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Adaptive pseudo-inverse observers for output
redundant discrete-time linear systems

Andrea Cristofaro, Senior Member, IEEE , and Luca Zaccarian, Fellow, IEEE

Abstract

We address the problem of output redundancy in discrete-time linear systems, with the aim of obtaining an optimized
combination of sensors for structurally rejecting certain disturbances. We frame our goal as the design problem of a
nonlinear observer consisting in a linear Luenberger structure augmented with an adaptive weighted pseudo-inverse
combination of the available measurements. A novel optimization algorithm is proposed for the update of the dynamic
weights of the pseudo-inverse, together with a selector that overrides the optimizer whenever the pseudo-inverse be-
comes close to being singular. Numerical simulations on the case study of a discrete-time mechanical system support
and validate the proposed architecture.

Index Terms

Linear system observers; Optimization algorithms; Adaptive systems; Output redundancy

I. INTRODUCTION AND MOTIVATION

The presence of redundant inputs and outputs in a control system allows considering secondary objectives, handle critical
conditions such as faults or loss of power, and cope with operational or physical constraints. Input redundancy has been widely
investigated, to a large extent in the framework of control allocation [1], [2], which is a modular setup where the properties of
a redundant set of inputs are exploited in order to formulate a constrained optimization scheme that incorporates both primary
and secondary control objectives, see for instance [3]–[8] and the references therein. Fault-tolerant control allocation methods
have been proved to be fairly efficient. In particular, having additional degrees of freedom in the control design might be a key
advantage in the presence of faults, because the generation of the commanded input can be redistributed on healthy devices
[9]–[13].

Differently, output allocation, or dual redundancy, is a less explored problem yet interesting and insightful [14]. Methods like
the Kalman filter and the extended Kalman filter [15], which aim at the minimization of the covariance error, naturally benefit
from the presence of redundant outputs. However such redundancy is typically left unexploited and just implicitly used without
a quantitative advantage. On the other hand, alike for the case of actuator redundancy, the clever use of redundant outputs
might facilitate the accommodation of sensor faults and or the compensation for biased measurements. In this perspective,
some interesting results pertaining safety and reliability of autonomous marine systems have been proposed in [16].

Sensor fault diagnosis is universally recognized as a challenging problem, since no unquestionable methods exist to establish
whether a sensor is faulty or not, based on the measured output. Several approaches have been proposed [17], such as robust
observers [18], [19], consensus-based schemes [20], adaptive approximation [21]–[23] or statistical methods [24]. Robust
observers are typically designed for systems with structured faults by exploiting underlying geometric properties that may
lead to a complete fault decoupling, whereas the basic idea of consensus-based approaches is to regard as more trustworthy
measurements on which the largest group of sensors agree.

The approach discussed in this paper arises from a somewhat naive observation: among all the possible combinations of
a redundant set of outputs, there are certain ones that result to be less sensitive or even insensitive to a given constant
bias, or even any time-varying bias preserving the direction in the output space with non-constant amplitude (e.g., due to
electromagnetically-induced noise with constant coupling but time-varying amplitude). On the other hand, as the bias signal is
typically unknown and hardly predictable, such optimal combinations are likely to be unknown too. In general, when neither
faults nor external perturbations are present, an equivalent and full-rank lower dimensional output model can be extracted using
a weighted pseudo-inverse, whose weights account for the contribution of each individual sensor. The goal of the paper is to
design an adaptation scheme for such weights, with the aim of asymptotically zeroing or, at least, minimizing the resulting
effect of the unknown bias in the output estimation error of a given state observer. A similar paradigm has been introduced in
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[25], where local results are proposed for continuous-time systems, while a preliminary and partial solution to the discrete-time
case has been presented in [26]. As compared to [26], here we provide a new architecture with a new optimizer and a new
selector dynamics, for which we can prove asymptotic unbiased estimation and structural rejection. Our architecture is based
on the synthesis of two observers, to be used in cascade: the first one is responsible of estimating the bias, while the second one
reconstructs the state of the system by performing the output allocation based on a novel line-search optimization algorithm
for a quadratic function whose global minimum encodes the best selection of weights in the pseudo-inverse. While our main
results are stated for the case of a constant bias, our solution is shown to be readily capable to handle different kinds of
output perturbations, such as sensor faults or outliers [27], as shown in our numerical results. It is also worth stressing that a
separation principle naturally holds for the proposed observer when used in combination with a feedback controller, allowing
to shape separately the closed-loop performances of the feedback control system and of the estimation error.

The paper is organized in seven main sections. In Section II the problem is formally stated, and the design of the asymptotic
bias estimator is addressed in Section III. A general architecture for an observer using dynamic output allocation is exploited
in Section IV, while a specific minimization algorithm that converges to the optimal weights is formulated in Section V.
A description and characterization of the overall observation scheme is reported in Section VI. Finally, in Section VII
some numerical examples illustrate the proposed solution and validate the theoretical results, while conclusions are drawn
in Section VIII.

Notation. Symbol R (R≥0) denotes the (non-negative) real numbers, and symbol Z (Z≥0) denotes the (non-negative) integer
numbers. Rp denotes the p-dimensional Euclidean space and ei, i = 1, ..., p, denote the vectors of the canonical basis of
Rp. The symbol 1n1×n2

indicates the matrix in Rn1×n2 whose entries are all 1, while In stands for the identity matrix of
dimension n even though the subscript n is often omitted. Given a matrix M , rk(M) denotes its rank and Im(M) denotes its
image. The n-dimensional unit sphere and the open unit ball are indicated, respectively, with Sn and Bn with

Sn := {ζ ∈ Rn+1 : |ζ| = 1},
Bn := {ζ ∈ Rn : |ζ| < 1},

so that Sn−1 = ∂Bn. Given a vector v = [v1 · · · vn1 ]
T ∈ Rn1 we denote by diag(v) ∈ Rn1×n1 the diagonal matrix whose

entries are the elements of v. For a discrete time system, we denote x+ = f(x) as a shortcut notation for x(k+1) = f(x(k)),
with discrete time k ∈ Z≥0. This shortcut notation allows omitting the explicit dependence on (discrete) time k, except for
when it helps the clarity of exposition.

II. PROBLEM DEFINITION

Let us consider the linear time-invariant discrete-time plant

x+ = Ax+Bu
y = Cx+ φ,

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are state, input and output of the plant, respectively, A, B, C are matrices of appropriate
dimensions and φ ∈ Rp is an unknown but constant bias affecting the output.

For plant (1) we assume that the output y is redundant, in the sense that some measurements are linear combinations of the
other ones. We also assume that the state of the plant is detectable from y (otherwise no state estimation could be possible).
Finally, we assume that the constant bias/fault φ can be detected from output y, which corresponds to requiring that matrix A
can not generate constant responses (namely it has no eigenvalues equal to 1). These assumptions are formalized below.

Assumption 1: Plant (1) is such that the following holds:
1) Output Redundancy: the output is redundant, namely there exists an integer q such that q = rk(C) < p.
2) Detectability of x: pair (C,A) is detectable;
3) Detectability of φ: matrix A− I is nonsingular (namely, matrix A has no eigenvalues equal to 1).
While the first property (redundancy) characterizes the peculiar feature exploited in the scheme proposed in this paper, and

is not necessary for estimating x and φ, we emphasize that the two subsequent items in Assumption 1 are indeed necessary
to build a finite-time or asymptotic observer of x in the presence of the unknown constant bias φ. In fact, condition 2) is
necessary due to standard observability theory for linear systems, while condition 3) is necessary due to linear observability
conditions applied to the plant (1) augmented with an exosystem generating a constant output (namely having an eigenvalue
equal to 1) and realizing that item 3 is a necessary condition for detectability.

Under item 1 of Assumption 1, there exist matrices Y ∈ Rp×q , H ∈ Rq×n such that

q := rk(C) = rk(H), and C = Y H. (2)

In particular, since q < p, there exists an infinite number of pairs (Y,H) with C = Y H . For our design, we require the
following property on the selection (Y,H).

Assumption 2: Selection (Y,H) satisfies C = Y H and the following two properties:
1) Unitary condition: the columns of Y are unitary and satisfy Y TY = Iq;
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2) Non-alignment condition: for each i = 1, ..., p, it holds that ei /∈ Im(Y ).
In the following sections we will develop a line-search optimization algorithm along the coordinate directions ei, i = 1, ..., p.
Bearing this in mind, the non-alignment condition is specifically meant to avoid possible saddle-points in the optimization
process. In this regard, it is important to stress that Assumption 2 can always be ensured for a suitable selection of Y , under
Assumption 1, possibly by recombining the measurements y and redefining matrix C. Indeed, starting from any selection
(Y◦, H◦) such that Y◦ is full column rank, the following simple procedure can be applied:

• let us define the unitary vector n := p−
1
21p×1 and observe that the space n⊥ contains none of the coordinate axis by

construction;
• pick an orthogonal transformation1 Σ mapping any given unitary vector of Y ⊥ into n;
• define H = (Y T

◦ Y◦)
1
2H◦ and Y = ΣY◦(Y

T
◦ Y◦)

− 1
2 .

