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Abstract8

Structural analysis-based diagnosis allows for the extraction of a wealth of information and properties9

by studying a structural model that represents a physical system. This diagnosis approach is centered10

on structurally overdetermined sets, which enable the generation of residuals for fault detection11

and isolation. As the ’for Dummies’ editorial collection, this article aims at taking on complex12

concepts and making them easy to understand. It aims to clarify and compare key concepts in13

structural analysis, focusing on Minimally Structurally Overdetermined (MSO) sets and Minimal14

Test Equation Supports (MTES). Additionally, we explain and illustrate the Dulmage-Mendelsohn15

decomposition, which helps identify structurally overdetermined parts of the system and plays16

a important role in the structural analysis process. Through detailed exploration and practical17

examples, we demonstrate the roles, applications, and interrelations of these sets, highlighting their18

respective strengths and limitations. The paper provides an overview of the algorithms used to19

identify and use these sets, including a theoretical and practical comparison of their computational20

efficiency and diagnostic capabilities.21
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1 Introduction29

In the field of model-based fault diagnosis, the ability to detect and isolate faults within30

complex systems is crucial for ensuring reliability and safety. By studying the model, it is31

possible to identify faults, which are indicative of abnormal or faulty behavior within the32

system.33

Structural analysis consists in abstracting a model by keeping only the links between34

equations and variables. The main advantages of structural analysis are that the approach35

can be applied to large scale systems, linear or non linear, even under uncertainty. In36

the field, the concept of Minimally Structurally Overdetermined (MSO) sets [6] has been37

widely adopted due to its effectiveness in isolating faults by leveraging the redundancy in38

system models. However, while MSO sets have proven valuable, they come with limitations,39

particularly in terms of computational complexity when applied to large-scale systems.40

To address these issues, more refined approaches have been introduced, such as Minimal41

Test Equation Supports (MTES), presented in [5], or Fault Driven Minimal Structurally42

Overdetermined (FMSO) sets introduced by [7]. These methods aim to enhance diagnosis43

precision while aiming at reducing computational demands, yet their practical application44

and comparative advantages remain areas of ongoing exploration.45
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As the ’for Dummies’ editorial collection, this article aims at taking on complex concepts46

and making them easy to understand. The objective is to clarify and compare various key47

concepts used in structural analysis model-based fault diagnosis, specifically focusing on48

MSO sets, MTES, or FMSO sets. By providing a detailed exploration of these concepts, this49

paper seeks to clarify their roles, applications, and interrelations. Through carefully chosen50

examples, we illustrate how each of these concepts can be applied to different scenarios,51

highlighting their respective strengths and limitations. This comparative analysis is intended52

to enhance the understanding of these diagnosis tools.53

This paper is structured as follows. Section 1 gives some theoretical foundations on54

structural analysis. Then in Section 3 MSO sets are defined and explained. The algorithm55

for their identification is also presented. Next, Section 4 discuss the motivations behind56

the introduction of MTES and describe the algorithm for their computation. A comparison57

between the performance of MSO and MTES is then conducted in Section 5. To illustrate58

the practical application of these concepts, a realistic example is provided in Section 6,59

including structural modeling, algorithmic complexity analysis, and an evaluation of diagnostic60

capability. Section 7 concludes the paper.61

2 Background62

One of the key concepts to understand the notion of MSO sets or even MTES is the Dulmage63

Mendelsohn decomposition of a bipartite graph [4].64

Let the system description consist of a set of ne equations involving a set of variables65

partitioned into a set Z of nZ known (or measured) variables and a set X of nX unknown66

(or unmeasured) variables. We refer to the vector of known variables as z and the vector67

of unknown variables as x. The system may be impacted by the presence of nf faults that68

appear as parameters in the equations. The set of faults is denoted by F and we refer to the69

vector of faults as f.70

▶ Definition 1. (System) A system, denoted Σ(z, x, f) or Σ for short, is any set of equations71

relating z, x and f. The equations ei(z, x) ⊆ Σ(z, x, f), i = 1, . . . , ne, are assumed to be72

differential or algebraic in z and x.73

Consider the illustrative example given by system (1), from [8], named Σ1 that will be74

taken as a running example in this section. It is composed of six equations e1 to e6 relating75

the known variables Z = {z1, z2}, the unknown variables X = {x1, x2, x3, x4, x5} and the set76

