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Abstract17

Creating models that are usable for fault diagnosis is hard. This is especially true for cyber-physical systems18

that are subject to architectural changes and may need to be adapted to different product variants intermittently.19

We therefore can no longer rely on expert-defined and static models for many systems. Instead, models need to20

be created more cheaply and need to adapt to different circumstances. In this article we present a novel approach21

to create physical models for process industry systems using multi-modal large language models (i.e ChatGPT).22

We present a five-step prompting approach that uses a piping and instrumentation diagram (P&ID) and natural23

language prompts as its input. We show that we are able to generate physical models of three systems of a24

well-known benchmark. We further show that we are able to diagnose faults for all of these systems by using the25

Fault Diagnosis Toolbox. We found that while multi-modal large language models (MLLMs) are a promising26

method for automated model creation, they have significant drawbacks.27
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6:2 Using Multi-modal LLMs to Create Models for Fault Diagnosis
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1 Introduction46

Model-based fault diagnosis requires the availability of logical or physical models to reason from47

observations that deviate from normal behaviour to possible root causes (i.e. faults) [26]. The48

major drawback common to all model-based fault diagnosis approaches is the limited availability of49

complete models [5] that exactly describe the behaviour of the underlying system. Obtaining a model50

is usually an expensive process, requires the close cooperation of experts, and results in most cases in51

static formulations with respect to the system’s architecture. However, changes in architecture and52

changes in system parameters are common in today’s cyber-physical systems (CPS), which places53

strong requirements on models and thus makes the application of fault diagnosis methods quite rare.54

The challenge in model creation is to reliably detect the physical dependencies between compon-55

ents along with each component’s behaviour. Formally, this is known as the system identification56

problem. According to Aguirre [1], system identification is done using a set of measured data to find57

a mathematical modelM that represents a system in some meaningful way. To buildM exclusively58

from data is called a black-box identification problem. In grey-box problems, besides data, there59

is some other source of external information about the system. In this article, we use a white-box60

approach to system identification, using detailed knowledge about the system’s physical laws and61

underlying mechanisms.62

Several authors have attempted to solve the system identification problem for fault diagnosis63

through black-box and grey-box approaches [7, 18]. Frisk et al. [10] have come up with a semi-64

automatic white-box approach to create fault diagnosis models from physical equations. But they65

rely on exact specifications of the system’s components, connections, and their governing equations,66

which we are trying to avoid in this article. Plambeck et al. [23] propose to learn models of hybrid67

systems using symbolic regression. Their method leverages the power of genetic programming68

to automatically discover interpretable mathematical models in the form of hybrid systems from69

observed data. But they require a historical dataset, which is something we want to avoid. We also do70

not want to rely on complex and hard-to maintain ontologies that some authors have used for this task71

[11]. So far, large-language models (LLMs) have not been broadly adopted by the fault diagnosis72

community yet. Some [13, 28] have presented the usage of LLMs for software fault localization.73

Others have shown how to generate equations with LLMs [8, 24]. Balhorn et al. [2] have used LLMs74

to correct P&ID diagrams, but have not attempted to generate any kinds of models from the diagrams.75

Hirtreiter et al. [12] attempted automatic generation of control structures using LLMs. Ogundare et76

al. [19] have analysed the resilience of LLMs to create system models. But their models are limited77

to single equations that have no automatic dependencies between each other. Kato et al. [14] extract78

equations from a large number of scientific documents and create physical models out of them by79

judging their equivalence using a pre-trained LLM and defining requirements the physical model80

has to meet. But they neither use P&IDs nor do they create models for fault diagnosis. Peifeng et al.81

[21] presented the application of fault diagnosis with LLMs in aviation assembly, but this approach82

requires additional knowledge graphs. The problem of automatic knowledge extraction from P&IDs83

has been considered in recent works using deep learning and graph search [16]. Sinha et al. [25]84

propose a solution to detect tables and extract descriptions therein from P&ID diagrams automatically.85

In this article we present a novel approach to use common design documentation for cyber-86

physical systems in the process industry in the form of piping and instrumentation diagrams (P&IDs)87

to generate a physical model using a multi-modal large language model (MLLM). P&IDs picture88

the components, sensors, the structure of the system, and the names of the elements, providing a lot89
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of helpful information for fault diagnosis. MLLMs are, among other things, able to handle images90

and text as input and create text as output. As MLLM we use OpenAI’s GPT4 (ChatGPT) [20] with91

prompt engineering. As a direct continuation of some of our earlier work [17], we now present a92

more extended approach, do not provide the equations to the model, and, given the physical model93

created by ChatGPT, use the Fault Diagnosis Toolbox (FDT) [10] to generate analytical redundancy94

relations (ARRs). The ARRs are used to: i) compute the fault signature matrix [9]. This is a validation95

technique to establish how well we can diagnose potential faults. ii) compute residuals to determine96

faulty signals and thus discriminate faults.97

With our contribution we want to present a novel diagnosis methodology for the fault diagnosis98

