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Integrate-and-reset feedback and feedforward for a solenoid with unknown
parameters

Riccardo Bertollo, , Michael Schwegel, , Andreas Kugi, , Luca Zaccarian,

Abstract— We propose a hybrid feedback-feedforward con-
trol scheme for output current tracking in a solenoid, based
on an integrate-and-reset paradigm. The feedback, based on
a First-Order Reset Element, produces stabilizing inputs com-
prising diverging exponentials, inducing an aggressive feedback
correction. The feedforward uses a hybrid recursive least-
squares method with directional forgetting. The hybrid nature
of the control loop allows using non-exponentially stable filters,
which preserve the past information, as opposed to the stable
filters typically used in the adaptive control literature. We prove
stability of both the estimation and the tracking error, also using
a novel result on forward invariance of a desirable set where
the information matrix evolves. Experimental results confirm
the effectiveness of the proposed hybrid control scheme.

I. INTRODUCTION

Controlling solenoid-based actuators is challenging due
to large variations of unknown parameters, mostly caused
by manufacturing tolerances, changing environmental condi-
tions or degradation. Classical strategies include PID control,
internal model control (IMC) and sliding mode control
(SMC) [10], [17], featuring high robustness, often at the
expense of tracking performance [16]. Recent advances in
nonlinear hybrid dynamical systems [8], which combine
continuous and discrete evolution of their states, allowed
to revisit the historical “reset control” strategy of [4] and
provide Lyapunov-based tools for stability analysis. These
tools enable a suggestive “integrate and reset” paradigm,
allowing for aggressive exponentially diverging branches of
feedback actions with dead-beat reset actions, stemming
from a suitable feedforward signal [1], [11], [15]. Integrate-
and-reset control of electromechanical systems was shown in
[6], [13], with a rudimentary adaptive feedforward, further
developed in [5], where the feedforward adaptations are
performed using converging input-output filters.

In this paper, we improve upon the work in [5] by
following the “integrate and reset” paradigm also for these
feedforward-related filters. Specifically, we employ non-
converging filters, such as integrators, which have the advan-
tage of guaranteeing that none of the gathered information
is lost before the adaptation time. At suitable jump times, all
of the information is used, then the filters are reset to zero,
ensuring the boundedness of their output. In this setting, we
manage to prove convergence properties of an adaptation law
stemming from the well-known recursive least squares (RLS)
estimation method. Recent works [9], [12] show that RLS
possesses desirable boundedness properties, further improved
by directional forgetting [3], [14] to ensure boundedness
of the information matrix, for which we prove here a new
explicit bound. As compared to [2], we address here three

additional challenges. First, we prove the preassigned explicit
lower and upper bounds for the information matrix, which
were only introduced as a conjecture in [2]. Second, while
only simulation results were given in [2], we include here
experimental validation of the proposed control scheme by
multiple tests on a commercial solenoid. Last, we propose
an event-triggered adaptation mechanism, which replaces
the typical periodic logic and could be exploited to ensure
properties like persistence of excitation, thus improving the
robustness of the adaptive scheme against parameter drift.

The paper is organized as follows. In Sections II and III
we describe the feedback and feedforward components,
respectively. In Section IV we report the closed-loop stability
analysis. Experiments are finally reported in Section V.

Notation: Denote
(
x1, x2

)
:=

[
x⊤1 , x

⊤
2

]⊤
. Following [8],

for a hybrid solution ϕ(t, j), parametrized by continuous
time t and discrete time j, ϕ̇ characterizes its derivative with
respect to t and ϕ+ its next value with respect to j.

II. HYBRID FEEDBACK STABILIZATION

A good approximation of a solenoid dynamics from the
voltage input u to the current output y (see [16, §2]) is

ẏ = apy + bpu+ d̄, (1)

where d̄ is a constant unknown bias, and ap = −RL/L, bp =
1/L (where L is the solenoid inductance and RL its electrical
resistance) are unknown parameters.

Assumption 1: The unknown scalars ap and bp are such
that ap < 0 and bp > 0.

We also assume that both the reference current t 7→ r(t)
and its derivative ṙ are available to the controller (see, e.g.,
[7, Rmk. 4] for a possible way of obtaining ṙ by suitably
filtering the reference r), and that they are both bounded,
without necessarily knowing the bounds.