of system faults F = {f1, f2}. Besides a, b, c are constant parameters.77

e1 : ẋ3 = ex3 − a

e2 : x2
3 = −bẋ4 + f1

e3 : z1 = x4

e4 : z2 = x1 + b2 + x4

e5 : ẋ1 = ex2 + x5

e6 : ẋ3 = x4 + c+ f2

(1)78

We can represent a system Σ(z, x, f) by a biadjacency matrix, in which each row stands79

for an equation and each column an unknown variable. An X in position (i, j) means that80

equation i contains the unknown variable j. For example, Σ1 can be represented by the81

biadjacency matrix of Table 1.82

83
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x1 x2 x3 x4 x5

e1 ×
e2 × ×
e3 ×
e4 × ×
e5 × × ×
e6 × ×

Table 1 Biadjacency matrix of Σ1

Equivalently, a system Σ(z, x, f) can be represented by a bipartite graph G(E,X). E84

and X are the sets of nodes, an edge between node Ei and node Xj means that equation85

i contains the unknown variable j. The bipartite graph associated with the illustrative86

example Σ1 is shown in Figure 1 [8].87

88

Figure 1 The bipartite graph of Σ1 [8].

▶ Definition 2. (Maximal Matching). A maximal matching is a set of edges such that these89

edges do not share any common nodes, and no more edges can be added to this set without90

losing this property.91

In Table 1, as well as in Figure 1, a maximal matching is marked in red. It is the largest set92

of edges such that there are no common nodes (each equation and each variable appears at93

most once).94

▶ Definition 3. (Free equation). For a given maximal matching, an equation is free if it is95

not part of this maximal matching.96

In the matching represented in Table 1, e1 and e2 are free.97

▶ Definition 4. (Free variable). For a given maximal matching, a variable is free if it is not98

part of this maximal matching.99

In the matching represented in Table 1, x5 is free.100

▶ Definition 5. (Alternating path). Let Mmax be a maximal matching. P , a path in the101

graph G, is an alternating path if it successively passes through edges that belong to Mmax102

and edges that do not belong to Mmax.103
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13:4 MSO sets and MTES for dummies

The Dulmage-Mendelsohn decomposition allows separating a model Σ into 3 parts:104

an overdetermined part, denoted Σ+, an exactly determined part, denoted Σ0, and an105

underdetermined part, denoted Σ−, as shown in Figure 2 .106

Figure 2 Dulmage-Mendelsohn decomposition of a model Σ

The overdetermined part Σ+ of Σ is the set of equations e ∈ E such that, for any maximal107

matching, there exists an alternating path between at least one free equation and e [6]. Σ+
108

can also be defined as the set of equations e ∈ E such that there is at least one maximal109

matching in which e is free.110

The part Σ0 contains equations that are not in Σ+ but are such that the set Σ0 ∪ Σ+ is111

the maximal set of equations for which there exists a complete matching of the unknown112

variables in Σ0 ∪ Σ+ into Σ0 ∪ Σ+ [6]. We can also say that Σ0 consists of the equations e113

that are matched in every maximal matching and do not contain any free variables.114

The rest of the equations belongs to Σ−. Σ− only contains equations if the maximal115

matchings do not cover all the variables (if there exists at least one free variable in a maximal116

matching). Σ− contains equations associated with the free variables.117

Running example: Σ+
1 contains all the equations that are free in at least one maximal118

matching. In the matching represented in Table 1, e1 and e2 are free so these two equations119

are in Σ+
1 . But (e1x3, e2x4, e4x1, e5x2) is also a maximal matching, and in this matching, e3120

and e6 are free. So e3 and e6 are also in Σ+
1 . So, we have Σ+

1 = {e1, e2, e3, e6}.121

Σ0
1 = {e4} because the set {e1, e2, e3, e4, e6} is the biggest set such that there exists a122

complete matching of the unknown variables in this set into this set. If we add e5 in that123

set, it would not be a complete matching because either x2 or x5 would not be part of the124

matching. Another way to see this is that e4 is necessary to every maximal matching, as it125

is the only equation that contains x1 (e5 also contains x1, but e5 is used to cover x2 or x5).126

Thus, it is impossible to obtain a maximal matching without e4, and e4 does not contain any127

free variable, so e4 is part of Σ0
1.128

The remaining equation, e5, is in Σ−
1 . That is because e5 is the only equation that129

contains both x2 and x5, so for every maximal matching, one of these two variables is free.130

