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Abstract: This paper addresses three complex control challenges related to input-
saturated systems from a data-driven perspective. Unlike the traditional two-stage
process involving system identification and model-based control, the proposed approach
eliminates the need for an explicit model description. The method combines data-based
closed-loop representations, Lyapunov theory, instrumental variables, and a generalized
sector condition to formulate data-driven linear matrix inequalities (LMIs). These LMIs
are applied to maximize the origin’s basin of attraction, minimize the closed-loop
reachable set with bounded disturbances, and introduce a new data-driven ℓ2-gain
minimization problem. Demonstrations on benchmark examples highlight the advantages
and limitations of the proposed approach compared to an explicit identification of the
system, emphasizing notable benefits in handling nonlinear dynamics.
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1. INTRODUCTION

The increasing availability of large datasets and the
complexity of controlled systems have spurred inter-
est in learning from data. This study explores the
application of the data-driven paradigm to address
input-saturated systems, a domain that has received
limited attention despite the success of this paradigm
in various control problems (see, e.g., Dörfler et al.
(2023)). Existing model-reference, data-driven anti-
windup approaches (Breschi and Formentin (2020),
Breschi et al. (2020)) effectively handle input sat-
uration but lack closed-loop stability guarantees.
Recent contributions (Breschi et al. (2023); Seuret
and Tarbouriech (2023a,b)) have attempted to trans-
late established model-based design strategies (Tar-
bouriech et al. (2011)) into the data-driven realm for
input-saturated systems, focusing on stabilizing state-
feedback controllers.
In this study, a novel data-driven perspective is pre-
sented for three control algorithms tailored for input-
saturated systems. The approach integrates a data-
based closed-loop representation (De Persis and Tesi
(2020)), Lyapunov theory, instrumental variables for
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noise handling (Breschi et al. (2023)), and the gener-
alized sector condition proposed in (da Silva and Tar-
bouriech (2005)). Data-driven linear matrix inequali-
ties (LMIs) are formulated, enabling the maximization
of an estimate of the origin’s basin of attraction, the
minimization of the closed-loop reachable set with
an energy-bounded input, and an alternative data-
driven formulation for the nonlinear ℓ2-gain minimiza-
tion problem already considered in (Seuret and Tar-
bouriech (2023b)). The effectiveness of the strategies
is demonstrated on an open-loop unstable benchmark
(Breschi et al. (2023)), comparing the closed-loop per-
formance with an oracle controller designed using the
true system dynamics. Emphasizing the maximization
of the estimate of the basin of attraction, the study
also discusses the performance of the proposed data-
driven solution compared to the identification of the
system dynamics on the same benchmark and on an
attitude control problem for a quadcopter.
The paper is organized as follows. The setup and the
goal are introduced in Section 2, while the data-driven
closed-loop representation is given in Section 3. The
LMI-based data-driven strategies are then described
in Section 4, while their effectiveness is assessed in
Section 5. The comparison with model identification,
both with and without modelling errors, is shown in
Section 6, followed by some concluding remarks. Due
to space limitations, all the proofs are omitted and the
interested is referred to the extended arXiv version of
the paper.
Notation. Let R, Rn and Rn×m be the set of real num-
bers, column vectors of length n and n×m dimensional
matrices, respectively. Given a vector u ∈ Rnu , we de-



note its j-th element as uj , for j = 1, . . . , nu, while we
define the associated decentralized saturation function
sat : Rnu → Rnu as a function having components

satj(uj) = max{uj ,min{uj , uj}}, j = 1, . . . , nu, (1)

where u and u represent the upper and lower sat-
uration bounds on u. For u ∈ Rnu , the dead-zone
nonlinearity is:

dz(u) = u− sat(u). (2)

Given a positive definite matrix Q ∈ Rnx×nx and a
scalar s > 0, the ellipsoidal subset E(Q, s) is defined
as

E(Q, s) =
{
x : x⊤Q−1x ≤ s2

}
. (3)