With such a modified selection of H and Y it is immediate to see that Assumption 2 holds for a modified output matrix
Cmod = ΣC. Note also that detectability of (C,A) coincides with detectability of (Cmod, A) because Σ is square and full rank.

Example 1: To better illustrate the previous output transformation procedure, let us consider the output matrix

C =

1 0 0 0
0 1 0 0
1 −1 0 0

 (3)

An intuitive decomposition for the output matrix is given by the selection (Y◦, H◦) with

Y◦ =

1 0
0 1
1 −1

 , H◦ =

[
1 0 0 0
0 1 0 0

]
where H◦ essentially keeps the two independent output channels decoupled. Such a simple selection does not meet the unitary
condition, but performing the transformation

Y = Y◦(Y
T
◦ Y◦)

− 1
2 =

[
3+

√
3

6
3−

√
3

6
1√
3

3−
√

3
6

3+
√

3
6 − 1√

3

]T
(4a)

H = (Y T
◦ Y◦)

1
2H◦ =

[
3+

√
3

2
√

3

−3+
√

3

2
√

3
0

−3+
√

3

2
√

3

3+
√

3

2
√

3
0

]
(4b)

we are guaranteed to deal with a selection (Y,H) where the matrix Y satisfies Assumption 2.
For any selection of H satisfying (2), since we assume detectability in item 2 of Assumption 1, then pair (H,A) is also

detectable and, in the absence of the bias φ, a full order Luenberger observer can be designed:

x̂+ = Ax̂+Bu+ L(Hx−Hx̂) (5)

where Hx can be obtained from y = Cx by pre-multiplication with any pseudo-inverse of Y and where L is a suitable output
error injection gain ensuring that any solution satisfies |xk − x̂k| → 0 as k tends to +∞.

The scope of this paper is to develop a design procedure for an unbiased observer, i.e. an observer that, using the injection of
the redundant output y, guarantees the same performance as the nominal observer (5), despite the presence of the fault/bias φ.

III. ASYMPTOTIC BIAS ESTIMATION

As a first ingredient of our scheme, we exploit Assumption 1 to design an asymptotic estimate φ̂ of the bias φ. To this end,
we first observe that φ always admits a decomposition of the following form:

φ = Y wφ + φo, (6)

with wφ ∈ Rp and where φo ∈ [Im(Y )]⊥ satisfies Y Tφo = 0. Vector φo can be readily extracted from the output by projecting
measurement y onto [Im(Y )]⊥ at any time k ∈ Z≥0, as follows:

φo = (I − Y PY )y, PY := (Y TY )−1Y T ,

where PY can be well seen as projection-like matrix. Thanks to item 2 of Assumption 1, we can select a Luenberger gain M
such that A −MH is a Schur matrix (namely its eigenvalues have magnitude smaller than one). Using this output injection
gain, we introduce an observer with the scope of estimating wφ:

ξ+ = Aξ +Bu+MPY (y − Cξ). (7a)

1A simple algorithm can be designed by operating on the singular value decomposition of Y .
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The asymptotic estimate φ̂ of φ can be then determined as follows:

η := PY y −Hξ (7b)

φ̂ := Y (I +H(I −A)−1M)η + (I − Y PY )y, (7c)

where the output gain in (7c) is well defined due to item 3 of Assumption 1. The effectiveness of (7) at estimating φ is
established in the next proposition.

Proposition 1: Under Assumption 1, if matrix A−MH is Schur, then the difference φ̂−φ converges exponentially to zero
for (7).

Proof: Let us introduce the estimation error ε := x− ξ. The error dynamics reads as:

ε+ = (A−MH︸ ︷︷ ︸
:=Acl

)ε−Mwφ. (8)

Based on the variation of constants formula (see, e.g., [28, page 51]), and keeping in mind that Acl := A−MH being Schur

implies that
k∑

i=0

Ai
cl converges exponentially (as k tends to ∞) to (I − Acl)

−1, we obtain the following form for the explicit

solution to (8):

εk = Ak
clε0 −

k−1∑
i=0

Ai
clMwφ

= Ak
clε0+

( ∞∑
i=0

Ai
cl −

k−1∑
i=0

Ai
cl

)
Mwφ−(I −Acl)

−1Mwφ

= −(I −Acl)
−1Mwφ + δk, (9)

where δk := Ak
clε0 +

(∑∞
i=0A

i
cl −

∑k−1
i=0 A

i
cl

)
Mwφ converges exponentially to zero because Acl is Schur.

Let us also observe that, using C = Y H and (6), output η in (7b) can be expressed as a function of ε as follows:

η = (Y TY )−1Y T (Y Hx+ φ︸ ︷︷ ︸
y

)−Hξ (10)

= Hε+ (Y TY )−1Y T (Y wφ + φo) = Hε+ wφ,

where we used Y Tφo = 0. The identity above can be combined with (9) to obtain

η = (I −H(I −Acl)
−1M)wφ +Hδ := Cηwφ +Hδ, (11)

where matrix Cη can be suitably partitioned, using Woodbury’s matrix inversion lemma, and using invertibility of I−A (from
item 3 of Assumption 1) to obtain:

Cη = I −H(I −A+MH)−1M = (I +H(I −A)−1M)−1 (12)

Combining this identity with the output equation (7c) and expression (10), we get:

φ̂ = Y C−1
η (Cηwφ +Hδ) + (I − Y PY )y

= Y C−1
η Hδ + Y wφ + φo = Y C−1

η Hδ + φ,

where we used (6) and where the sequence k 7→ δk converges exponentially to zero, thus completing the proof.
Remark 1: Under the stronger requirement of full observability of the pair (A,H) the bias estimator may also be made

deadbeat, with σ(A −MH) = {0}. This could be a desirable feature to accelerate the convergence but, as a drawback, the
accuracy might deteriorate when the measurements are noisy. As a general rule of thumb, supported by the good performances
obtained in our simulation tests, it might be preferable to shape the bias estimator with a faster dynamics than the one of the
state observer. In this respect, one needs to bear in mind that, in order to avoid peaks during the transient when a fast observer
is used, it might also be wise to enhance the design with an anti-peaking mechanism (see for example [29], [30]). ◦

IV. AN OBSERVER USING ADAPTIVE PSEUDOINVERSES

In this section we investigate the design of enhanced observers by using the estimate φ̂ of bias φ given by (7) and
simultaneously exploiting the sensor redundancy with the aim of reducing the effect of noisy measurements and bias variations
on the estimation performance.

The proposed scheme, represented in Figure 1 corresponds to the cascade interconnection of the asymptotic bias estimator
presented in Section III and a nonlinear estimator based on a parametric pseudoinverse. This second estimator is based on the
cascaded interconnection between an optimizer, having state z ∈ Rp, followed by a selector, having state s ∈ Rp, and finally
the observer dynamics, whose state x̂ is the unbiased estimate of the plant state x.
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Fig. 1. Block diagram of the proposed estimation scheme based on parametric pseudoinverses.

A. Observer architecture and error system
Similar to (5), given any gain matrix L such that A− LH is Schur, we construct the following asymptotic observer:

x̂+ = Ax̂+Bu+ LΠ(s)(y − ŷ)
ŷ = Cx̂.

(13)

The additional state s ∈ Rp, whose dynamics is specified below, is selected to perform an on-line adaptation of matrix function
Π, which corresponds to the weighted pseudoinverse

Π(s) := R(s)−1Γ(s) := (Y T diag(s)Y︸ ︷︷ ︸
=:R(s)

)−1 Y T diag(s)︸ ︷︷ ︸
=:Γ(s)

. (14)

The goal in the selection of s is to ensure that it automatically extracts the “best” information content among the redundant
measurements y through Π(s). To this end, we first observe that Π(s) is scale invariant, i.e. Π(s) = Π(µs) for any scalar
µ ̸= 0, and for this reason it is helpful to restrict the vector s to lie on the unit sphere Sp−1. Moreover, we observe that map
Π in (14) is only well defined if matrix R is invertible. As a consequence, we choose s as the output of a so-called “selector”
dynamics (see Figure 1) whose state s is constrained to only evolve in the following set:

Sϵ := {s ∈ Sp−1 : |det(R(s))| ≥ ϵ}, (15)

which is compact because it is the intersection between the compact set Sp−1 and a closed unbounded set.
To complete our observation scheme, we embed in the system a further dynamical system, the “optimizer” in Figure 1,

whose state z ∈ Sp−1 is the result of an online optimization aimed at providing a desirable candidate for the parameter s of
the weighted pseudoinverse, as long as it belongs to the set Sϵ where s is allowed to evolve.