Assumption 2: The reference input t 7→ r(t) is a differ-
entiable signal and both r and ṙ are uniformly bounded.
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Fig. 1. Block diagram of the closed-loop architecture.



Our integrate-and-reset control scheme is sketched in
Fig. 1. We discuss the feedforward action in Section III,
while the feedback is performed by a First-Order Reset
Element (FORE) [1], [15]. The FORE is a hybrid controller
featuring an unstable continuous-time control action, which
is appropriately reset to zero under specific conditions, to
obtain stable hybrid trajectories [11]. Its dynamics is

ẋc = acxc + bce, τ̇r = 1, (e, xc, τr) ∈ Fr, (2a)
x+c = 0, τ+r = 0, (e, xc, τr) ∈ Jr, (2b)

with the controller state being xc ∈ R and the addition of
a timer state τr (“r” stands for “reset”), to ensure that the
controller output is sufficiently regular. The scalars ac, bc
are typically positive (generating an unstable continuous-time
action) and they can be arbitrarily tuned, as we will show
later in this Section. The jump and flow sets are defined as

Fr :=
{
(e, xc, τr) : εe

2 + 2exc ≥ 0 or τr ≤ ρmin
}
,

Jr :=
{
(e, xc, τr) : εe

2 + 2exc ≤ 0 and τr ≥ ρmin
}
,

(2c)

where ε and ρmin are small positive constants, as in [11].
Their choice has little effect on the closed-loop solutions
if they are selected sufficiently small by “hierarchically”
fixing ε small and then choosing ρmin small enough [11].
The interconnection

u := xc + uff , e := r − y, (3)

depicted in Fig. 1, gives the following continuous evolution
for the tracking error (see [2, eq. (6)] for the derivations)

ė = ape− bpxc − d, e+ = e, (4)

where d = bpuff − ṙ+ apr+ d̄ is a time-varying disturbance
that should be canceled by the feedforward uff. The complete
hybrid dynamics of the feedback subsystem is{
ẋfb = AFxfb +Bd,
τ̇r = 1,

x⊤fbMxfb ≥ 0 or τr ≤ ρmin,{
x+fb = AJxfb,
τ+r = 0,

x⊤fbMxfb ≤ 0 and τr ≥ ρmin

(5a)

where xfb = (−e, xc) and

[
AF B
AJ M

]
=


ap bp 1
−bc ac 0
1 0 ε −1
0 0 −1 0

 . (5b)

The following proposition, whose proof is reported in [2,
Prop. 1], provides useful degrees of freedom for the choice
of the feedback controller parameters (ac, bc).

Proposition 1: Under Assumption 1, for any positive se-
lection of the controller parameters (ac, bc) ∈ R>0 × R>0,
the point (e, xc) = (0, 0) is globally exponentially stable
(conditionally to hierarchically small ε and ρmin) for the reset
feedback (2), and is finite gain exponentially input-to-state
stable from the disturbance d to the state xfb.

III. HYBRID FEEDFORWARD ADAPTATION

If we knew the values (ap, bp, d̄) of the plant parameters,
we could select the feedforward term uff in Fig. 1 to be the
ideal value u∗ff, corresponding to perfect cancellation of d in
(4). With χ(r, ṙ) = [1 r ṙ]⊤ known function of r and its
derivative ṙ, and θ∗ comprising the plant parameters

θ∗ :=
[
θ∗1 θ∗2 θ∗3

]⊤
= b−1

p

[
−d̄ −ap 1

]⊤
, (6)

we may determine the ideal u∗ff as

u∗ff = b−1
p (ṙ − apr − d̄) = χ⊤(r, ṙ)θ∗. (7)

Since θ∗ in (6), (7) is unknown, we introduce a controller
state θ representing its estimate, to be adapted via an inte-
grate and reset mechanism. Then, based on (7), we select

uff := χ⊤(r, ṙ)θ (8)

in such a way that uff → u∗ff whenever θ → θ∗.
Following previous reset-based sampled-data adaptations

[5], [6], [13], we freeze the estimate θ during flows and we
reset it at jumps, based on an integration phase (integrate
and reset). More specifically, we augment the scheme with
two integrators ξy, ξu and a memory element ξs, collected
in the state ξ =