The shorthand notation x+ = Ax is used instead of
x(k+1) = Ax(k). For a full-rank matrix Z ∈ Rn×m,
Z† denotes its right pseudo-inverse while Zi indicates
its i-th row, with i = 1, . . . , n. For a square matrix
A, c(A) denotes its condition number and He(A) is
twice the symmetric part of A, i.e., He(A) = A+A⊤.
For a discrete-time signal ξ(k) ∈ Rnξ and for any
k0, k1, L ∈ N such that 0 ≤ k0 < k1 and L ≤ k1 −
k0 + 1, the Hankel matrix Ξk0,L,k1

∈ RnξL×k1−k0−L+1

is defined as

Ξk0,L,k1
=


ξ(k0) ξ(k0+1) . . . ξ(k1−L+1)

ξ(k0+1) ξ(k0+2) . . . ξ(k1−L+2)
...

...
. . .

...
ξ(k0+L−1) ξ(k0+L) . . . ξ(k1)

,
(4)

while Ξk0,k1 = Ξk0,1,k1 is the single-row Hankel matrix.

2. SETTING AND CONTROL OBJECTIVES

Consider a discrete-time, linear time invariant system
characterized by the state and output equations

x+=Ax+Bsat(u) + w=Ax+Bv + w, y=x+ e,
(5a)

where x ∈ Rnx is its state, which is assumed to be
fully measurable but corrupted by a zero-mean mea-
surement white noise e ∈ Rn

x with positive definite
covariance Σe ∈ Rnx×nx , and w ∈ Rnx is an uncon-
trollable but known disturbance with bounded energy,
i.e.,

∥w(t)∥2 ≤ s, s ≥ 0. (5b)

Let u ∈ Rnu be the system’s input and v = sat(u)
be defined as in (1), with the saturation here assumed
to be symmetric with respect to the origin, namely
uj = uj for all j ∈ {1, . . . , nu}, and the bound u being
known.
Let us suppose that the system’s performance is en-
coded into the signal z ∈ Rnz defined as:

z = Cx+Dww+Duv = Cx+Dww+Dusat(u). (6)

Our goal is to design a static state-feedback controller

u = Kx, K ∈ Rnu×nx , (7)

such that the origin of the resulting closed-loop system
is asymptotically stable, while one of the following is
satisfied:

(BoA) for w = 0, an ellipsoidal estimate E(Q, 1)
(see (3)) of the origin’s basin of attraction
is maximized, and the closed-loop response
satisfies

|x(t)| < ηt
√
c(Q) |x(0)|, η ∈ (0, 1],∀t ≥ 0;

(8)

(RS) an ellipsoidal estimate E(Q, s) of the closed-
loop reachable set S(s) ⊂ Rnx defined as

S(s)={x:x(0)=0⇒x(t)∈S,∀t≥0,∀w:∥w∥2≤s},
(9)

is minimized for a given bound s on ∥w∥2;
(ℓ2) an estimate γ(s) of the closed-loop ℓ2-gain from

w to z, defined for x(0) = 0 as

sup
w ̸=0

∥w∥2≤s

∥z∥2
∥w∥2

, (10)

is minimized for a given bound s on ∥w∥2.
While C ∈ Rnz×nx , Du ∈ Rnz×nu and Dw ∈ Rnz×nx

are fixed based on the control objective, assume that a
model for the controlled system is not known. Nonethe-
less, assume we have access to a dataset

DT = {wd(k), vd(k), yd(k)}Tk=0, (11)
of length

T ≥ (nu + 1)nx + nu, (12)

obtained by feeding the plant with a saturated input
designed to be persistently exciting of order nx + 1,
where persistence of excitation is defined as follows.

Definition 1. (Persistence of excitation). A discrete time
signal v(k) ∈ Rnu , k = 0, . . . , T is persistently exciting
of order L if the Hankel matrix V0,L,T−1 is full row
rank.

This implies that the input ud is designed to be persis-
tently exciting and that the rank property is not lost
in vd due to the saturation effect. In this setting, our
goal translates into designing from data a stabilizing
state feedback gain K as in (7), satisfying one of the
aforementioned design conditions: an endeavor that
we aim here to undertake via a “hybrid” approach
stemming from the one presented in Breschi et al.
(2023).