More specifically, the dynamics of the optimizer and the selector blocks in Figure 1 are chosen as the following inclusions

z+ ∈ Gz(z, φ̂), (16)

s+ ∈ Gs(s, z) :=


z if z /∈ Sp−1 \ Sϵ,

s if z /∈ Sϵ,

{s, z} otherwise.
(17)

Let us first comment on the selector dynamics Gs in (17), which selects the optimizer output z whenever z belongs to the
interior of Sϵ relative to Sp−1 (the notation in the first case of (17) essentially excludes the boundary of the set in (15) relative
to Sp−1). When z is not in the allowable set Sϵ for s, then the state s remains unchanged across the jump. Finally, the third
case in (17) ensures that Gs is outer semicontinuous because it allows for both selections of s and z at the boundary. Outer
semicontinuity is desirable because it induces well-posedness of the dynamics, thus enabling us to exploit reduction theorems
[31] in our proofs.

Let us now focus on the optimizer, whose goal is to converge to a value of z ∈ Sp−1 that is in the kernel of Γ(φ), as
clarified below. First, we observe that for any pair v1, v2 ∈ Rp the following identity holds diag(v1)v2 = diag(v2)v1, and
therefore

Γ(s)φ = Γ(φ)s, (18)

where Γ has been defined in (14).
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By developing the output injection term in (13), we may then appreciate the importance of the product Γ(s)φ. Indeed, we
get, also using (18),

LΠ(s)(y − ŷ) = LR(s)−1Γ(s)(Y Hx+ φ− Y Hx̂)
= LR(s)−1Γ(s)Y H(x− x̂) + LR(s)−1Γ(s)φ
= L(Hx−Hx̂) + LR(s)−1Γ(φ)s,

(19)

where we used R(s)−1Γ(s)Y = R(s)−1Y T diag(s)Y = I .
Combining equation (19) with observer (13) and plant (1), we can introduce the error dynamics of the pseudoinverse observer,

whose states comprise the estimation error e := x− x̂, and the optimizer and selector states z ∈ Sp−1 and s ∈ Sϵ, and reads

e+ = (A− LH)e+ LR(s)−1Γ(φ)s,
s+ ∈ Gs(s, z),
z+ ∈ Gz(z, φ̂),

(e, s, z) ∈ E , (20)

with E := Rn × Sϵ × Sp−1 being the (forward invariant) set where the state (e, s, z) is allowed to evolve, and with the input
φ̂ ∈ Rp coming from observer (7).

B. Stability of the error dynamics
The error dynamics (20) illustrates the effectiveness of the proposed solution in terms of providing an observer that, in the

presence of the unknown bias φ, structurally recovers the estimation error transient experienced with the unbiased dynamics
(5). Such a recovery is however only possible if the fault effect R(s)−1Γ(φ)s becomes zero, at least asymptotically. This
is achieved here by ensuring two goals: on the one hand that the optimizer converges to an asymptotic value z⋆ satisfying
Γ(φ)z⋆ = 0, and on the other hand that such an optimal z⋆ is asymptotically assumed by s, through the selector dynamics
(17).

The first goal of asymptotically obtaining Γ(φ)z = 0 motivates defining the following subset of Sp−1

Z⋆ := {z ∈ Sp−1 : Γ(φ)z = 0}, (21)

and introducing a useful property of the set-valued function Gz in (16). This property will be guaranteed, under Assumptions 1
and 2 by the construction proposed later in Section V.

Property 1: The set-valued map Gz in (16) is nonempty, locally bounded and outer semi-continuous relative to Sp−1 ×Rp.
Moreover, the following decrease condition holds:

z+ ∈ Gz(z, φ) ⇒ (Γ(φ)z+ = 0) or (|Γ(φ)z+| < |Γ(φ)z|). (22)
Property 1 ensures that, as long as G is fed with the correct bias signal φ, it produces a set of possible selections for the

next value of z, that leads to an improvement of the filtering action in (19), unless its value is already zero. This corresponds
to ensuring a decreasing distance to the set Z⋆ in (21).

Let us now discuss the second goal that, asymptotically, the value z⋆ provided by the optimizer is actually assumed by the
selector state s through dynamics (17). To this end, it is enough to assume that the closed complement of (15), relative to Sp−1

is disjoint from the desirable set Z⋆, asymptotically approached by z. This is clarified in the next property, whose validity is
studied in various cases characterized in Section VI.

Property 2: The two closed sets Z⋆ and Sp−1 \ Sϵ (both subsets of Sp−1) are disjoint.
Since the second set considered in Property 2 coincides with the set mentioned at the first item of the dynamics in (17),

then Property 2 ensures that for any z ∈ Z⋆, the inclusion in (17) selects z rather than s for the next value s+.
Based on Properties 1 and 2, we can now state the following result, which is a second important baseline result for the

proposed scheme. Its proof is reported in Section IV-C.
Proposition 2: If Properties 1 and 2 hold, then for any L ensuring that A− LH is Schur, the compact set:

Ae := {(e, s, z) ∈ Rn × Sϵ × Sp−1 : (23)
z ∈ Z⋆,Γ(φ)s = 0, e = 0}

is globally asymptotically stable for the error dynamics (20) driven by φ̂k = φ for all k.
Note that dynamics (20) becomes an autonomous system when φ̂k = φ, so that asymptotic stability of Ae is in the classical

sense.
Our main theorem below follows from Propositions 1 and 2. Before its statement, let us revisit the error dynamics (8) and

notice that, whenever A−MH is Schur, ε converges exponentially to the unique equilibrium:

ε⋆ := −(I − (A−MH))−1Mwφ. (24)
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Then, following Proposition 1 and using (10), we also obtain that ε = ε⋆ implies:

φ̂ = Y (I +H(I −A)−1M)(PY yk −Hξk) + φo

= Y C−1
η (wφ +Hε⋆) + φo

= Y C−1
η (wφ −H(I −A+MH)−1Mwφ) + φo

= Y C−1
η Cηwφ + φo = Y wφ + φo = φ,

where we adopted the notation in (12).
Based on the above derivations, our goal is to focus on the following compact set:

A := {(ε, e, s, z) ∈ Rn × Rn × Sϵ × Sp−1 : (25)
s = z,Γ(φ)z = 0, ε = ε⋆, e = 0}

whose desirable stability properties are established in the main result below, proven in the next section.
Theorem 1: Under Assumption 1, consider any pair of gains M and L such that A − LH and A −MH are Schur. If

Properties 1 and 2 hold, then the compact set A in (25) is globally asymptotically stable for the ensuing error dynamics (8),
(20).

C. Proofs of Proposition 2 and Theorem 1
The proofs exploit the intrinsic cascaded structure of the proposed observers. In particular, we will use the following corollary

of [31, Cor. 4.8].
Lemma 1: Consider a constrained nonlinear difference inclusion

ξ+ ∈ Ḡ(ξ), ξ ∈ D, (26)

where D is a closed subset of Rs, and Ḡ : Rs ⇒ Rs is outer semi-continuous, locally bounded and non-empty relative to D.
Assume that

1) a closed set M ⊂ Rs is stable and globally attractive (therefore strongly forward invariant) for (26);
2) the compact set M◦ ⊂ M is stable and globally attractive for (26) relative to M (namely, for the restricted dynamics

ξ+ ∈ Ḡ(ξ), ξ ∈ M).
Then the set M◦ is asymptotically stable for (26), with basin of attraction coinciding with the largest set of initial conditions
from which all solutions are bounded. In particular, if all solutions are bounded, then the set M◦ is globally asymptotically
stable for (26).

Based on Lemma 1 we may now prove Proposition 2.
Proof of Proposition 2. Let us first apply Lemma 1 to dynamics (20) with the following selections of D and M

D1 = {(e, s, z) : e ∈ R2n, s ∈ Sϵ, z ∈ Z⋆}, (27)

M1 = {(e, s, z) : e ∈ R2n, s, z ∈ Z⋆ ∩ Sϵ}, M◦ = Ae,

where Ae has been introduced in (23). Let us prove the two items of Lemma 1 for selection (27). Item 1: first notice that due
to Property 2, we have

Z⋆ = Z⋆ ∩ Sϵ. (28)

Due to Property 2, z ∈ Z⋆ implies z+ ∈ Z⋆, namely Z⋆ is forward invariant for the dynamics of z. Moreover, due to (28),
Gs always returns z, so that s ∈ Z⋆ after one time step, thus proving item 1 of Lemma 1. Item 2: Since in M1 we have
Γ(φ)s = 0, then the dynamics of e in (20) is unperturbed and linear, and the assumption that A−LH be Schur implies item 2
of Lemma 1. Boundedness of solutions finally follows from the fact that z and s are bounded because they evolve in (subsets
of) the bounded set Sp−1, and the dynamics of e is linear exponentially stable affected by a bounded perturbation. Indeed,
the forcing term LR(s)−1Γ(φ)s is bounded from boundedness of s and from the fact that the determinant of R is lower
bounded by ϵ in the set Sϵ, which results in uniform boundedness of R(s)−1. Finally, standard discrete-time BIBO stability
properties of the linear dynamics implies boundedness of e. Since all the properties of Lemma 1 hold, then set M◦ is globally
asymptotically stable for the dynamics (20) restricted to D1 in (27).