(
ξy, ξu, ξs

)
∈ R3. We also use a timer τa

(“a” stands for “adaptation”) and a symmetric matrix state
R ∈ R3×3 (which may be called information matrix), which
is kept constant during flows and is updated at jumps, just
like θ. The feedforward dynamics is then
θ̇ = 0,

ξ̇ =
(
y, u, 0

)
, τ̇a = 1,

Ṙ = 0,

τa ∈ [0, ρmax], (9a)


θ+ = gθ(θ,R, ξ, τa, y)

ξ+ =
(
0, 0, y

)
, τ+a = 0,

R+ = gR(R, ξ, τa, y),

τa ∈ [ρmin, ρmax], (9b)

where the update gθ and gR of θ and R are specified below.
In (9), instead of exponentially stable filters (as in [5], [16]),
we simply integrate, to avoid any forgetting effect before the
update of θ. Once used in the update, the information in our
integrators is reset to zero (integrate and reset).

The update of θ and R stems from the information on the
evolution between two consecutive adaptations, collected in

φ :=
[
τa ξy y − ξs

]⊤
. (10)

Inspired by the recursive least-squares (RLS) algorithm with
directional forgetting [3], we use φ in (10) to define the
update functions gθ and gR in (9b) as follows

gθ(θ,R, ξ, τa, y) := θ − P+ φ

φ⊤φ

(
φ⊤θ − ξu

)
, (11a)

gR(R, ξ, τa, y) := R− η∆R+Φ, (11b)

∆R :=
Rφφ⊤R
φ⊤Rφ

, Φ :=
φφ⊤

φ⊤φ
, (11c)

where P := R−1 (which may be called covariance matrix)
is always well defined due to Proposition 2 below. Matrix



Φ in (11c) is the projection matrix induced by the available
direction φ, and the forgetting factor η ∈ (0, 1) multiplies
the directions ∆R in (11c) to be partially forgotten. The
equations in (11) are well defined at adaptations, since the
first element of φ is τa, which is never zero, due to (9b).

The following proposition, which was stated as a con-
jecture in [2], shows that along solutions of (9)-(11) the
information matrix R (or P−1) evolves in the compact set

XR :=
{
R = R⊤ ∈ R3×3 : αmI ≤ R ≤ η−1I

}
, (12)

for any αm ∈ (0, 1), in the sense that

R(0, 0) ∈ XR =⇒ R(t, j) ∈ XR, ∀(t, j) ∈ domR. (13)

Note that in equation (13) solution R(t, j) has a domain
domR comprising two times (continuous and discrete), as
is typical for hybrid solutions [8]. We also emphasize that
Proposition 2 is written for the case XR ∈ R3×3 but applies
to any other dimension. A related result is given in [3, Thm.
1-2], where only the existence of generic uniform lower and
upper bounds for R are given. The statement of Proposition 2
is stronger, in that it explicitly characterizes set XR as in
(12), as a function of the parameters αm < 1 and η < 1.

Proposition 2: For any αm ∈ (0, 1) and η ∈ (0, 1), any
solution to (9) with the update law (11b) satisfies (13).

Proof: Since gR in (11b),(11c) does not depend on
|φ|, without loss of generality, consider |φ|2 = φ⊤φ = 1.
Assuming R ∈ XR, we prove below upper and lower bounds
in (12) for R+ = R− η∆R+Φ one by one.

Proof of R+ ≥ αmI: Given R ∈ XR, each vector v ∈ R3

can be decomposed as v = aφ + bψ, with a, b ∈ R and a
suitable direction ψ ∈ R3 conjugate of φ with respect to R
(dependent on v), which satisfies ψ⊤Rφ = 0. By possibly
scaling b, we select |ψ|2 = ψ⊤ψ = 1. Then we have

v⊤R+v = a2φ⊤Rφ+ b2ψ⊤Rψ − ηa2φ⊤Rφ

+ a2 + 2abψ⊤φ+ b2(ψ⊤φ)2.

Adding and subtracting b2αm and rearranging, we obtain

v⊤R+v = αm(a2 + b2 + 2abψ⊤φ)

+ (1− αm)(a2 + 2abψ⊤φ) + b2(ψ⊤φ)2

+ a2(1− η)φ⊤Rφ+ b2(ψ⊤Rψ − αm).