3. CLOSED-LOOP DATA-DRIVEN DESCRIPTION

Following the footsteps and tricks already adopted in
De Persis and Tesi (2020); Breschi et al. (2023) we
retrieve a data-driven description of the system. To
this end, let us assume that we have collected a second
set of outputs {ỹd(k)}Tk=0 by feeding the plant with the
same input sequence used to gather {yd(k)}Tk=0. For
both collected datasets, the persistence of excitation
condition on vd and the imposed lower-bound on T
(see (12)) imply that the following holds (see Willems
et al. (2005)):

rank

([
V d
0,T−1

Y d
0,T−1

])
= rank

([
V d
0,T−1

Ỹ d
0,T−1

])
= nu + nx.

(13)
Moreover, the availability of the second dataset allows
us to construct an instrumental Hankel matrix Zd

0,T−1
as

Zd
0,T−1 =

[
(V d

0,T−1)
⊤ (Ỹ d

0,T−1)
⊤]⊤ , (14)

which satisfies the rank condition (13). By leveraging
the non-correlation property of white noises, i.e.

E {e(t)ẽ(τ)} = 0, ∀t, τ, (15)

where e and ẽ are, respectively, the noises acting on yd

and on ỹd, the matrix (14) can be used to extract an
(asymptotically unbiased) estimate of the open-loop
system’s matrices in (5a) via the instrumental variable
least-squares problem (Söderström and Stoica, 2002)



[
B̂ Â

]
= argmin

[B A]

∥∥∥∥(Ȳ d
1,T − [B A]

[
V d
0,T−1

Y d
0,T−1

])
(Zd

0,T−1)
⊤
∥∥∥∥2
2

= Ȳ d
1,T (Z

d
0,T−1)

⊤
([
V d
0,T−1

Y d
0,T−1

]
(Zd

0,T−1)
⊤
)−1

,

(16)

where Ȳ d
1,T = Y d

1,T − W d
0,T−1 is known because w in

(5a) is known and the inverse of the data matrices is
well-defined thanks to the full rank condition in (13).
In turn, this leads to the data-based representation

x+= Ȳ d
1,T (Z

d
0,T−1)

⊤
([
V d
0,T−1

Y d
0,T−1

]
(Zd

0,T−1)
⊤
)−1[

sat(u)
x

]
+w,

(17)
as formalized in the following lemma.

Lemma 1. (Open-loop description). Given DT in (11)
and a fresh set of outputs {ỹd(k)}Tk=0 collected by
exploiting the same input used to construct DT , the
dynamics of the system with saturated inputs (5a) can
be expressed as in (17) with an error that vanishes as
the length of the dataset increases, namely

lim
T→∞

[
B̂ Â

] a.s.−→ [B A] . (18)

Based on Lemma 1, the closed-loop dynamics (5a) and
(7) can be written as follows:

x+ = Ad
cl(G)x−Bd

cl dz(u) + w, (19a)

where

Ad
cl(G) = Ȳ d

1,T (Z
d
0,T−1)

⊤G, (19b)

Bd
cl= Ȳ

d
1,T (Z

d
0,T−1)

⊤
([

V d
0,T−1

Y d
0,T−1

]
(Zd

0,T−1)
⊤
)−1 [

I
0

]
,

(19c)

with G ∈ R(nu+nx)×nx satisfying[
K
I

]
=

[
V d
0,T−1

Y d
0,T−1

]
(Zd

0,T−1)
⊤G. (19d)

This result is formally stated in the following lemma.

Lemma 2. (Closed-loop description). GivenDT in (11)
and a set of outputs {ỹd(k)}Tk=0 collected by exploiting
the same input used to construct DT , (19) asymptot-
ically (i.e., as T → ∞) coincides with the closed-loop
interconnection (5a), (7).

Note that G in (19) plays the role of a tuning parame-
ter that uniquely defines K through (19d). While Ad

cl
in (19) is fully characterized from data, we still need
an estimate of B, i.e., Bd

cl, to describe the effect of the
input saturation.