(DX) and fault detection and isolation (FDI) communities which uses LLMs, in particular MLLMs,99

to automatically generate physical models from existing design documentation. Our methodology100

consists of five steps, takes existing P&IDs as input, and creates models, that can be directly used as101

input for the fault diagnosis toolbox which can then be applied to create and evaluate ARRs for fault102

diagnosis. As expected, MLLMs still have severe limitations and our approach lacks generalisation103

to systems that are outside of well-known water tank benchmarks and similar process industrial104

examples. However, using our method in a generate-and-test approach we believe that practitioners105

can generate a statistically significant number of models and then select those that i) compile and106

ii) have a sufficiently high isolability. We believe that our approach has strong benefits in practical107

use-cases where models of systems with known components need to be created cheaply. Our method108

enables practitioners to generate new models whenever an updated system documentation exists. It109

also directly enables the generation of residuals from the identified model and thus decreases the110

costs to create self-diagnosing and resilient systems.111

We have evaluated our approach on a one-tank, one three-tank, and one four-tank system of the112

benchmark provided by Balzereit et al. [3]. We first evaluated each system qualitatively and then113

used it together with the FDT to perform a quantitative evaluation.114

2 Background115

In this section, we explain the basis of our physical models, in particular how they integrate faulty116

behaviour, how we process observations from the system, and how we create diagnosis tests.117

▶ Definition 1 (Measurement, Control Value). A measurement is a single measured value from a118

CPS sensor zsi(t) ∈ R. A control value is a single value from a CPS actuator zci(t) ∈ R.119

Measurements and control values form the sets of known variables Z = Zs ∪ Zc . For simplicity,120

time notation is often omitted, assuming values are taken concurrently. We thus write zi instead of121

zi(t). There are two types of faults: additive and multiplicative.122

▶ Definition 2 (Additive Fault). An additive fault is a fault that changes the value of some123

measurement or control value zi ∈ R by introducing an offset fi ∈ R in an additive way, so that the124

sensor/actuator reads z′
i = zi + fi instead of zi.125

▶ Definition 3 (Multiplicative Fault). A multiplicative fault is a fault that changes the value of126

some parameter pi ∈ R by introducing a factor fi ∈ R that impacts on the system’s dynamics.127

Additive faults occur when some bias is introduced into the system, such that the measurement128

is changed by some fixed amount. For example, the wrong configuration of some analog-to-digital129

converter, or the introduction of the wrong control voltage may lead to additive faults. Conversely,130

multiplicative faults, also called parameter faults, affect the system’s dynamics and hence, the stability131

of the system. They may lead to components limited in their functionality. For example a valve that132

does not open anymore, may limit its throughput to only 30%.133

DX 2024
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A physical model describes the information flow within a CPS. Through the use of physical134

relations, measurement values and intermediate values can be predicted.135

A system modelM(z, x, f) generally involves non observable or unknown variables, also named136

state variables, denoted x, and known variables z as defined previously. State variables x decompose137

in differential state variables x1 and algebraic state variables x2. The faults may be represented138

explicitly through a specific parameter vector f . The sets of known variables, unknown variables,139

and faults are denoted by Z , X , and F respectively. Note that in this paper, we limit ourselves to140

continuous dynamics physical systems. A typical model, known as a state-space model, may be141

formulated in the temporal domain as follows :142

M(z, x, f) :


dx1(t)/dt = h(x1(t), x2(t), zc(t), f), with x1(t0) = x0
0 = l(x1(t), x2(t), zc(t), f)
zs(t) = g(x1(t), x2(t), f).

(1)143

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the vectors of state variables (unknown), zs(t) ∈ Rm and144

zc(t) ∈ Rl denote the output and input vectors (known variables). zc(t) may be equal to 0 in case of145

an uncontrolled system. The functions h, l, and g are linear or nonlinear functions that involve a set146

of parameters denoted Zp (as tank diameter, nominal flow, ...).147

For any vector ν, let us define ν̄ to stand for ν and its time derivatives up to some (unspecified)148

order.149

▶ Definition 4 (Analytical Redundancy Relations (ARR)). ARRs are relationsM′(z̄) =M′′(f̄)150

obtained fromM(z, x, f) by formally eliminating unknown variables x. WhileM′′(f̄) is the internal151

form that depends on the faults and is not known,M′(z̄) is the computation form and can be computed152

from the known variables and their derivatives.153

M′(z̄) defines a set of ARRs. A single ARR takes the form arri(z̄′) = ri, where ri is a scalar154

signal named residual and z̄′ a subvector of z̄. It can be used as residual generator.155