Note that, as shown above with Σ1, if a set of equations Σ has more equations than131

unknown variables, it does not necessarily mean that Σ0 and Σ− are empty.132

▶ Definition 6. (PSO set). A set Σ of equations is a PSO set (proper structurally overde-133

termined set) if Σ = Σ+. In other words, Σ is a PSO set if Σ0 = Σ− = ∅.134

System represented Σ1 as a whole is not a PSO set because Σ0 and Σ− are not empty. But135

the subset of equations {e1, e2, e3} is a PSO set: the three equations are free in at least one136

maximal matching, so Σ = Σ+ (see Table 2).137
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x3 x4

e1 ×
e2 × ×
e3 ×

Table 2 The subset of equations {e1, e2, e3}

▶ Definition 7. (Structural redundancy). For a given set of equations Σ, the structural138

redundancy φ(Σ) is defined by φ(Σ) = |Σ+| − |X+|, where |Σ+| is the number of equations139

in Σ+, and |X+| is the number of unknown variables involved in Σ+.140

PSO sets have structural redundancy, which is key to diagnosis since it allows residual141

generation. We recall hereafter some important definitions [8].142

▶ Definition 8 (ARR for Σ(z, x, f)). Let Σ(z, x, f) be a system. Then, a relation of the form143

arr(z, ż, z̈, ...) = r is an Analytical Redundancy Relation (ARR) for Σ(z, x, f) if for each z144

consistent with Σ(z, x, f) the relation evaluation is r = 0, i.e., the ARR is satisfied.145

▶ Definition 9 (Residual Generator for Σ(z, x, f)). A system taking a subset of the variables146

z as input, and generating a scalar signal r as output, is a residual generator for the model147

Σ(z, x, f) if, for all z consistent with Σ(z, x, f), it holds that lim
t→∞

r(t) = 0.148

ARRs are residual generators and are used to verify the consistency of observations with149

the system model. The ARRs hold true if the observed behavior of the system meets the150

model constraints. They can be derived from the system model by eliminating unknown151

variables [7]. PSO sets can be used to generate ARRs as they identify the redundant parts152

of the system’s model.153

3 MSO sets154

It is often more practical to focus on smaller, manageable subsets of the PSO sets that still155

retain the necessary redundancy for effective fault diagnosis.156

▶ Definition 10. (MSO set). A PSO set Σ is an MSO set (minimal structurally overde-157

termined) if no proper subset is a PSO set. MSO sets are PSO sets such that φ(Σ) = 1.158

MSO sets are interesting because they are just overdetermined and exactly identify a set of159

equations from which a residual generator can be obtained. [6].160

In our running example, the subset {e1, e2, e3} is an MSO set because it is a PSO set,161

and there is no subset which is also a PSO set. Furthermore, φ(Σ) = 3 − 2 = 1.162

A deep first search algorithm1 to find MSO sets is presented in [6]. The general idea is163

to start with a PSO set Σ, to remove an equation e, and to compute the overdetermined164

part of the remaining set (Σ \ {e})+. When an equation e is removed from a PSO set, the165

structural redundancy decreases by one. So the previous process is done until the structural166

redundancy becomes one. If φ((Σ \ {e})+) = 1, then an MSO set is found.167

Running example: To illustrate that, let us apply the first steps of the algorithm to the168

following example Σ2 (cf. Table 3).169

1 All the algorithms presented in this article are provided in the "Fault Diagnosis Toolbox" available here:
https://faultdiagnosistoolbox.github.io/
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x1 x2 x3

e1 ×
e2 × ×
e3 × ×
e4 ×
e5 × ×

Table 3 Illustrative example Σ2

The set Σ2 = {e1, e2, e3, e4, e5} is a PSO set of structural redundancy 2. First, e1 is170

removed. By applying the Dulmage-Mendelsohn decomposition on the remaining set, we have171

(Σ2 \ {e1})+ = {e2, e3, e4, e5}. φ((Σ2 \ {e1})+) = 1, which means that {e2, e3, e4, e5} is an172

MSO set. Then, e2 is removed from Σ2. By applying the Dulmage-Mendelsohn decomposition173

on the remaining set, we have (Σ2 \ {e2})+ = {e1, e4, e5}. φ((Σ2 \ {e2})+) = 1, which means174

that {e1, e4, e5} is also an MSO set. And so on, until covering the entire tree.175