4. DATA-DRIVEN DESIGN STRATEGIES

Regional quadratic certificates. By relying on the data-
based closed-loop representation in (19) we can now
solve the design problems listed in Section 2. To this
end, let us introduce the candidate Lyapunov function

V (x) = x⊤Px, (20)

with P ∈ Rnx×nx being symmetric and positive
definite. Then, let us recall that global asymptotic
stability in the presence of saturation can only
be achieved with non-exponentially unstable plants
(Lasserre, 1993). This condition is rather limiting since
the data-driven closed-loop description in (19) can also
be retrieved for exponentially unstable plants, by car-
rying out suitably designed closed-loop experiments.

In designing the feedback gain in (7) we thus look for
regional stability, by considering the generalized sector
condition (da Silva and Tarbouriech (2005)) stating
that for any u ∈ Rnu , H ∈ Rnu×nx and diagonal,
positive definite W ∈ Rnu×nu , the following holds

dz(Hx) = 0 ⇒ dz(u)⊤W (u− dz(u) +Hx) ≥ 0. (21)

The generalized sector condition (21) can be exploited
in an ellipsoidal estimate E(Q, s), as long as E(Q, s)
is contained in the subset of Rnx where dz(Hx) = 0.
This set inclusion can be enforced by imposing

x⊤
H⊤

j Hj

u2j
x <

1

s2
x⊤Px, ∀j ∈ {1, . . . , nu}, (22)

which implies x⊤Px ≤ s2 ⇒ |Hjx|2 ≤ u2j for
each j. By a Schur complement and a congruence
transformation, condition (22) can be rewritten as the
following set of LMIs in the features of the dead-zone,
the saturation and the candidate Lyapunov function
(20):[

Q N⊤
j

Nj u2j/s
2

]
≻ 0, ∀ j ∈ {1, . . . , nu} , (23)

which is linear in the transformed decision variables
N = HQ ∈ Rnu×nx and Q = P−1.

BoA estimate with certified convergence rate. Let us
initially assume that no external signal affects the
system except for u (i.e., w = 0). To find an ellip-
soidal estimate of the origin’s basin of attraction while
guaranteeing a desired local exponential convergence
rate for the closed-loop solutions (see (8)) one has to
solve (23) for s = 1 (any value of s should work up to
a rescaling of Q) jointly with

He

 −η
2Q 0 0

V d
0,T−1

(
Zd
0,T−1

)⊤
F +N −M 0

Ȳ d
1,T

(
Zd
0,T−1

)⊤
F −Bd

clM −η
2Q

 ≺ 0,

(24)
where M = W−1 ∈ Rnu×nu is any diagonal and
positive definite matrix issued from (21), and F ∈
R(nu+nx)×nx satisfies the consistency condition

Y d
0,T−1

(
Zd
0,T−1

)⊤
F = Q, (25)

according to the second block component of (19d).
This leads in the following design result.

Theorem 1. Given (5a), a dataset DT satisfying (12)
and (13), and the instrument Zd

0,T−1 in (14), if there

exist matrices Q = Q⊤ ∈ Rnx×nx , F ∈ R(nu+nx)×nx ,
N ∈ Rnu×nx andM ∈ Rnu×nu diagonal satisfying (23)
for s = 1, (24) and (25), then the feedback gain

K = V d
0,T−1

(
Zd
0,T−1

)⊤
FQ−1, (26)

asymptotically (i.e., for T → ∞) guarantees the
following: (i) closed-loop exponential stability of the
origin with rate η, namely solutions satisfy (8) in
the basin of attraction of the origin; (ii) E(Q, 1) is
contained in the origin’s basin of attraction.

As a direct translation from the model-based context
(see, e.g., Tarbouriech et al. (2011), Chapter 2), the
first of our design problems can thus be tackled in a
data-based fashion by solving the following Semidefi-
nite Program (SDP):

minimize
α,Q,U,F,N

− α

s.t. αI ⪯ Q, (23), (24), (25).
(27)



Note that none of the variables to be optimized has
a size that depends on T , thanks to the use of the
instrument in (14). Therefore, DT can in principle
be arbitrarily long, which is desirable to attain the
equivalence between the model-based and data-driven
system’s description.