As a second step, let us now apply Lemma 1 to dynamics (20) with the following selections of D and M

D2 = {(e, s, z) : e ∈ R2n, s ∈ Sϵ, z ∈ Sp−1}, (29)
M2 = D1, M◦ = Ae,

with D1 as in (27) and Ae as in (23) (notice that M◦ is unchanged). For the selections in (29), we prove the two items
of Lemma 1. Since M2 = D1 and M◦ is the same as in (27), then item 2 correspondds to proving GAS of M◦ for the
dynamics restricted to D1 = M2 and it has been shown in the first part of this proof (by the first application of Lemma 1).
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For proving item 1 of Lemma 1, consider the Lyapunov-like function |Γ(φ)z|2, which is positive definite with respect to Z⋆

in (21) relative to the compact set Sp−1. From compactness of Z⋆ and Sp−1, Property 1 clearly implies a uniform decrease of
this Lyapunov function and then the discrete-time Lyapunov theorem implies global asymptotic stability of Z⋆ for dynamics
z+ ∈ Gz(z, φ), thus proving item 1 of Lemma 1. Finally, boundedness of solutions is proven by following the same steps as
the previous iteration of Lemma 1.

The global asymptotic stability result established by this second iteration of Lemma 1 coincides with the statement of the
proposition, thus completing the proof. ■

Proof of Theorem 1 The proof follows very similar arguments to those of the previous proof by performing a third iteration
of Lemma 1.

In particular, we first notice that from the properties established in Proposition 1, the vector ε⋆ introduced in (24) is such
that the ensuing coordinate shift ε̃ := ε− ε⋆ obeys dynamics:

ε̃+ = (A−MH)ε̃

φ̃ := φ̂− φ = Y C−1
η ε̃ := C̃ε̃.

(30)

As a result, we may prove the theorem by focusing on the dynamics arising from combining (30) with the remaining dynamics
arising from (20):

e+ = (A− LH)e+ LR(s)−1Γ(φ)s,

s+ ∈ Gs(s, z)

z+ ∈ Gz(z, φ+ C̃ε̃).

(31)

To this end, the attractor A in (25) can be expressed as

A := {(ε̃, e, s, z) ∈ R2n × Sϵ × Sp−1 :

s, z ∈ Z⋆ ∩ Sϵ, e = 0, ε̃ = 0},

with the compact set Z⋆ and Sϵ defined in (21) and (15), respectively.
To prove GAS of A we apply again Lemma 1, with the selections M◦ = A and

D3 = Rn × Rn × Sϵ × Sp−1 (32)

M3 = {(ε̃, e, s, z) : s ∈ Sϵ, z ∈ Sp−1, e ∈ Rn, ε̃ = 0},

where we see that M3 = {0} × D2, while D3 is the set of all allowable values of the error variables.
With this third selection in (32) item 1 of Lemma 1 follows from linearity of the error dynamics in (30), while item 2

follows from Proposition 2. Finally, the fact that all solutions are bounded can be proven following identical steps to those of
the proof of Proposition 2. ■

D. Robustness, scale invariance and low-pass filtering
In a practical scenario, it is unreasonable to assume that the observation scheme of Figure 1 only operates in the nominal

conditions considered in Theorem 1. In fact, potential fragility of nonlinear observation schemes has been long known as a
problematic issue, a matter well characterized in [32, §5], where input-to-state stability (ISS) properties of the error dynamics
is emphasized as being a desirable property. Exploiting the intrinsic robustness of well-posed dynamical systems established
in [33, Ch 7], we prove here ISS properties of the error dynamics (8), (20) when including a generic perturbation d = (dx, dy)
in the plant dynamics (1) as follows

x+ = Ax+Bu+ dx, y = Cx+ φ+ dy, (33)

thus establishing robustness of the result of Theorem 1.
Theorem 2: Under Assumption 1, consider any pair of gains M and L such that A − LH and A −MH are Schur. If

Properties 1 and 2 hold, then there exists a class KL function β◦ and a class K function γ◦ such that the solutions ξ = (ε, e, s, z)
of the error dynamics (8), (20) resulting from a perturbed plant, as in (33), enjoy the ISS bound

|ξ(j)|A ≤ β◦(|ξ(0)|A) + γ(∥d∥∞), (34)

with the compact set A as in (25), and where ∥d∥∞ = supj≥0 |d(j)|.
Proof: Due to linearity of the error dynamics characterized in (30) for the linear observer (7), exponential stability implies

finite-gain ISS from the perturbation d to the estimation error ε̃ and the output error φ̃ = φ̂− φ. Let us now study the effect
of these nonzero errors ε̃, φ̃ on the remaining difference inclusion (31), where we recall that the corresponding state (e, s, z)
evolves in the set Rn × Sϵ × Sp−1. Since the set A is compact, and the right-hand side of (31) is well posed in the sense
of [33, As. 6.5] (it is nonempty, outer semi-continuous and locally bounded), then the global asymptotic stability established
in Theorem 1 implies semiglobal practical asymptotic stability, as per [33, Lemma 7.20]. Considering dynamics (31), since
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s and z are bounded (they evolve in the bounded set Sϵ × Sp−1) and since A − LH is Schur and the perturbation term
LR(s)−1Γ(φ)s is bounded, then semiglobal practical asymptotic stability implies global practical asymptotic stability. Global
practical asymptotic stability corresponds to a specific notion of small-signal ISS of A, namely there exist functions β◦ ∈ KL
and γ◦ ∈ K and a (typically small) d > 0 such that for any signal d satisfying ∥d∥∞ ≤ d, the ISS bound (34) holds.

Let us now focus on a global extension of the bound. For each selection of d such that ∥d∥∞ > d, both the substates ε̃ and
e in the error dynamics (30) and (31) remain bounded because A − LH and A −MH are Schur, and the perturbation term
LR(s)−1Γ(φ)s is bounded too. Moreover, the remaining states s and z are bounded by definition. This implies that functions
β◦ and γ◦ can be extended to a global bound, thus completing the proof.

While the robustness result established in Theorem 2 allows for generic perturbations d acting on the plant dynamics as in
(33), we would like now to exploit the fact that the weighted pseudoinverse Π(z) is invariant under scaling of z. In particular,
if Π(z) is the optimal pseudoinverse for φ, i.e. Π(z)φ = 0, then Π(z) is optimal for the whole subspace Im(φ). Such a feature
of the output allocation based observer (13) is a further advantage compared to the injection corrected observer (7), introduced
in Section II, in terms of transient performances.

To illustrate this fact, bearing in mind that the robustness result of Theorem 2 applies to any (bounded) time-varying selection
of φ, let us consider a nominal selection of the bias φ with constant direction φ̄ and time-varying magnitude gk, as follows

φk = gkφ̄, gk ∈ R \ {0} ∀k ∈ N. (35)

Due to the presence of the time-varying factor gk, the auxiliary observer ξk is no longer capable to ensure convergence of φ̂k

to φ. Moreover, since the gain M of a fast observer is typically large, some overshoots are likely to arise in the estimated bias
φ̂k, with a potential inaccuracy of observer (13) and the associated output allocator. This problem might be partially overcome
by following the heuristic approach of filtering the estimate φ̂k provided by (7) before this signal is fed to the observer (13)
and the output allocator, in order to reduce the effect of high frequency components of the factor gk on the computation of
the optimal weights zk. In the case where φ is constant, so that also φ̂ is exponentially converging, this additional filtering
stage does not destroy the cascaded argument in the proof of Theorem 1. Instead, for the case in (35), whenever gain M
characterizes a fast observer, we may expect φ̂ not to be too different from φ in (35) and the filtering procedure given below
may be effective.

Algorithm 1 (Scaling & Filtering):
i) Project φ̂k onto the closed unit ball Bp ∪ Sp−1:

φ̂∗
k := φ̂k/max{|φ̂k|, ϵφ},

where ϵφ > 0 is any regularization constant.
ii) Low-pass filter the signal φ̂∗

k:
φ̂∗∗
k = (1− τ)φ̂∗∗

k−1 + τφ̂∗
k,

where τ ∈ (0, 1) is a tunable filter parameter.
iii) Feed the processed signal φ̂∗∗

k to the output allocator in (13):

zk+1 ∈ G(zk, φ̂
∗∗
k ).