Since R ≥ αmI , the terms in the last line are non-negative,
therefore

v⊤R+v ≥ αm(a2 + b2 + 2abψ⊤φ) + (1− αm)(
a2 + 2abψ⊤φ+ b2(ψ⊤φ)2

)
+ αmb

2(ψ⊤φ)2

= αmv
⊤v+(1− αm)(a+ bψ⊤φ)2 + αmb

2(ψ⊤φ)2

≥ αm|v|2,

which proves that R+ ≥ αmI , since v is any vector in R3.

Proof of R+ ≤ η−1I: For each vector v ∈ R3, decompose
it as v = aφ + bψ, where a, b ∈ R and ψ is a conjugate
direction of φ (dependent on v) satisfying ψ⊤φ = 0. Similar

to the previous point, we can select |ψ|2 = ψ⊤ψ = 1 by
possibly rescaling b. We have

v⊤R+v = a2φ⊤Rφ+ 2abψ⊤Rφ+ b2ψ⊤Rψ

− ηa2φ⊤Rφ− 2ηabψ⊤Rφ− ηb2
(ψ⊤Rφ)2

φ⊤Rφ
+ a2

= (1− η)(aφ+ bψ)⊤R(aφ+ bψ) + ηb2ψ⊤Rψ

− ηb2
(ψ⊤Rφ)2

φ⊤Rφ
+ a2

= (1− η)v⊤Rv + ηb2ψ⊤Rψ−ηb2 (ψ
⊤Rφ)2

φ⊤Rφ
+ a2.

Using R ≤ η−1I , we obtain

v⊤R+v≤
(
η−1− 1

)
|v|2+ηb2ψ⊤Rψ−ηb2 (ψ

⊤Rφ)2

φ⊤Rφ
+ a2.

Since φ and ψ are orthogonal and with unit norm, we can
substitute a2−|v|2 = a2|φ|2−|v|2 = −b2|ψ|2 = −b2 to get

v⊤R+v ≤ η−1|v|2 + b2
(
ηψ⊤Rψ − 1− η

(ψ⊤Rφ)2

φ⊤Rφ

)
≤ η−1|v|2 + b2

(
ηψ⊤Rψ − 1

)
≤ η−1|v|2,

where the last inequality comes once again from the upper
bound on R, and proves that R+ ≤ η−1I , since v is any
vector in R3, thus concluding the proof.

IV. STABILITY ANALYSIS

Based on the nominal value of the parameter vector θ∗ in
(6), define the parameter estimation error

θ̃ := θ − θ∗ (14)

and the following scalar error variable

ξ̃a(t, j) :=
1

bp

[(
y(tj , j)− ξs(tj , j)

)
− ap

(
ξy −

∫ t

tj

y(s, j)ds

)
− bp

(
ξu −

∫ t

tj

u(s, j)ds

)
− d̄

(
τa − (t− tj)

)]
,

whose rationale is that, in view of (9), its evolution is

˙̃
ξa = 0, during flows,

ξ̃+a = ξ̃a, at feedback resets (2b), (15)

ξ̃+a = 0, at feedforward resets (9b).

Additionally, introduce the transformed input χi(t, j) :=∫ t

tj
χ(s, j)ds, where tj denotes the time of the last feed-

forward reset. Input χi is uniformly bounded due to the
boundedness assumed in Assumption 2. Introduce also the
following error coordinate related to φ in (10)

φ̃ := φ− χi := φ−
∫ t

tj

χ(s, j)ds, (16)

which does not change across the feedback resets (2b) and
is reset to zero across the feedforward resets (9b).

Using (5) and [2, Lemma 1-2], the error coordinates are

x :=
(
xfb, θ̃, φ̃, ξ̃a, R, τr, τa

)
∈ X, (17)



where X := R9 × XR × [0, ρmax]
2. The resulting error

dynamics is obtained by defining C :=
[

0 0
1 0
ap bp

]
, F :=

[
0
0
1

]
,

using matrices Φ and ∆R in (11c), and using the selection

Φ(φ̃+ χi) :=
(φ̃+ χi)(φ̃+ χi)

⊤

(φ̃+ χi)⊤(φ̃+ χi)
=
φφ⊤

φ⊤φ
,

issued from (16), and similarly for ∆R(φ̃ + χi). From the
relations in (5), (9)-(11), (15) and [2, Lemma 1-2], we get
ẋfb = AFxfb +Bbpχ