Minimized reachable set from bounded w. Let us now
study the effect of the exogenous signal w in (5a).
In this setting, the closed-loop stability of the origin
and the fact that E(Q, s) is an outer approximation
of the reachable set are asymptotically guaranteed by
imposing:

He


− 1

2Q 0 0 0

V d
0,T−1

(
Zd
0,T−1

)⊤
F+N −M 0 0

0 0 − 1
2I 0

Ȳ d
1,T

(
Zd
0,T−1

)⊤
F −Bd

clM I − 1
2Q

≺0,

(28)
along with (25), leading to the following design result.

Theorem 2. Let w in (5a) verify (5b). Given the
dataset DT satisfying (12) and (13), if there exist
Q = Q⊤, a diagonal matrix M , F ∈ R(nu+nx)×nx

and N ∈ Rnu×nx satisfying (23), (25) and (28), then
the feedback gain K in (26) asymptotically (i.e., for
T → ∞) guarantees (i) closed-loop exponential sta-
bility of the origin, and that (ii) E(Q, s) is an outer
approximation of the closed-loop system’s reachable
set S from x(0) = 0 and for any w satisfying (5b).

Note that the expression of the feedback gain in this
design result corresponds to the one in (26), but its
actual value is shaped by matrices that verify the new
LMI in (28). In turn, this result allows us to formulate
the following data-driven SDP for the reachable set
minimization:

minimize
Q,U,F,N

trace(Q)

s.t. (23), (25), (28).
(29)

Minimum ℓ2-gain. By still assuming the bound in (5b),
let us now consider the problem of minimizing the ℓ2-
gain γ(s) of the closed-loop system from the exogenous
input w to the performance variable z, namely

x(0) = 0 ⇒ ∥z∥2 ≤ γ(s)∥w∥2, ∀w : ∥w∥2 ≤ s. (30)

Apart from (23) and (25), the condition that has to
be imposed to design a feedback gain K accounting
for such an ℓ2-gain in data-driven control design is
dictated by (31), reported on the next page, leading
to the following.

Theorem 3. Let w in (5a) verify (5b). Given the
dataset DT satisfying (12) and (13), if there exist
Q = Q⊤, a diagonal matrix M , F ∈ R(nu+nx)×nx

and N ∈ Rnu×nx satisfying (23), (25) and (31), then
the feedback gain K in (26) asymptotically (i.e., for
T → ∞) guarantees (i) closed-loop exponential stabil-
ity of the origin and that (ii) the ℓ2-gain bound in (30)
holds.

To minimize γ(s), by treating γ2(s) as a decision
variable, we can cast the following SDP:

minimize
γ2(s),Q,U,F,N

γ2(s)

s.t. (23), (25), (31).
(32)

(a) Maximization of the basin of attraction

(b) Minimization of the estimated reachable set

(c) Minimization of the ℓ2-gain γ(s)

Fig. 1. Numerical example: mean and standard devi-
ation (magenta line and shaded area) of the first
closed-loop state and input with data-driven con-
trollers over 100 Monte Carlo datasets vs behavior
with the oracle (black dashed line).

Fig. 2. Numerical example: mean ∥z∥2 over 100 Monte
Carlo datasets vs scaled ∥w∥2.

5. NUMERICAL EXAMPLE

Let us consider the open-loop unstable linear system
of Breschi et al. (2023), characterized by (5a) with

A =

[
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

]
, B = I, (33)

and an input saturation with uj = 1, for j ∈ {1, 2, 3}.
Moreover, when testing (29) and (32), we impose

C = [0 1 0], Du = [−1 0 1], Dw = [0 0.3 −0.8],

and set w(t) over closed-loop simulations to

w(t)=0.1

[
sin

(
t

10
π

)
sin

(
t

10
π+

2

3
π

)
sin

(
t

10
π+

4

3
π

)]⊤
.