Using this algorithm, all the MSO sets are found. However, this method is not optimal176

in terms of computation time because some MSO sets can be found multiple times. For177

example, here, when removing e2, (Σ2 \ {e2})+) = (e1, e4, e5) and when removing e3,178

(Σ2 \ {e3})+) = (e1, e4, e5). Therefore, the same MSO set is found twice. That is why the179

concept of equivalence class is introduced.180

▶ Definition 11. (Equivalence class). Let Σ be a set of equations and (ei, ej), two equations181

in Σ. ei and ej are in the same equivalence class [e] = {ei, ej} if ei ̸∈ (Σ \ {ej})+.182

This enables grouping equations into the same class such that, if they are removed from Σ,183

the same overdetermined part is obtained.184

For the system Σ2, the equivalences classes are {e1}, {e2, e3}, {e4}, {e5} because e2 ̸∈185

(Σ2 \ {e3})+ (the inverse is also true because it is an equivalence relation).186

Thus, in the algorithm, it is no longer one single equation that is removed at each step,187

but equivalence classes, which prevent the same overdetermined part from being computed188

twice. At each step, equations that belong to the same equivalence class are lumped, one189

equivalence class is removed, and the overdetermined part of the remaining equations is190

computed. Note that for Σ2, this optimization does not make a huge difference in terms of191

computation time, but it makes a big difference for huge models, with many equations and192

MSO sets.193

There is another issue handled by the algorithm. The same MSO set can be obtained194

if the order of equations removal is permuted. Let us consider the following system Σ3 (cf.195

Table 4).196

x1 x2 x3

e1 ×
e2 × × ×
e3 ×
e4 × ×
e5 ×
e6 ×

Table 4 Illustrative example Σ3
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At the beginning, e1 is removed. The overdetermined part of the remaining equations197

(Σ3 \ {e1})+ is {e2, e3, e4, e5, e6}. Then, e2 is removed, and the overdetermined part of the198

remaining equations (Σ3 \ {e1, e2})+ is {e3, e5}, which is an MSO set. But if e2 is removed199

first, and then e1, the same MSO set is obtained. To handle this problem, the algorithm uses200

a new input set R which contains the equivalence classes that are allowed to be removed.201

At each node traversed by the algorithm, a Dulmage-Mendelsohn decomposition is202

performed. This is the most time-consuming part of the computation. This algorithm203

traverses a search tree, where each node represents a potentially overdetermined set of204

equations. Each level of the tree corresponds to the removal of an equation from the system,205

and each branch represents a subset of equations being tested. When an equation is removed206

from Σ (i.e., when moving down a level in the search tree), the structural redundancy φ(Σ)207

decreases by 1 [6].208

Consider the worst-case scenario, where each equation belongs to a different equivalence209

class (i.e., the equations are removed from Σ one by one). For a system with ne equations210

and a redundancy degree of φ, the maximum number of nodes the algorithm might traverse211

is given by the sum of possible equation subset for each level k of the tree. A bound on the212

number of nodes traversed by the algorithm to find MSO sets is then given by Equation (2).213

φ−1∑
k=0

(
ne

k

)
(2)214

MSO sets are used to construct ARRs, and thus residual generators, but it is important215

to note that MSO sets do not take faults into account. If we are interested in system216

performance and we want to construct residual generators for diagnosis purposes, only MSO217

sets that contain equations possibly disrupted by faults are important.218

▶ Definition 12 (Detectable fault). A fault f is structurally detectable in a set of equations219

Σ if f is in the overdetermined part Σ+.220

▶ Definition 13 (Fault support). The fault support FΣ′ of a set of equations Σ′ ⊆ Σ is defined221

as the set of faults that are involved in the equations of Σ′ [8].222

A special class of MSO sets can be defined: FMSO sets (Fault-Driven Minimal Structurally223

Overdetermined) that are MSO sets with a non empty fault support [8].224

▶ Definition 14 (FMSO set). A subset of equations Σ′ ⊆ Σ(z, x, f) is an FMSO set of225

Σ(z, x, f) if (1) FΣ′ ̸= ∅ and φ(Σ′) = 1 that means |Σ′ | = |XΣ′ | + 1, (2) no proper subset of226