Due to the continuity properties of the scaling and filtering actions in Algorithm 1, combined with the above-mentioned
invariance to scaling of Π(z) and linearity (implying ISS) of the low-pass filter in item (ii), the robustness result in Theorem 2
readily extends to the estimation scheme endowed with the extensions in Algorithm 1, as stated in the following corollary of
Theorem 2.

Corollary 1: Under the assumptions of Theorem 2, with a perturbed plant as in (33), the estimation scheme (7), (13), (16),
(17) endowed with the scaling and filtering action of Algorithm 1 is associated with an input-to-state stable error dynamics.

The second example in Section VII-A illustrates by numerical simulations the beneficial effect of Algorithm 1 in a reasonable
scenario.

V. SELECTION OF THE OPTIMIZER MAP Gz

Our main result, stated in Theorem 1 establishes desirable structural rejection of the bias φ when the adaptation map Gz

satisfies Property 1. A possible algorithm for the selection of Gz satisfying this property is given in this section, providing an
important ingredient of our design.

A. A line-search-based optimization algorithm
For wanting to prove the implication in Property 1, for a fixed φ, we focus on minimizing the cost |Γ(φ)z|2 over the set

z ∈ Sp−1, by defining a suitable difference inclusion for z iteratively minimizing |Γ(φ)z|2 along the projection on Sp−1 of
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rank-one increments of z. More specifically, denoting by ei, i = 1, ..., p, the vectors of the canonical basis of Rp, we focus
on the following optimization problem, parametrized by z ∈ Sp−1,

min
z∈Sp−1

zTS(φ)z := zTΓT (φ)Γ(φ)z, subject to (36a)

z =
z + ζei
|z + ζei|

, ζ ∈ R := [−∞,+∞], (36b)

where we consider the extended real numbers R for ζ, because we consider z = ±ei for the cases ζ = ±∞, respectively (both

of them providing the same value of the quadratic cost): a straightforward extension if one rewrites (36b) as z =
ζ−1z + ei
|ζ−1z + ei|

.

The next lemma provides an explicit expression of the optimizer of (36).
Lemma 2: Fix any i ∈ {1, . . . , p}, define the following quantities:

β0 := eTi (I − zzT )S(φ)z (37a)

β1 := eTi S(φ)ei − zTS(φ)z (37b)

β2 := zT (eie
T
i − I)S(φ)ei (37c)

Then it holds that γ := β2
1 − β2β0 ≥ 0. Moreover, the set valued map G⋆

i : Sp−1 × Rp ⇒ Sp−1 defined as

G⋆
i (z, φ) :=


sgn(β2)

zβ2+(
√
γ − β1)ei

|zβ2+(
√
γ−β1)ei|

if β2 ̸= 0,

z − zT ei

2 ei

(1− zT ei

2 )2
if β2 = 0, β1 > 0

{±ei} if β2 = 0, β1 ≤ 0.

(37d)

yields optimizers for the minimization problem (36) and is outer-semicontinuous.
We are finally ready to introduce the map Gz satisfying Property 1, which stems from selecting the optimal value of all the
rank-one-based optimizers G⋆

i (z, φ), i = 1, . . . , p, namely

Gz(z, φ) := argmin
z∈{G⋆

1(z,φ),...,G⋆
p(z,φ)}

zTS(φ)z. (37e)

We close this section by stating the next result, which is a fundamental ingredient for our observer design, whose proof is
reported in Section V-C.

Proposition 3: Under Assumptions 1 and 2, the function Gz defined in (37e) satisfies Property 1.
Remark 2: The computational complexity of the proposed optimization algorithm (37), which consists in the explicit solution

to a multiple line-search, is O(p) where p is the dimension of the redundant output. In this sense, the algorithm is suitable for
real-time implementation as its complexity scales linearly with the number of outputs, irrespectively of the number of states.
Furthermore, at each iteration of the algorithm, the optimizer is selected among a finite number of candidates that are expressed
in the closed-form (37d). ◦

B. Proof of Lemma 2
Before proceeding with the proof of Lemma 2, we state and prove the following fact, pertaining outer semicontinuous

properties of optimizers.
Fact 1: Let function ψ : Rp×Rs → R be continuous and let K : Rp ⇒ Rs be an outer semicontinuous and locally bounded

set-valued mapping with nonempty values. Then the set-valued mapping Q : Rp ⇒ Rs defined by

Q(ϑ) = arg min
z∈K(ϑ)

ψ(ϑ, z) (38)

has nonempty values and is outer semicontinuous and locally bounded.
Proof of Fact 1. The result follows from [34, Theorem 1.17], parts of which are restated in the language of set-valued

mappings in [34, Example 5.22] (see also [35, Thms 3B.3, 3B.5]). Indeed, the function fK : Rp × Rs → R ∪ {∞} defined
by fK(ϑ, z) = ψ(ϑ, z) if z ∈ K(ϑ), fK(ϑ, z) = ∞ otherwise, is lower semicontinuous, because f is continuous and K is
outer semicontinuous, and level-bounded in z, locally uniformly in ϑ, because K is locally bounded. Thus, [34, Theorem
1.17] applies. In fact, nonemptiness of Q(ϑ) is elementary, as a continuous function z 7→ ψ(ϑ, z) is minimized over the
compact set Q(ϑ), and so is local boundedness of Q because Q(ϑ) ⊂ K(ϑ). Since Q(ϑ) ̸= ∅ and f is continuous, the
function m(ϑ) := minz∈K(ϑ) ψ(ϑ, z) is continuous, by [34, Theorem 1.17 (c)]. Then, [34, Theorem 1.17 (b)] implies outer
semicontinuity of Q. ■
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Let us now proceed with the proof of Lemma 2. Expanding γ yields

γ = (eTi S(φ)ei)
2 + (zTS(φ)z)2 − 2(eTi S(φ)ei)(z

TS(φ)z)

−(zT (eie
T
i − I)S(φ)ei)(e

T
i (I − zzT )S(φ)z)

Using the simplified notation a := eTi S(φ)ei, b := zTS(φ)z, c := zTS(φ)ei, d := zTei with |d| < 1 because z, ei ∈ Sp−1,
after some algebraic manipulations, the expression of γ reads as

γ = a2 + b2 + c2 − 2ab− dbc− dac+ d2ab.

Using the trivial identities

a2 =
d2a2

2
+

(
1− d2

2

)
a2, b2 =

d2b2

2
+

(
1− d2

2

)
b2,

c2 =
c2

2
+
c2

2
,

the terms appearing in γ can be arranged as γ = γ1 + γ2 + γ3 with

γ1 :=
d2a2

2
+
c2

2
− dac =

(
da√
2
− c√

2

)2

≥ 0

γ2 :=
d2b2

2
+
c2

2
− dbc =

(
db√
2
− c√

2

)2

≥ 0

γ3 :=

(
1− d2

2

)
(a2 + b2) + (d2 − 2)ab

=

(
1− d2

2

)
(a− b)2 ≥ 0,

thus showing that the claimed condition γ ≥ 0 holds true.
Let us now show that (37d) always returns minimizers. To this end, denote by f(ζ) the function optimized in (36a) subject to
(36b). Differentiating with respect to ζ yields

f ′(ζ) =
β2ζ

2 + 2β1ζ + β0
|z + ζei|4

. (39)

Consider first the case where z ̸= ±ei, so that the denominator in (39) is never zero. When β2 ̸= 0, the zeros of f ′ are
given by

ζ± =
−β1 ±

√
γ

β2
(40)

We show below that, in this case of β2 ̸= 0 and due to (40), the minimum of f(ζ) is achieved for ζ = ζ+.
In fact, first notice that f(+∞) = f(−∞) = eTi Γ

T (φ)Γ(φ)ei, so that the minimum must occur at some finite stationary
point. For β2 > 0 the numerator of f ′(ζ) in (39) is a convex parabola whose farthest right root must be the unique minimizer,
because the function is decreasing (f ′ is negative) between the two roots). In fact, the right root coincides with ζ+. Conversely,
for β2 < 0, the numerator of f ′ is a concave parabola so that the unique minimizer of f(ζ) corresponds to farthest left root
(the function f is increasing between the two roots), this being again ζ+ in this case. Evaluating (36b) for ζ = ζ+ yields the
top expression at the right-hand side of (37d).
When instead β2 = 0 and β1 > 0, the numerator of f ′(ζ) is a line with positive slope and so the only stationary point of f(ζ)
is a minimum, given by

ζ = − β0
2β1

(41)

and thus proving that the middle condition in (37d) characterizes the unique minimizer. On the other hand, when β2 = 0 and
β1 < 0, the function f(ζ) has no minima and the inf is approached as ζ → ±∞, which proves that all the minimizers are
characterized by the set-valued optimality condition at the third line of (37d).