⊤θ̃
˙̃
θ = 0
˙̃φ = Cxfb + Fbpχ

⊤θ̃
˙̃
ξa = 0, Ṙ = 0, τ̇r = 1, τ̇a = 1

x ∈ C, (18a)



x+fb = xfb

θ̃+ =
(
I − P+Φ(φ̃+ χi)

)
θ̃ − P+ (φ̃+ χi)ξ̃a

(φ̃+ χi)⊤(φ̃+ χi)

φ̃+ = 0, ξ̃+a = 0

R+ = R− η∆R(φ̃+ χi) + Φ(φ̃+ χi)

τ+r = τr, τ+a = 0

x ∈ Da, (18b)



x+fb = AJxfb

θ̃+ = θ̃

φ̃+ = φ̃, ξ̃+a = ξ̃a

R+ = R

τ+r = 0, τ+a = τa

x ∈ Dr, (18c)

with the jump and flow sets

C := {x ∈ X : x⊤fbMxfb ≥ 0 or τr ≤ ρmin}, (19a)
Da := {x ∈ X : τa ≥ ρmin}, (19b)

Dr := {x ∈ X : x⊤fbMxfb ≤ 0 and τr ≥ ρmin}. (19c)

The error dynamics (18) enjoys a useful pseudo-cascade
structure, represented in Fig. 2. In particular, state ξ̃a con-
verges to zero in finite time as per (18) and drives a
second subsystem with states θ̃, R, τa, associated with the
feedforward. Even though this subsystem is perturbed by the
variable φ̃ (see Fig. 2), we show next that this perturbation
provides zero gain in the stability bound. The third subsystem
involves the feedback states xfb, τr and is perturbed by θ̃.
Finally, the fourth subsystem, with state φ̃, is perturbed by
the two previous ones. Perturbations also come from the
external inputs χ, χi, which are bounded by assumption.

Remark 1: The hybrid system (18)-(19) satisfies the hy-
brid basic conditions [8, Ass. 6.5], therefore the system
is well-posed, in view of [8, Thm. 6.8]. Well-posedness
guarantees that stability is robust, ensuring that our control
scheme can be used in practice, in the presence of small
unmodeled phenomena and disturbances (see Section V). □
Our first main result is given below.

Theorem 1: The bounded and closed set (attractor)

A :=
{
x ∈ X :

(
xfb, θ̃, φ̃, ξ̃a

)
= 0

}
(20)

is uniformly globally stable (UGS) for the error dynamics
(18)-(19) for any positive selection of (ac, bc). Moreover, if
θ̃ → 0 then xfb → 0.

(θ̃, R, τa) (xfb, τr)

χi

χ

(ξ̃a)
θ̃ xfb1st subs. 2nd subs. 3rd subs. 4th subs.

(ϕ̃)

Fig. 2. Pseudo-cascade structure of the error dynamics (18).

Proof: Referring to Fig. 2, the state of the first
subsystem ξ̃a is always zero after the first jump from Da,
in view of (18). Thus, for simplicity we will consider ξ̃a =
0. Non-zero initial conditions for ξ̃a could be taken into
account by inflating the stability bound on θ̃ by a finite
amount. Indeed, ξ̃a appears only in the expression of θ̃+

in (18b), with a uniformly bounded gain stemming from
|P+| = | (R+)

−1 | ≤ (αm)
−1 (by Proposition 2) and from

the fact that |φ̃ + χi| = |φ| ≥ τa > 0 when x ∈ Da, as
mentioned after (11).

Second subsystem. To analyze the second subsystem with
states θ̃, R and τa, first note that these states are constant
along flows due to (18a) and constant across feedback jumps
(from Dr), due to (18c). Moreover, when ξ̃a = 0, the jumps of
R, θ̃ from Dr, described in (18b), correspond to the discrete-
time RLS algorithm. Thus, consider the quadratic Lyapunov
function V (θ,R) = θ̃⊤Rθ̃, and note that it satisfies

αm|θ̃|2 ≤ V (θ,R) ≤ η−1|θ̃|2, (21)

due to the definition of the set XR. Following the steps of the
proof of [14, Thm. 3.1], we can then prove that V satisfies
V (θ+, R+)− V (θ,R) ≤ 0 across jumps from Da.