Σ′ is overdeterminated.227

Therefore, if there exists a FMSO set in Σ which contains the fault f , then f is detectable228

in Σ. Those special MSO sets are candidates as residual generators as they contain just the229

necessary redundancy and their fault support is not empty.230

4 MTES231

4.1 Motivation232

MSO sets can be used to obtain residual generators, but are they all useful ? Let us take the233

previous system Σ3 and add faults of the set F = {f1, f2, f3} (cf. Table 5).234

DX 2024



13:8 MSO sets and MTES for dummies

x1 x2 x3

e1 × f1

e2 × × × f2

e3 ×
e4 × ×
e5 ×
e6 × f3

Table 5 System Σ3 with faults

For this example, there are 8 MSO sets given in Table 6.235

MSO sets Faults
MSO1 {e3, e5} {∅}
MSO2 {e2, e4, e5, e6} {f2, f3}
MSO3 {e2, e3, e4, e6} {f2, f3}
MSO4 {e1, e4, e6} {f1, f3}
MSO5 {e1, e2, e5, e6} {f1, f2, f3}
MSO6 {e1, e2, e4, e5} {f1, f2}
MSO7 {e1, e2, e3, e6} {f1, f2, f3}
MSO8 {e1, e2, e3, e4} {f1, f2}

Table 6 MSO sets and their fault support for Σ3 with faults

MSO2 and MSO3 as well as MSO6 and MSO8 have the same fault support {f2, f3}236

and {f1, f2}, respectively. This means that the generated residuals would be sensitive to237

the same faults. Note also that if the equations of MSO2 and MSO3 are put together, the238

fault support of the resulting subset of equations remains {f2, f3}. In addition, some MSO239

sets have a non minimal fault support like MSO5 whose fault support is {f1, f2, f3} that240

includes the fault support of MSO3 and MSO4. This indicates that it is not necessary to241

compute all the MSO sets to obtain a parsimonious set of residual generators guaranteeing242

maximal diagnosability.243

The above remark tells us that we need to change the perspective and focus on the244

possible fault supports of MSO sets rather than the MSO sets themselves. Hence the245

following definitions from [5] focusing on fault supports.246

▶ Definition 15 (Test Support (TS)). Given a model Σ and a set of faults F , a subset of247

faults ζ ⊆ F is a TS if there exists a PSO set Σ′ ⊆ Σ such that FΣ′ = ζ.248

▶ Definition 16 (Minimal Test Support (MTS)). Given a model Σ, a test support is an MTS249

if no proper subset is a test support.250

With the two above definition, it is now necessary to identify the subset of equations that251

correspond to TSs and MTSs.252

▶ Definition 17 (Test Equation Support (TES)). A PSO set Σ is a TES if (1) FΣ ̸= ∅ and253

(2) for any PSO set Σ′ such that Σ′ ⊋ Σ, it holds that FΣ′ ⊋ FΣ.254

▶ Definition 18 (Minimal Test Equation Support (MTES)). A TES Σ is an MTES if there is255

no subset of Σ that is also a TES.256
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The idea of MTES is to identify the PSOs with maximal number of equations that have a257

given test support [5]. In other words, for a given test support ζ, it is important to identify258

the maximal set of equations Σ′ = Σ′+ such that FΣ′ = ζ, thus avoiding that two MTES259

have the same TS.260

It is also important to pay attention to the minimality property, i.e., to identify MTES261

instead of simply TES. Indeed minimality avoids obtaining redundant residual generators.262

This can be proved by showing that, considering the set of MTES for a given system, an ARR263

generated from a given MTES is never redundant with respect to the set of ARRs generated264

from the other MTESs. This statement holds true based on the following proposition, which265

is proved in [3], specifically due to the second condition.266

▶ Proposition 19. A given ARRi is redundant with respect to a set of ARRs, i ∈ I, j /∈ I,267

if and only if there exists I ′ ⊆ I such that:268

1. ∀z(observations), if all ARRis
, i ∈ I ′, are satisfied by z, then ARRj is satisfied by z.269

2. The fault support of ARRj contains the fault support of each ARRi, i ∈ I ′:270 ⋃
i∈I′

FARRi ⊆ FARRj .271

In summary, the fault supports of the MTESs are sufficient to guarantee maximal272

diagnosability because they correspond to all the possible MTS, i.e. to all the fault supports273

of possible MSOs. Every MTES has a different MTS and no MTES is redundant.274

Interestingly, the set of MTES is much smaller than the set of MSO sets, which results in275

computation time saving.276

4.2 MTES based diagnosis process277

The following steps, applied on system Σ3 illustrate the process of diagnosis based on MTES.278