Let us now address the degenerate case β1 = β2 = 0. By the definition in (37b), we have eTi S(φ)ei = zTS(φ)z, which
can be substituted in (37c) to show that, with β1 = 0, we have β0 = −β2 = 0. Therefore, f ′(ζ) ≡ 0, thus showing in turn
that the function being optimized is actually constant in this case. In particular the vectors {±ei}, corresponding to picking
ζ = ±∞ in (36b), are eligible minimizers and the bottom option in (37d) is consistent.

The last case to be considered is z = ±ei, which also leads to β0 = β1 = β2 = 0, and for which the only attainable values
for z in (36b) are ±ei, both of them leading to the cost zTS(φ)z, therefore both of them being minimizers, as characterized
in the third line of (37d).
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To prove outer semi-continuity of the map (z, φ) 7→ G⋆
i (z, φ) defined in (37d), let us first observe that whenever z ̸= ±ei

the feasible set in optimization (36) is the intersection of Sp−1 with the half plane containing the line L(z) := {z + ζei : ζ ∈
(−∞,+∞)} and the origin (the origin does not belong to L(z) because z ̸= ±ei):

z ∈ P(z) :=

{
z + ζei
|z + ζei|

, ζ ∈ [−∞,∞]

}
.

Since L is a continuous function of z, so is also P .
Now we apply Fact 1 two times as follows. First, with ϑ = (z, φ), select ψ1(ϑ, z) = zTS(φ)z, whose continuity is trivial,

and select K1 as

K1(ϑ) =

{
Sp−1, if β1(ϑ) = β2(ϑ) = 0,
P(z), otherwise, (42)

where we explicitly indicated the dependence on ϑ of β1 and β2 in (37b), (37c). The set-valued map K1 in (42) is globally
bounded (it is a subset of the unit sphere Sp−1) and outer semi-continuous because it coincides with the continuous map P
almost everywhere, and corresponds to the whole (closed) set Sp−1 in the closed set where β1(ϑ) = β2(ϑ) = 0 (as established
in [33, Lemma 5.10], outer semi-continuity coincides with a map having a closed graph). With the selections above, due to
Fact 1, the map Q1(ϑ) = arg min

z∈K1(ϑ)
zTS(φ)z is outer semi-continuous and, due to the proof of optimality stated above,

coincides with the map ϑ 7→ G⋆
i (ϑ) defined in (37d) everywhere, except for the points where β1(ϑ) = β2(ϑ) = 0.

Let us now apply again Fact 1 as follows. Define

K2(ϑ) =

{
Sp−1, if β1(ϑ) = β2(ϑ) = 0,
Q1(ϑ), otherwise, (43)

which is once again outer semi-continuous because it is globally bounded and has a closed graph. Applying again Fact 1 with
the continuous selection ψ(ϑ, z) = 1 − |zTei|, we obtain that map Q2(ϑ) = arg min

z∈K2(ϑ)
1 − |zTei| is outer semi-continuous.

Moreover, Q2(ϑ) = Q1(ϑ) = G⋆
i (ϑ) everywhere except for the points where β1(ϑ) = β2(ϑ) = 0. Let us now analyze these

remaining points. Since
β1(ϑ) = β2(ϑ) = 0 ⇒ K2(ϑ) = Sp−1,

then the optimizer of ψ(ϑ, z) = 1− |zTei| is clearly Q2(ϑ) = ±ei, which coincides with the selection of G⋆
i (ϑ) at the third

line of (37d). This means that Q2(ϑ) = G⋆
i (ϑ) also when β1(ϑ) = β2(ϑ) = 0 and outer semi-continuity of Q2 implies outer

semi-continuity of G⋆
i , as to be proven. ■

Remark 3: Based on the proof of Lemma 2, it is possible to give a qualitative characterization of the extrema of (36) in the
various cases considered in (37d). In fact, when β2 ̸= 0 the function admits both a global minimum and a global maximum.
When β2 = 0 and β1 > 0, the function still admits a global minimum, whereas its maximum is formally attained at ζ = ±∞
(note that the cost is the same for ζ = +∞ and ζ = −∞). In the complementary scenario β2 = 0 and β1 < 0, a mirror
property holds with the minimum attained at ζ = ±∞. In all three cases, the minimization problem is nontrivial and minima
are strict. Conversely, in the limit case β2 = β1 = 0 (which implies β0 = 0), the function (36a) reduces to a constant, due to
(39) and the optimization problem (36) becomes trivial. In particular, such degenerate condition only arises when z = ±ei or,
more generally, when z and ei belong to a common eigenspace for the matrix S(φ).

C. Proof of Proposition 3
Before proceeding with the proof of Proposition 3, we introduce the following lemma, hinging on the properties of Y in

Assumption 2.
Lemma 3: Let Y ∈ Rp×q satisfy Assumption 2, denote S = diag(φ)Y Y Tdiag(φ) as in (36a), and λmin := minσ(S)\{0} >

0. Then

min
j=1,...,p

eTj Sej < λmin. (44)

Proof: Define Σ = Y Tdiag(φ)2Y ∈ Rq×q , and observe that

σ(Σ) \ {0} = σ(S) \ {0}. (45)

Since Y Y T is a projection and the non-alignment condition in item 2 of Assumption 2 holds2, then one has

eTj Y Y
Tej < 1 (46)

eTj Sej = φ2
je

T
j Y Y

Tej ≤ φ2
j , (47)

2It is easy to check that eTj Y Y T ej = 1 ⇔ ej ∈ Im(Y )
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where the equality in (47) holds if and only if φj = 0. Now, let (λ̄, b) be an arbitrary eigenpair for Σ with λ̄ > 0. Then, using
(46) and item 1 of Assumption 2, one has

bTΣb = bT (Y Tdiag(φ)2Y )b = λ̄bT b = λ̄bTY TY b,

which is equivalent to
bTY T (diag(φ)2 − λ̄Ip×p)︸ ︷︷ ︸

=:N

Y b = 0.

Since by construction Y b ̸= 0, the only way for the latter to be satisfied is N being either singular or sign indefinite, which,
together with λ̄ > 0, results in

λ̄ ≥ min
j=1,...,p

φ2
j . (48)

The latter holds for each non-zero eigenvalue λ̄ of Σ, hence also for each non-zero eigenvalue λ̄ of S, in view of (45).
Now, two cases should be considered: either (i) min

j=1,...,p
φ2
j > 0, which means that the right inequality in (47) is strict, so that

combining it with (48) we obtain (44), or (ii) min
j=1,...,p

φ2
j = 0, which means (from positivity of λmin) that λmin > min

j=1,...,p
φ2
j

and the result (44) is proven again, due to (47), thus concluding the proof.
Based on Lemma 3, we are now ready to prove Proposition 3.
Proof of Proposition 3. We first prove the properties of Gz , and then we prove the decrease condition (22).
The map Gz(z, φ) in (37e) is defined through the minimum over a finite set of outer semi-continuous maps and therefore

it is an outer semi-continuous map itself. Moreover, it is trivially nonempty because G⋆
i is never empty, and globally bounded

because its values belong to the compact set Sp−1.
Let us now prove the decrease condition (22). First note that the optimal cost in (36a) coincides with |Γ(φ)z+|2. Using

optimality of Gz in (37e), let us first address the case where β0 ̸= 0 for at least one i ∈ {1, . . . , p}. Under this condition, we
prove next that z /∈ G⋆

i (z, φ) by also leveraging on the observations reported in Remark 3. Indeed, consider all three cases in
(37d).
• In the first case, the minimizer z⋆ of (36) is obtained by selecting ζ = ζ+ (see (40)): the unique minimum of zTS(φ)z; since
β2 ̸= 0, then ζ+ ̸= 0 and z ̸= z⋆ so that z /∈ G⋆

i (z, φ).
• In the second case, the unique minimizer is ζ as in (41), which is once again not zero, and again we have z /∈ G⋆

i (z, φ).
• In the third case, first note that it should be β1 < 0, because β2 = β1 = 0 would imply β0 = 0 while we are focusing on
β0 ̸= 0; but β1 < 0 implies z ̸= ±ei, while ±ei are the only two optimizers, as discussed in Remark 3. As a consequence, z
is not an optimizer, namely z /∈ G⋆

i (z, φ).
The fact that z /∈ G⋆

i (z, φ), established above, implies condition (|Γ(φ)z⋆i | < |Γ(φ)z|) for any z⋆i ∈ G⋆
i (z, φ), due to the

fact that z is not a minimizer of the underlying line-search problem (while z⋆i is a minimizer due to Lemma 2). Finally, the
minimum in (37e) ensures that any z⋆ ∈ Gz(z, φ) leads to a value |Γ(φ)z⋆| ≤ |Γ(φ)z⋆i |, thus showing the decrease condition
(22) in Property 2.