Then, using (21), we can conclude that

|θ̃(t, j)|2 ≤ α−1
m θ̃(t, j)⊤R(t, j)θ̃(t, j) (22)

≤ α−1
m θ̃(0, 0)⊤R(0, 0)θ̃(0, 0) ≤ (ηαm)−1|θ̃(0, 0)|2,

which proves an UGS bound for the second subsystem,
independent of the inputs φ̃ and χi, when ξ̃a = 0 (in a
pseudo-cascade fashion).

Third subsystem. The UGS bound (22) for θ̃ and the
boundedness ensured by Assumption 2 imply that the input
term bpχ

⊤θ̃ in (18a) (corresponding to d in (5)) at the right-
hand side of ẋfb is bounded. This, together with the feedback
loop being finite gain exponentially ISS from the input to
xfb, as proved in Proposition 1, allows proving the following
exponential ISS bound for some suitable positive scalars
κ3, λ3, γ3

|xfb(t, j)| ≤ κ3e
−λ3(t+j)|xfb(0, 0)|+

γ3√
ηαm

|θ̃(0, 0)|. (23)

Fourth subsystem. The fourth subsystem simply provides an
open-loop integral of bounded signals over a horizon length
smaller than ρmax, therefore it satisfies, for some suitable
positive scalars κ4, λ4, γ4,

|φ̃(t, j)| ≤ κ4e
−λ4(t+j)|φ̃(0, 0)|+ γ4(∥xfb∥∞+∥θ̃∥∞). (24)

Pseudo-cascade argument. Combining the previous bounds
we obtain and exponential ISS bound for the third and fourth



subsystems, uniform in χ and χi, which imply UGS of
the overall interconnection, and convergence to zero of the
states of the second and third subsystems, whenever θ̃ (first
subsystem) converges to zero, as to be proven.

Since the input term in ẋfb linearly depends on θ̃, finite
gain exponential ISS from the input to xfb also implies that
xfb → 0 when θ̃ → 0, thus concluding the proof.

Theorem 1 ensures that the estimation error and the
tracking error do not diverge, for any positive choice of
the controller gains and any external signals χ and χi.
Convergence of x to the origin is ensured under a persistence
of excitation requirement, similar to [14]. For simplicity of
notation, we use {x} to denote the sequence of values of the
solution x(t, j) before each feedforward jump (from Da).

Definition 1: The sequence {Φ}h, h ∈ N is persistently
exciting (PE) if there exist ε > 0, N > 0 such that

j+N−1∑
h=j

{Φ}h
N

> εI, ∀j ∈ N. (25)

Theorem 2: For any solution of the error dynamics (18),
if the sequence {Φ}h, h ∈ N is PE, then lim

t+j→∞
θ(t, j) = θ∗,

with exponentially fast convergence.
Proof: The proof is equivalent to the proof of [14, Thm.

3.2], noticing that the sequences {R}h, {θ}h are generated
by a discrete-time RLS algorithm.

V. EXPERIMENTS

A solenoid used in a pressure control valve was used
for the experiments (see the photo in Fig. 5). Its nominal
parameters are R̄L, L̄. Moreover, all the current and volt-
age measurements are scaled to nominal values ī and V̄ ,
respectively. The experiments were conducted on a dSpace
MicroLab Box with sampling time Ts = 1ms and PWM
period Tpwm = 50 µs. The current is sampled at a rate of 10 µs
and averaged over 100 measurements in order to mitigate
the current ripple effects. The battery voltage vbat supplies
a calibrated power electronics circuit to generate the PWM
voltages across the solenoid terminals.

Due to the choice of Da in (19), our stability proofs allow
for any sequence {τa}h of feedforward reset intervals, as
long as they all belong to [ρmin, ρmax] (this includes periodic
resets as a special case). Desirable choices of {τa}h should
be geared towards ensuring persistence of excitation. To this
end, we suggest here to trigger feedforward resets when the
condition numbers of R+, R satisfy the inequality

λmax(R
+)

λmin(R+)
≤ Keατa

λmax(R)

λmin(R)
, (26)

where α,K are positive scalar tunable parameters. Selection
(26) is reasonable because αm ≤ λmin(R) and η−1 ≥
λmax(R), see (12). Therefore, the factor (ηαm)−1 in (22)
is bounded from below by the condition number of R, i.e.
λmax(R)/λmin(R). Hence, according to (22), lowering the
condition number of R favours a faster convergence of the
parameters. Moreover, the increasing exponential at the right-
hand side of (26) ensures a maximum dwell time. For the
experiments we selected K = 0.5 and α = 10 in (26).