279

Step 1: Specification280

The first step involves defining the isolability requirements for the faults in the system.281

The pair of faults that need to be isolated are specified, for example:282

I1: isolate f1 from f2.283

I2: isolate f1 from f3.284

I3: isolate f2 from f3.285

Step 2: Compute the set of MTES286

MTESs are computed for the system Σ3:287

MTES1 = {e2, e3, e4, e5, e6} with corresponding MTS {f2, f3} and φ(MTES1) = 2.288

MTES2 = {e1, e3, e4, e5, e6} with corresponding MTS {f1, f3} and φ(MTES1) = 2.289

MTES3 = {e1, e2, e3, e4, e5} with corresponding MTS {f1, f2} and φ(MTES1) = 2.290

Step 3: Find the subset of MTES that satisfies all the isolability specifications291

In this step, we check if there exists a Minimal Hitting Set that satisfies the isolability292

conditions defined in Step 1. We examine whether each specification can be satisfied by293

finding a set of equations where the faults can be isolated according to the conditions.294

For I1 (isolate f1 from f2), an MTES whose corresponding MTS includes f1 and not f2295

is required. It could be MTES2.296

DX 2024
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For I2 (isolate f1 from f3): an MTES whose corresponding MTS includes f1 and not f3297

is required. It could be MTES3.298

For I3 (isolate f2 from f3): an MTES whose corresponding MTS includes f2 and not f3299

is required. MTES3 also works.300

Step 4: Find an FMSO within each selected MTES301

MTES2 includes only FMSO4 that can be used as residual generator.302

MTES3 includes FMSO6 and FMSO8, so any of those could be used as residual303

generator.304

4.3 Algorithm305

An algorithm for computing the set of MTES is presented in [5]. The concept behind this306

algorithm is similar to the one used to find MSO sets. In each step, an equation is removed307

from the model, and the overdetermined part of the remaining set is recalculated. The main308

difference is that instead of removing all equations successively (or equivalence classes in309

the improved version), only equations associated with faults are removed. By doing so, the310

fault support of the resulting set decreases at each iteration, aligning with our goal of finding311

minimal fault supports.312

The algorithm begins with a TES (the largest PSO set, ensuring no larger PSO set has313

the same fault support), and remains within the class of TES by progressively removing314

the fault-carrying equations. Thus, as these equations are removed, it is ensured that the315

resulting set continues to satisfy the properties of a TES.316

The stopping condition for this algorithm is as follows: a TES Σ is considered an MTES317

if all fault-carrying equations in Σ belong to the same equivalence class. Indeed, when318

this condition is met, if the process goes on by removing a fault-carrying equation and319

recalculating the overdetermined part, the resulting equation set will no longer contain any320

fault-carrying equations. This stopping condition is tested at each iteration, and when it is321

satisfied, the TES Σ is confirmed as an MTES.322

Another stopping condition is given in [5]. A TES Σ′ ⊆ Σ is an MTES if and only if323

φ(Σ′) = φ((Σ \ Σf )+) + 1, with Σf the set of equations in Σ affected by faults. (Σ \ Σf )+
324

represents the equations that can be added without modifying the fault support, while325

remaining within the class of PSO sets. If we take any TES, it can be extended with the326

equations from (Σ \ Σf )+. The consequence of this condition is that all MTES have the327

same structural redundancy (for Σ3, the 3 MTES have structural redundancy equal to 2).328

Thus, either all MTES are MSO sets, i.e., their structural redundancy is 1, or none of them329

is exactly an MSO set because their structural redundancy is more than 1, in which case330

MTES obviously include several MSO sets. If all the equation of a system are affected by331

faults, then MTES are exactly MSO sets. The advantage of using this condition is that it332

avoids performing a Dulmage-Mendelsohn decomposition at each step.333

If nf is the number of fault-carrying equations, the number of nodes traversed by the334

search algorithm is bounded by Equation (3).335

φ−1∑
k=0

(
nf

k

)
. (3)336

Running example: We now apply the algorithm step by step on the illustrative example337