The condition where β0 = 0 for all i ∈ {1, . . . , p} is more challenging since a decrease of the cost function occurs if and
only if β1 < 0 for at least one i ∈ {1, . . . , p} (whereas due to β0 = 0, z⋆i = z for any i ∈ {1, . . . , p} such that β1 ≥ 0). On
the other hand, β0 = 0 for all i = 1, ..., p implies that (I − zzT )S(φ)z = 0, which corresponds to z being an eigenvector of
S(φ). If the eigenvalue corresponding to the eigenvector z is zero, then Γ(φ)z = 0 and (the left case in) the decrease condition
(22) holds. If instead the eigenvalue corresponding to the eigenvector z is some λ̄ > 0, then we may invoke Lemma 3, which
establishes that there exists at least one search direction providing a smaller value of the cost |Γ(φ)z+|2. In other words,
Lemma 3 establishes that β1 < 0 for at least one i ∈ {1, ..., p} and the decrease condition (22) of Property 1 holds also in
this last case. ■

VI. OVERALL OBSERVATION SCHEME

We combine here the construction in Section IV and the ensuing Theorem 1 (which relies on Assumption 1) with the
algorithm design in Section V and the ensuing Proposition 3 (which relies on Assumption 2). This combination allows stating
the following corollary pertaining the observation scheme represented in Figure 1 and comprising plant (1), the asymptotic
bias estimator (7), the selector (17), the adaptive pseudoinverse observer (13) and the optimizer (16) with the choice of Gz in
(37), which leads to the error dynamics (8), (20) derived in Section IV-A.

Corollary 2: Under Assumptions 1 and 2, consider any pair of gains M and L such that A−LH and A−MH are Schur.
If Property 2 holds, then the compact set A in (25) is globally asymptotically stable for the error dynamics (8), (20) associated
with the plant-observer scheme (1), (7), (17), (13), (16), (37).

Corollary 2 clarifies that the only requirement to be clarified for the effectiveness of the proposed observation scheme stands
in Property 2, which is associated with a nontrivial interplay between the bias φ and the output matrix C, as characterized by
the matrix Y . An interesting defective case providing a necessary condition involving φ and Y corresponds to the scenario
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of two identical sensors sharing the same exact bias, which structurally prevents our idea from being applicable. This specific
case, and its generalization, is characterized in the next remark.

Remark 4: In the special case where φo = 0 in (6), namely φ ∈ Im(Y ), it is impossible to find a vector z such that R(z)
is invertible and Γ(φ)z = Γ(z)φ = 0. To see this, since from (6) we get φ = Y wφ for some wφ ∈ Rq , one has

R(z)−1Γ(z)φ = (Y T diag(z)Y )−1Y T diag(z)Y wφ = wφ,

which implies that the effect of φ (through wφ) cannot be filtered out structurally by the adaptive pseudo-inverse. ◦
Besides the necessary conditions for Property 2 discussed in Remark 4, we instead discuss below two relevant applications

of our results: a first one, requires having one direction of redundancy, namely p − q = 1 in Assumption 1, which allows
proving Property 2; a second one where, with general redundancy level, we propose an extended scheme overcoming the need
for Property 2 with the drawback of potential reduced effectiveness of the proposed nonlinear observation scheme.

A. The 1-redundancy case
We consider here the case where we impose the next 1-redundancy assumption.
Assumption 3: The integers p (size of y) and q (rank of C) in Assumption 1 satisfy p− q = 1.
When enforcing Assumption 3, we have the advantage that matrix Γ(φ) has dimension p− 1× p and we may characterize

the case where its kernel has dimension 1. Indeed, the least dimension of the kernel coincides with the redundancy level p− q,
therefore this strategy only applies to the 1-redundancy case.

The proposition below formalizes a convenient characterization of scenarios where Property 2 holds, based on the next
technical assumption, which involves easily checkable conditions on φ and Y .

Assumption 4: For matrix Y and vector φ it holds that det(Y T diag(φ)2Y ) ̸= 0 and there exists j ∈ {1, . . . , p} such that
det(Y T diag(nj(φ))Y ) ̸= 0, where nj(φ) = Ξ(φ)ej and

Ξ(φ) = I − diag(φ)Y
(
Y T diag(φ)2Y

)−1
Y T diag(φ). (49)

Proposition 4: Under Assumptions 3 and 4, Property 2 holds for a sufficiently small ϵ > 0.
Proof: First note that having det(Y T diag(φ)2Y ) ̸= 0 from Assumption 4 implies that Γ(φ) is full row rank. Therefore,

its kernel is one-dimensional and coincides with the image of the projection matrix Ξ(φ) in (49), which is by construction a
rank 1 matrix. Then, any of the nonzero columns nj(φ) of Ξ(φ), as denoted in Assumption 4 is a basis vector spanning the
one-dimensional subspace Z† := {z ∈ Rp : Γ(z)φ = 0}. Introduce the singularity set

Zbad := {z ∈ Rp : det(R(z)) = 0}, (50)

which by construction is a p−1 dimensional cone. Due to the fact that Z† has dimension 1, one and only one of the following
two conditions is fulfilled:

(i)
[
Z† ⊂ Zbad

]
OR (ii)

[
Z† ∩ Zbad = {0}

]
, (51)

i.e., either the kernel Z† is entirely contained in the singularity set (50) or it is everywhere away from it, except at the origin.
On the other hand, case (i) can be ruled out by the second requirement in Assumption 4, entailing that the spanning vector of
Z† does not belong to the singularity set Zbad in (50). Now, observing that Z⋆ = Z† ∩Sp−1 = {z◦,−z◦} for some z◦ ∈ Sp−1

and using condition (ii) in (51), a strictly positive number r̄ > 0 exists, such that

|det(R(±z◦))| = r̄.

Picking ϵ < r̄, the pair of antipodal points {z◦,−z◦} belong to the interior of Sϵ, thus showing that Property 2 holds in this
case.

We may now state the following corollary of Corollary 2 and Proposition 4.
Corollary 3: Under Assumptions 1, 2, 3 and 4, consider any pair of gains M and L such that A− LH and A−MH are

Schur. Then the compact set A in (25) is globally asymptotically stable for the error dynamics (8), (20) associated with the
plant-observer scheme (1), (7), (17), (13), (16), (37).

B. Generalized scheme with a logic variable
We discuss here the case where no assumption is imposed on φ nor on the level of output redundancy, to show that our

scheme remains well behaved, even though the structural rejection of φ cannot be always guaranteed as in the previous section.
The idea of this section is to propose a modified scheme that exploits the knowledge of the situations where the selector map
in (17) disregards z and sticks to the previous value of s, to activate an injection term in the observer dynamics.
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To this end, we first introduce a logic state variable h ∈ {0, 1} in our observation scheme, and then modify the selector (17)
as follows: [

s+

h+

]
∈ Gh(s, z) :=


[ z0 ] if z /∈ Sp−1 \ Sϵ,

[ s1 ] if z /∈ Sϵ,

{[ s1 ] , [ z0 ]} otherwise.
(52)

With the logic-enhanced selector (52), variable h is an indicator of whether the adaptation parameter z is being transferred to
s (in that case we have h = 0) or the variable s is kept constant, possibly away from the desirable set where the bias φ is
suitably rejected. Motivated by this second case, variable h = 1 is used to trigger an additive term in the observer dynamics
(13), which is extended as follows

x̂+ = Ax̂+Bu+ LΠ(s)(y − ŷ − hφ̂)
ŷ = Cx̂.

(53)

The resulting h-modified observation scheme, referred to as adaptive pseudo-inverse observer with residual injection, comprises
the dynamics (1), (7), (52), (53), (16), (37) associated with the error dynamics (8) combined with the following generalization
of the error dynamics (20)

e+ = (A− LH)e+ LR(s)−1Γ(s)(φ− hφ̂),[
s+

h+

]
∈ Gh(s, z),

z+ ∈ Gz(z, φ̂),

(e, s, h, z) ∈ Eh, (54)

with Eh := Rn×Sϵ×{0, 1}×Sp−1 being the (forward invariant) set where the state (e, s, h, z) is allowed to evolve, and with
the input φ̂ ∈ Rp coming from observer (7).