The FORE parameters in (2) were chosen as ac = 11.9,
bc = 22.7, ε = 2 · 10−3 and ρmin = 0.15, leading to a
desirable transient behavior. The forgetting factor in (11)
was selected as η = 0.15, and the information matrix was
initialized as R(0, 0) = αmI = 10−3I . The estimates were
initialized at RL(0, 0) = 0.9R̄L, L(0, 0) = 5L̄, d̄(0, 0) = 0.

The experimental results are reported in Figs. 3-5. From
Fig. 3 we can see that the estimates of RL and L converge
to their nominal values R̄L and L̄, respectively. For the
(constant and unknown) disturbance d no nominal value d̄
is available; however, we observe that its estimate converges
to an equivalent input voltage d̄/L̄ two orders of magnitude
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Fig. 3. Experimental time histories of the estimates of the three parameters
using the feedforward reset trigger (26) (solid blue) and a periodic reset logic
(ρadapt = 70ms, dashed orange): RL (top), L (middle), d̄/L̄ (bottom).
Values normalized to R̄L, L̄ and V̄ , respectively.
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Fig. 4. Experimental plant inputs using the feedforward reset trigger (26)
(solid blue) and a periodic reset logic, with ρadapt = 70ms (dashed orange):
measured voltage (top), computed feedforward input (middle), computed
feedback input (bottom). Values normalized to V̄ .
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Fig. 6. Comparison of the performance of different control algorithms,
in terms of root-mean square error, over a wide range of parameters. The
value on the z-axis is normalized to ī.

smaller than the baseline voltage V̄ , which is reasonable.
Fig. 4 shows the voltage input, consisting in the feedfor-

ward uff and the feedback ufb components, as commanded
by the control algorithm. The bottom plot shows the typical
trajectories of the feedback FORE, with exponentially di-
verging transients appropriately reset to zero [15]. After the
initial transient, where the estimation and tracking error are
driven to zero, the control input is mainly determined by the
feedforward action. Moreover, even if the measured voltage
does not exactly correspond to the commanded uff+ufb (due
to actuation disturbances), we can see from Fig. 5 that the
proposed controller correctly tracks the current reference, in
view of the robustness properties discussed in Remark 1.

Finally, Fig. 6 compares different control algorithms in
tracking the reference in Fig. 5. Specifically, we compare
(a) our controller, (b) a 2-degreees-of-freedom adaptive con-
troller [16], (c) a second-order sliding-mode controller [16,
§V.A]. Controllers (b) and (c) are tuned as in [16].

We ran simulations over a wide range Rmin ≤ RL ≤ Rmax
and Lmin ≤ L ≤ Lmax of plant parameters (see the text
after (1)), computing the root-mean square of the tracking
error (RMSE) over 10s. Controller (c) is outperformed by the
adaptive control schemes for the majority of the parameters
combinations, while controllers (a) and (b) have comparable
performance. Our hybrid scheme, however, achieves this
result with fewer adaptations (the average interval between
consecutive adaptations is 70ms, compared to 1ms for con-
troller (b)) and with an event-triggered logic, thus enabling
potential future improvements. These include determining
triggering conditions that ensure the PE property, thus im-
proving the algorithm robustness against parameter drift.

VI. CONCLUSIONS

We presented a feedback-feedforward control scheme for
adaptive solenoid current tracking. The control algorithm
features non-exponentially stable dynamics, both in the
feedback, leading to aggressive control actions, and in the
feedforward, preventing the loss of information before the
parameter adaptations. We established stability results and
illustrated their relevance in an experimental setup. Future
work includes envisioning an event-triggered optimal choice
of the adaptation instants inspired by the promising experi-
mental results. The adaptation trigger can be connected to
persistence of excitation properties on the parameters, to
improve the robustness of the algorithm against parameter
drift.
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