We assess the effectiveness of the three data-driven
design strategies proposed in this work by collecting
100 Monte Carlo datasets of length T = 6000 in closed-
loop 1 when tracking a uniformly distributed set point
in [−1, 1]. The noise corrupting the output during
the data collection phase is zero-mean, Gaussian dis-
tributed with covariance Σe = σ2

eI and σe = 0.1,
yielding a signal-to-noise ratio (SNR) of around 14 dB.
Instead, the controller is tested over noise-free closed-
loop experiments, to analyze its effectiveness in realiz-
ing the desired control objectives.
Imposing a convergence bound η = 0.995, we initially
evaluate the performance attained when solving (27)

1 As in Breschi et al. (2023), we use (7) with K = I.



He


− 1

2Q 0 0 0 0

V d
0,T−1

(
Zd
0,T−1

)⊤
F +N −M 0 0 0

0 0 − 1
2I 0 0

CQ+DuV
d
0,T−1

(
Zd
0,T−1

)⊤
F −DuM Dw −γ(s)2

2 I 0

Ȳ d
1,T

(
Zd
0,T−1

)⊤
F −Bd

clM I 0 − 1
2Q

 ≺ 0 (31)

Fig. 3. Linear system: sensitivity analysis for η = 1.

Fig. 4. Linear system: estimated ellipsoidal basin of
attraction for σe = 10−5, T = 6000 and η = 1.

by picking the 100 initial states drawn randomly from
the interval [−2, 2]. As shown in Fig. 1 2 , the data-
driven controller forces state convergence to zero in
about 30 time steps for all the tested initial condi-
tions, replicating almost perfectly the mean behavior
of the oracle over the tested initial conditions. Similar
conclusions on the comparison between our controllers
and the oracle can be drawn by looking at the results
attained with the controllers designed by solving (29)
and (32), respectively (see Fig. 1). From Fig. 2 it is
also clear that solving (29) allows us to satisfy the
inequality (30), returning an average value for the ℓ2-
gain γ(s) from w to z of 0.86 over the tests.

6. COMPARISON WITH MODEL
IDENTIFICATION

By focusing on maximizing the origin’s basin of attrac-
tion, we now compare the performance of the proposed
data-driven strategy (DD) with a purely identification-
based approach (IB). In this case, the model of the
system is the one retrieved by solving the least-squares
problem in (16), which is used to design the model-
based controller based on the certainty equivalence
principle.

Linear system. Let us consider the open-loop unstable
linear system already introduced in Section 5, consid-
ering the same experimental conditions described be-
fore but varying the length T of the available datasets
or changing the noise level. Moreover, let us consider
the same performance index used in Breschi et al.
(2023), namely

|α∗ − α|
α∗ 100 [%],

2 These state/input exemplify the behavior of all the other ones.

Fig. 5. Linear system: sensitivity analysis for η =
0.995.

comparing the solution to (27) with the “oracle” solu-
tion α⋆, obtained by solving the model-based problem
with the true system matrices in (33).
We firstly impose η = 1 (i.e., not particularly con-
straining the convergence speed), obtaining the results
reported in Fig. 3. From the latter, it is clear that,
while for large noise and small datasets the DD and
IB solutions are similar, when the noise is small or
the dataset becomes large, the DD strategy returns a
solution that does not converge to the oracle one. Such
a behavior stems from the SDP solver encountering
numerical problems 3 when data directly appears in
the LMIs, ultimately leading the DD estimate of the
origin’s basin of attraction E(Q, 1) to be a strict sub-
set of the one returned by the oracle, which almost
coincides to the one returned by the IB strategy (see
Fig. 4). Hence, the numerical issues limit the maximum
size of the estimated ellipsoid while, as also shown in
Fig. 4, they do not affect the ellipsoid orientation. By
reducing η to 0.995, thus imposing a faster convergence
speed, the numerical issues are nonetheless resolved,
leading the DD approach results to be completely
equivalent to the IB ones, independently of the noise
level and of dataset dimension (see Fig. 5).
Comparing the complexity of the SDPs of the two
approaches, it is worth to point out that resorting to
the DD strategy increases the complexity of the LMI-
based problem to be solved. Indeed, F in (24) is an
(nx + nu)× nx matrix, whereas its dimension reduces
to nu × nx when the IB approach is used. All these
results indicate that, at least in this case, the model
identified by solving (16) is accurate enough to allow
for the design of a controller for the unknown input-
saturated system, thus making the shift to the DD
approach not particularly advantageous.