Σ4 presented in Table 7.338
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x1 x2 x3 x4 x5

e1 × × × f1

e2 × ×
e3 × f2

e4 × f3

e5 × ×
e6 ×
e7 ×
e8 ×
e9 ×

Table 7 Illustrative example Σ3

First, we consider the entire set. It is a PSO set, so there is no need to compute the339

overdetermined part. The equivalence classes are: {e1, e5, e8}, {e2, e6}, {e3}, {e4}, {e7}, {e9}.340

The stopping condition is not verified because all fault-carrying equations are not in the341

same class. Thus, {e1, e2, e3, e4, e5, e6, e7, e8, e9} is only a TES, but not a MTES. Then,342

an equivalence class containing a fault (f1) is removed. The set {e1, e5, e8} is eliminated343

(equivalent to removing e1 and then computing the overdetermined part). The remaining set344

is {e2, e3, e4, e6, e7, e9}. The equivalence classes are as follow: {e2, e6}, {e3}, {e7}, {e4, e9}.345

Since the stopping condition is still not met, we proceed by removing the equivalence class346

containing f2. The resulting set is {e2, e4, e6, e7, e9}. This time, the stopping condition is347

satisfied (only one fault remaining), MTES1 is identified. The same process is applied to348

find all the MTES.349

5 Summary350

To sum up the previous sections, MSO sets are sets of equations in a model where the number351

of equations exceeds the number of unknowns by one. This overdetermination is minimal,352

meaning that if any equation was removed, the set would no longer be overdetermined.353

MSO sets are particularly useful in fault detection as they provide the basis for producing354

residual generators. They retain the necessary and sufficient redundancy. However, as seen355

in the previous sections, relying on the generation of MSO sets to generate the residual356

generators that guarantee maximal diagnosability has some drawbacks. The first point is357

that some MSO sets may not be sensitive to faults, making those irrelevant for fault detection358

and diagnosis. Second, even if they can be generated systematically, finding all MSO sets359

can be computationally expensive for large systems. Last but not least, they do not provide360

any information about fault isolation.361

FMSO sets are MSO sets but they only retain MSO sets with non-empty fault support,362

so they are all relevant for fault detection and isolation. They are less numerous than MSO363

sets, which reduces significantly computation time. However, as shown in Section 4.1, several364

FMSO sets may have the same fault support and some may be redundant.365

By focusing on fault supports rather than specific sets of equations, TESs effectively366

identify exactly those fault supports that correspond to all the possible MSO sets. MTESs367

gather all the equations from which all the FMSO sets with the corresponding fault support368

can be generated. As a result, MTESs inherently address the problem of test selection. In369

addition, generating MTES is obviously less computationally demanding than generating370
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Aspect MSO sets FMSO sets MTES
Diagnosis target residual generation fault driven residual

generation
isolability driven re-
sidual generation

Scalability too complex for large sys-
tems

too complex for large
systems

good scalability

Table 8 Summary comparison of MSO sets, FMSO sets, and MTES

MSO sets or FMSO sets. Note however that, once MTESs are obtained, one FMSO set must371

be extracted for each of them to achieve maximal diagnosability.372

One should note that for some problem, in particular test selection for distributed systems,373

having all the MSO sets at hand is an advantage because subsystem interconnections express374

in terms of equations so equation subsets are as important as their fault supports [1, 7].375

Table 8 gives a summary of the comparison of MSO sets, FMSO sets, and MTES.376

6 Application of the concepts on a real example: the ADCS377

In this section, all the concepts discussed earlier are explored through a realistic example:378

the Attitude Determination and Control System (ADCS) of a Low Earth Orbit satellite [2].379

6.1 Structural model of the ADCS380

In this example, the dynamics of a satellite’s motion are modeled using equations that381

describe the behavior of torque and angular velocity. The total torque acting on the satellite,382

T , is the sum of the torques generated by the magnetorquers, reaction wheels, and external383

disturbances. The rotational dynamics are influenced by the satellite’s moment of inertia I384

and angular velocity ω.385

The global system is divided into 2 main parts: the Attitude Determination System (ADS)386

and Attitude Control System (ACS). The ADS uses a combination of gyroscopes and vector387

sensors (such as sun and star sensors) to estimate the satellite’s attitude state, including388

pitch, roll, and yaw angles, along with their corresponding rates. The resulting state vector389

for the satellite is X = [ψ, θ, ϕ, ψ̇, θ̇, ϕ̇]. These estimates are then fused together to provide390

feedback to the ACS, which controls actuators like reaction wheels and magnetorquers to391

adjust the satellite’s attitude.392

The structural model of the satellite’s ADCS is enhanced by incorporating fault informa-393

tion directly into the system’s equations, with faults modeled as signals. The model considers394

faults affecting the rate and vector sensors of the ADS (respectively frs and fvs), as well395

as the reaction wheels of the ACS (frw), including various types such as hard, soft, and396

intermittent faults. Each fault can affect all three axes of the system (x, y, and z).397

