diagnosis : f_1 may have occurred but not f_2 .

Use of the BRG as a diagnoser (3)

Case 3 : we observe **abbc**.

From BRG : 3 possible sequences

$$1. \quad \mathsf{M}_{0}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a,0} \mathsf{M}_{1}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{b,0} \mathsf{M}_{3}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{b,e_{2}} \mathsf{M}_{3}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{c,0} \mathsf{M}_{4}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$2. \quad \mathsf{M}_{0}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a,0} \mathsf{M}_{1}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{b,0} \mathsf{M}_{3}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{b,e_{3} \to f_{1}} \mathsf{M}_{5}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{c,0} \mathsf{M}_{5}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$3. \quad \mathsf{M}_{0}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a,0} \mathsf{M}_{1}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{b,0} \mathsf{M}_{3}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{b,e_{3} \to f_{1}} \mathsf{M}_{5}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{c,0} \mathsf{M}_{6}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Diagnosis : Both f_1 and f_2 may have occurred.

Use of the BRG as a diagnoser (4)

Case 4 : we observe **abbcc**. From BRG : 3 possible sequences $1. \ \mathsf{M}_{0}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a, 0} \mathsf{M}_{1}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{b, 0} \mathsf{M}_{3}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{b, e_{3} \to f_{1}} \mathsf{M}_{5}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{c, 0} \mathsf{M}_{5}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\xrightarrow{c,0} M_5, \begin{pmatrix} 0\\ 0 \end{pmatrix}$ $2. \ \mathbf{M_{0}}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{a,0} \mathbf{M_{1}}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{b,0} \mathbf{M_{3}}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{b,e_{3} \to f_{1}} \mathbf{M_{5}}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{c,0} \mathbf{M_{5}}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\xrightarrow{c,0} M_6, \begin{pmatrix} 0\\1 \end{pmatrix}$ 3. $\mathsf{M}_{0}, \begin{pmatrix} 0\\0 \end{pmatrix} \xrightarrow{a,0} \mathsf{M}_{1}, \begin{pmatrix} 0\\0 \end{pmatrix} \xrightarrow{b,0} \mathsf{M}_{3}, \begin{pmatrix} 1\\0 \end{pmatrix} \xrightarrow{b,e_{3} \to f_{1}} \mathsf{M}_{5}, \begin{pmatrix} 0\\0 \end{pmatrix}$ $\xrightarrow{c,0} \mathsf{M}_6, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \xrightarrow{c,0} \mathsf{M}_6, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Diagnosis : f_1 has certainly occurred and f_2 may have occurred.

Summary of the BRG approach

Computation of a BRG

- smaller than a Marking Graph : (7 < 25 states, 18 < 59 transitions)
- ► a way to solve the combinatorial explosion problem

Abstraction of the problem

- Use of partial-order reduction technique (abstraction of concurrent and unecessary unobservable transitions)
- Solving equations $M = M_0 + CX$: efficient solvers

References

- Diagnosability analysis of patterns on bounded labeled prioritized Petri nets. Gougam, Pencolé, Subias, JDEDS 2016
- Diagnosis of supervision patterns on bounded labeled Petri nets by Model Checking. Pencolé, Subias DX 2018
- How to use Model Checking for diagnosing fault patterns in Petri nets. Bakalara, Pencolé, Subias, Wodes 2020
- 4. Diagnosis of discrete event systems using labeled Petri nets. An application to manufacturing systems Cabasino, Giua Seatzu Control Engineering Practice 2011
- 5. Petri Nets : Properties, Analysis and Applications. Murata, IEEE 1989
- 6. Diagnosis of DES With Petri Net Models, Lefebvre, Delherm. IEEE TASE 2007
- Diagnosis of asynchronous discrete-event systems : a net unfolding approach, Benveniste, Fabre, Haar, Jard, TAC 2003.
- 8. Fault Detection of Discrete Event Systems Using Petri Nets and Integer Linear Programming, Dotoli, Fanti, Mangini, IFAC 2008

Diagnosis of discrete event systems : some extensions

Extensions to patterns

- In this lecture, a fault is the occurrence of a single event.
- Can be extended to more complex events : patterns

Diagnosis of timed Discrete-Event Systems

- In this lecture, time is represented as a sequence of events abbccd
- There exist a lot of very recent works on diagnosis about timed Discrete-Event Systems
 - timed sequence of events 1a3b3b4c3c2d is not 2a4b3b6c3c2d : same sequence but not the same dates
 - Time is discriminant (delays...)
 - Some work on time automata (Alur), time Petri Nets, time event graphs (max,+) algebra
 - Diagnosability of TDES
 - Δ-diagnosability
 - Ad'hoc algorithms, Model-Checking techniques, SMT-solvers (SAT + arithmetic theory for time constraints)

Diagnosis of stochastic DES systems

- Stochastic DES : markov processes
- Diagnosis : look for the most likely trajectories consistent with the observations
- Stochastic diagnosers
- Definitions of a set of diagnosability problems on probabilistics DES. (limits to probability 0)
- Stochastic automaton, Stochastic Petri Nets
- Use of firing probability laws.