The effect of the term hφ̂ on the dynamics of e in (54) is that two cases can occur: either h = 0 for a finite number of
times, and then the dynamics eventually is forced by the perturbation φ− φ̂, which converges to zero due to the properties of
the asymptotic bias estimator, or h = 0 for an infinite number of times, which implies that s converges to z and the reduction
argument of Theorem 1 holds, so that convergence to zero of e is guaranteed. Combining these two cases, we may prove that
the logic-enhanced scheme establishes global asymptotic stability of the compact set

Ah := {(ε, e, s, h, z) ∈ Rn×Rn × Sϵ × {0, 1} × Sp−1 :

ε=ε⋆, e=0}, (55)

without the need of enforcing Property 2. This fact is formalized in the next corollary.
Corollary 4: Under Assumptions 1 and 2, consider any pair of gains M and L such that A − LH and A − MH are

Schur. Then the compact set Ah in (55) is globally asymptotically stable for the error dynamics (8), (54) associated with the
plant-observer scheme (1), (7), (52), (53), (16), (37).

Note that, Corollary 4 does not imply that solutions asymptotically approach the set where Γ(s)φ = 0, because a generic
value of s ∈ Sϵ is allowed for s in Ah of (55). Nevertheless, we emphasize that whenever z approaches a point in the interior of
Sϵ, which is therefore feasible for s, the variable q eventually remains identically zero and the solutions of the logic-enhanced
scheme coincide with those of the original scheme in Corollary 2. As a consequence, one can think of the enhanced scheme
of this section as a clever solution recovering the behavior established in Corollary 2 whenever Property 2 holds, and also
leading to asymptotic estimation via adaptive pseudoinverses in the absence of Property 2. In particular, as discussed later in
Section VII.B, the modified scheme (54) is likely to provide better performances than a scheme with a static pseudo-inverse
having fixed weights.

m1 m2

d1 d2

k1 k2

u

Fig. 2. Coupled mass-spring-damper systems
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VII. NUMERICAL SIMULATIONS

Let us illustrate by means of numerical simulations the potential of the dynamic output allocation method. We consider the
case-study of coupled mass-spring-damper subsystems as in Figure 2, whose (continuous-time) state-space representation is

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1

−k1+k2

m1

k2

m1
−d1+d2

m1

d2

m1

k2

m2
− k2

m2

d2

m2
− d2

m2


︸ ︷︷ ︸

=A0


x1
x2
x3
x4

+


0
0
0
1

m2


︸ ︷︷ ︸
=B0

u.

By applying an exact discretization procedure with sampling time τ > 0, we get a discrete-time system in compact form

x+ = Ax+Bu,

with A = exp(A0τ) and B =
∫ τ

0
exp(A0(τ − σ))B0dσ. The system parameters for the simulation study have been chosen

according to Table I.

m1 m2 k1 k2 d1 d2 τ
1.5 1 1.2 1 5·10−3 9·10−3 10−2

[Kg] [Kg] [N/m] [N/m] [Ns/m] [Ns/m] [s]

TABLE I
SYSTEM PARAMETERS USED IN THE SIMULATIONS.

The system is supposed to be controlled by an open-loop periodic input u. To better highlight the features of the proposed
architecture, two different sensor combinations have been considered, falling into the 1-redundancy case and the general case,
respectively.

A. First scenario: p = 3, q = 2

We begin by considering the system equipped with three sensors, providing: two position measurements for the displacements
of the mass m1 and the mass m2, and a range measurement for the relative distance between the two masses, with respect to
the first mass. Such (redundant) suite of sensors can be encoded in the output matrix

C =

1 0 0 0
0 1 0 0
1 −1 0 0


which is the same used in Example 1. In this first scenario the unknown vector φ has been chosen as φ = γ[1 −1.5 0.5]T , where
γ is a possibly time-varying amplitude. Taking the selection (Y,H) as described in (4a)-(4b), the conditions of Assumption 2
are met. Based on this choice, the gains of the asymptotic bias estimator and the pseudoinverse observer are selected in order
to assign the eigenvalues according to

spec(A−MH) = {0, 0, 0.01, 0.01},
spec(A− LH) = {0.75, 0.8, 0.85, 0.9}

Two examples have been considered, with γk = 1 constant and with γk = 1 + 0.1 sin(100 τk), where k denotes the discrete
time. In the first case, we compare the performance of the adaptive pseudo-inverse observer against an observer based on a
constant pseudo-inverse with uniform weights, corresponding to the choice s ≡ 1√

3
1. The behavior of the estimation error

|x− x̂| is shown in Figure 3 (top), where the vanishing of the bias effect thanks to the adaptation law can be appreciated (see
the zoomed box). It must be noticed that, due to the adaptation, the dynamic pseudo-inverse observer is likely to experience a
larger transient. The evolution of the selector s is reported in Figure 3 (bottom). In this case, where Assumptions 3 and 4 hold,
the selector s coincides with the optimizer z, thus guaranteeing the optimal adaptation of the pseudoinverse Π(s) = Π(z) and
a perfect cancellation of Π(s)φ̂, in light of Corollary 3.

In the second case with non constant γ, considering a larger number of samples to allow for a correct filtering action, we
have enhanced the proposed adaptive observer with the scaling & filtering algorithm described in Section IV-D. We propose
in Figure 4 (top) a comparison of the performance of our adaptive observer against a standard observer with injection of the
estimated φ̂, defined by

x̂+ = Ax̂+Bu+ L(Y †(Cx− φ̂)−Hx̂), (56)

as well as with an enhanced version of the same where the estimation φ̂ is processed by a filter before the injection. The
adaptive observer largely outperforms the observer (56) with injection without filtering. The comparison with the observer (56)
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Fig. 3. Scenario 1 with constant φ: norm of estimation error (top) and selector states (bottom)

with injection of the filtered estimation φ̂ is more interesting and meaningful, and one can still appreciate the improvement
provided by the adaptive observer, which yields a lower steady-state estimation error. The evolution of the selector states is
illustrated in Figure 4 (bottom): after an initial highly oscillatory transient, the steady state corresponds to a slight perturbation
of the constant steady state of Figure 3 (bottom).

B. Second scenario: p = 4, q = 2

In this second scenario, in addition to the previous sensors, we consider another range sensor measuring the relative distance
with respect between the two masses as seen by the second mass. Overall, this corresponds to dealing with the augmented
output matrix

C =


1 0 0 0
0 1 0 0
1 −1 0 0
−1 1 0 0


for which a decomposition C = Y H with the desired property can be easily obtained as in the previous case. The vector φ is
now supposed to be constant and equal to φ = [1 −1.5 0.5 − 0.15]T . Due to the condition p = 4 > 2 = q, we might expect
the intersection Z⋆ ∩ Zbad to be nonempty and, for this reason, we implement the modified scheme with residual injection
described in Section VI-B and defined by (53)-(54). The corresponding estimation error is depicted in Figure 5 (top), showing
that asymptotic convergence is achieved and proving the advantage of the proposed scheme against an observer designed using
the pseudo-inverse with constant uniform weights, namely with s ≡ 1

21. For the sake of completeness also the comparison
with the adaptive observer without residual injection is considered. The selector state is prevented from coinciding with the
optimizer state, as evident from Figure 5 (bottom), because the latter lies too close to the singularity region Zbad and Property 2
does not hold in this case. Due to such condition, the adaptive observer without residual injection, whose evolution is also
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Fig. 4. Scenario 1 with time-varying φ: norm of estimation error (top) and selector states (bottom)

depicted in Figure 5 (top), is not able to deliver an accurate estimate, thus confirming the benefit of the modified scheme
(53)-(54).

VIII. CONCLUSIONS

A robust estimation scheme has been proposed based on adaptive pseudoinverses with dynamic weights coupled with
linear Luenberger-like observers in the presence of redundant measurements for discrete-time linear systems. The proposed
architecture, which is based on the cascade interconnection of two different observers, is proved to be successful at rejecting
constant biases affecting the sensor measurements without the need of matching conditions or any prior knowledge on the
structure of the perturbations. The first observer is in charge of estimating the output perturbation signal, whereas the second
uses dynamic pseudoinverses to seek for the best combination of sensors. Such an optimization scheme hinges on a novel
line-search algorithm for the minimization of positive semi-definite quadratic forms over the unit sphere. In addition, a selector
is introduced to overrule the optimizer whenever this would drive the adaptive pseudo-inverse too close to singularity.

Extensive simulations illustrate and corroborate the theoretical findings, exploiting several key aspects of the proposed method
through the application to the case study of a discrete-time mechanical system with redundant sensors.

Future work will be oriented towards obtaining a global, or semiglobal, solution for the continuous-time case, possibly
introducing hybrid optimization policies based on the results contained in this paper. Moreover, we are currently working on
the application of our line-optimization algorithm to other problems such as calibration of cameras and attitude estimation.
Finally, it may be worth investigating the extension of the proposed design scheme to unknown input observers with redundant
outputs.
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