The ADCS’s structural model includes 42 equations including 42 unknowns variables, 15398

known variables, and 9 faults that appear as parameters in the equations. The majority of399

these equations are based on three behavioral equations that address the system dynamics400

along the x, y, and z axes. The biadjacency matrix of the system is given by Figure 3. The401

links between relations and unknown variables are represented in blue, those with faults in402

red and those with known variables in black.403
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Figure 3 Biadjacency matrix of the ADCS system

6.2 Results404

Using the "Fault Diagnosis Toolbox"2, 2448 MSO sets are found for this model, but only 9405

MTES. There are also 2448 FMSO sets, as each MSO set has a non empty fault support.406

In our example, we have ne = 42, nf = 9, and φ = 9. Applying Equation 3 results in a407

maximum of 511 nodes traversed during the search for MTES, whereas applying Equation 2408

gives a maximum number of nodes exceeding 109. These values clearly illustrate the difference409

in complexity between the two algorithms, with the MSO algorithm requiring the traversal of410

far more nodes. However, these are only upper bounds, as in practice, the equations can be411

grouped into equivalence classes, significantly reducing the actual number of nodes traversed412

by the algorithm. Table 9 presents the computation time required to compute both the MSO413

sets and the MTES. It shows that the computation time for MSO sets is significantly higher414

than for MTES in large systems.415

Algorithm Calculation time
MSO algorithm 0.534 s

MTES algorithm 0.239 s

Table 9 Computation time of both algorithms

It is clear that the 2448 MSO sets for this model are not all useful for the generation of416

residuals. MSO sets with empty fault supports are not interesting, as they do not contribute417

to fault driven residual generation. This is why we focus on FMSO sets, which contain faults418

and are thus more relevant for diagnosis. However, in this case, all MSO sets contain faults,419

making the use of FMSO sets less critical. There must still be some MSO sets with identical420

2 https://faultdiagnosistoolbox.github.io/
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fault supports or non-minimal ones. The MTES of this model, along with the associated421

fault supports, are given in Table 10.422

MTES Fault support
MT ES1 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e24, e30} {fvsz}
MT ES2 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e23, e29} {fvsy}
MT ES3 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e28} {fvsx}
MT ES4 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e27} {frsz}
MT ES5 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e26} {frsy}
MT ES6 {e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e25} {frsx}
MT ES7 {e6, e9, e12, e15} {frwz}
MT ES8 {e5, e8, e11, e14} {frwy}
MT ES9 {e4, e7, e10, e13} {frwx}

Table 10 MTES and their fault support for the ADCS example

For this example, all these MTES are MSO sets. These are the MSO sets with the423

minimal fault supports, containing the largest number of equations. The other MSO sets are424

not necessary as they have fault supports that are unions of these, or they can be expanded425

with other equations without altering the fault support while still remaining MSO sets. These426

9 MTES are necessary and sufficient to achieve maximal isolability as their fault support427

only includes one fault.428

7 Conclusion429

In this paper, a thorough examination and comparison of key concepts in model-based fault430

diagnosis is provided, specifically focusing on the structural analysis concepts named the431

Minimally Structurally Overdetermined (MSO) sets, Fault driven Minimally Structurally432

Overdetermined (FMSO) sets, and Minimal Test Equation Supports (MTES).433

This article conducts a detailed analysis of the rules, applications and interrelationships434

of MSO sets, FMSO sets and MTESs, providing insights into their respective strengths435

and limitations. It then systematically examines the algorithms used to identify MSO and436

MTES sets, discussing their computational efficiency and impact on diagnosis capabilities.437

The final part of this work applies these concepts to a practical example, demonstrating438

their effectiveness in a real-world scenario. More specifically, the algorithms are applied to439

the Attitude Determination and Control System (ADCS) of a satellite in low Earth orbit,440

and the structural model, algorithmic complexity involved and the possibility of diagnosing441

faults are studied. This results highlight the practical usefulness of MTES in reducing the442

computational load while maintaining robust fault isolation capabilities.443
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