Nonlinear system. For LTI systems, model identifi-
cation approaches often lead to good closed-loop per-
formance thanks to an accurate reconstruction of the
state-space matrices. However, when the true system
dynamics are nonlinear, IB approaches devised for
linear systems are doomed to make some modelling er-
rors, which often lead to a deterioration in control per-
formance. In this nonlinear setting, we now investigate
experimentally whether the proposed DD strategy is

3 The solution of the problem is often inaccurate.



Fig. 6. Quadcopter control: ellipsoidal estimates of
the basin of attraction obtained with the DD
(dashed light blue) and IB (solid blue) approaches
vs initial conditions leading to the satisfaction of
(8) at the end of the simulation horizon for both
the DD and IB strategies (green dots), for neither
of them (red dots), for only the DD approach
(purple dots) or for only the IB method (yellow
dots).

Fig. 7. Quadcopter control: roll and pitch trajectories
for φ(0) = 1.47 and ϑ(0) ∈ [−1, 0].

able to achieve a better performance by avoiding the
full state-space matrix identification. Specifically, we
focus on the nonlinear quadrotor system in Formentin
and Lovera (2011). The approach retains the PID
controllers from the mentioned source for controlling
the quadrotor position, utilizing both model-based and
data-driven versions of (27) to control the quadrotor’s
height z [m] and attitude (roll φ [rad], pitch ϑ [rad],
and yaw ψ [rad] angles). The objective is to find a state
feedback controller (7) that ensures the stability of the
quadrotor around a given position while maintaining
parallel alignment to the ground.
Within this setting, the data collection phase is carried
out by performing closed-loop experiments of 20 [s] (for
a total of T = 2000 samples) using the controller pro-
posed in Formentin and Lovera (2011), by considering
step references for the height and yaw angle, random
Gaussian references with standard deviation 0.6 for
the roll and pitch angles and corrupting the measured
states with a white noise with covariance Σe = σeI,
with σ2

e = 10−3. Meanwhile, (27) has been augmented
with the constraint Q ⪯ κ2I, with κ2 = π2/2, thus
accounting for the fact that angles (in absolute value)

equal or above π/
√
2 imply that the quadrotor is

(undesirably) vertical or flipped with respect to the
ground. By setting η = 0.999 and considering several
initial conditions, we check empirically if the bound
in (8) holds for all the attitude angles by considering
both the DD and IB approaches at the end of the

simulation horizon, while simply checking whether the
altitude z at this last instant is positive and lays in
an interval between ±1 [m] from its equilibrium value
(to assert that the quadcopter is in a “non-falling”
mode). As shown in Fig. 6, differently from the linear
case, in this setting the DD approach leads to a wider
set of initial conditions verifying (8). This advantage is
further confirmed by Fig. 7, additionally highlighting
that the difference between the DD/IB controllers is
due to the inability of the IB solution to steer the
quadcopter’s attitude to the desired values.

7. CONCLUSIONS

In this paper we have introduced three new data-
driven control design strategies for input saturated
systems, guaranteeing (asymptotically in the number
of data) regional closed-loop stability and either (i) the
maximization of the origin’s basin of attraction with a
guaranteed convergence rate for the state, or (ii) the
minimization of the estimated reachable set for a given
bound on uncontrolled (yet measurable) exogenous
signals, or (iii) the minimization of the ℓ2-gain from
this uncontrollable signal to the one embedding the
desired performance. The presented results show the
effectiveness of the proposed strategy when noisy data
are employed, showing the potential advantages of a
shift to the data-driven rationale in a nonlinear setup.
Future work will be devoted to more complex control
schemes, possibly involving an anti-windup compen-
sator.
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