▶ Definition 5 (Residual generator forM(z, x, f)). A relation of the form arri(z̄′) = ri, with156

input z̄′ a subvector of z̄ and output ri, a scalar signal named residual, is a residual generator for the157

modelM(z, x, f) if, for all z consistent withM(z, x, f), it holds that lim
t→∞

r(t) = 0.158

In simpler terms, a residual generator produces a signal (residual) that should be zero when the system159

is working correctly, and any deviation from zero indicates a potential fault.160

From the system model, ARRs can be obtained based on the analytical redundancy embedded161

in the model. For this, variable elimination can be applied, thereby obtaining relations that involve162

only known variables. ARRs allow us to assess whether the measurements z are consistent with the163

modelM(z, x, f), hence defining diagnosis tests. Once a fault exists within the CPS it will hopefully164

have some influence on the measurements and therefore also on the residuals. If it does not have any165

detectable influence then the fault is said non detectable and it cannot be detected [15].166

Following the ideas from Cassar and Staroswiecki [4] and Travé-Massuyès et al. [27], structural167

analysis can be advantageously used to obtain ARRs. It consists in abstracting the system model168

by keeping only the links between equations and variables. The main advantages are that it can be169

applied to large scale systems, linear or non linear, even under uncertainty.170

When used for fault diagnosis purposes, structural analysis allows one to find subsets of equations171

endowed with redundancy. Structural redundancy ρM′ of a set of equationsM′ ⊆M is defined as172

the difference between the number of equations and the number of unknown variables.173

Actually, minimal subsets of equations endowed with structural redundancy have been proved to174

provide sets of equations supporting diagnostic tests [15]. These have been defined as Fault-Driven175

Minimal Structurally Overdetermined (FMSO) sets [22]. Assume Fφ as the set of faults that are176

involved in a set of equations φ ⊆M(z, x,f).177



S. Merkelbach et al. 6:5

▶ Definition 6 (FMSO set). A subset of equations φ ⊆M(z, x,f) is an FMSO set ofM(z, x,f)178

if (1) Fφ ̸= ∅ and ρφ = 1, (2) no subset of φ is overdetermined, i.e. with more equations than179

unknown variables. The set of FMSO sets ofM is denoted Φ.180

FMSO sets can be converted into ARRs. By their nature, all the undetermined variables involved181

in an FMSO set φ can be resolved using |φ| − 1 equations. These variables can subsequently be182

substituted into the |φ|th equation to formulate an ARR off-line, which is then utilized on-line as a183

diagnostic test. Furthermore, the concept of an FMSO set is crucial for defining detectable faults and184

isolable faults. Here, we revisit these definitions [15].185

▶ Definition 7 (Detectable fault). A fault f ∈ F is detectable in the systemM(z, x,f) if there186

exists an FMSO set φ ∈ Φ such that f ∈ Fφ.187

▶ Definition 8 (Isolable faults). Given two detectable faults f and f ′ of F , f ̸= f ′, f is isolable188

from f ′ if there exists an FMSO set φ ∈ Φ such that f ∈ Fφ and f ′ ̸∈ Fφ.189

The Fault Diagnosis Toolbox (FDT) [10] is designed for the analysis and creation of fault diagnosis190

systems for dynamic systems, which are mainly characterized by differential-algebraic equations.191

Utilizing a structural model, this toolbox facilitates the production of FMSO sets. From these sets, it192

can automatically produce ARRs that are employed as diagnostic tests.193

To summarise, in this article we are using a MLLM to generate system models. Then we use the194

above theory and employ the FDT to create ARRs and residuals for fault diagnosis.195

3 Creating Physical Models for Fault Diagnosis Using MLLMs196

This section presents a novel approach to create physical system models for fault diagnosis using197

a five-step approach to query a MLLM. Our goal is to obtain a physical model M describing a198

cyber-physical system’s normal behaviour put in a form M̃ which can be used as input for the FDT199

[10]. Using our model with the FDT we want to show how to automatically diagnose faults using200

the theory described in the section above. In particular, we solve P, I → M̃, with a P&ID P , some201

additional external information I, and create the physical model in a format suitable for the FDT M̃.202

Our goal is to obtain a method that practitioners can use to quickly create new system models203

without much expert knowledge and to test the capabilities of modern MLLMs in the domain of204

fault diagnosis. To realise this, we are relying mainly on the design of a system prompt of MLLMs,205

which we attempted to keep as generic as possible. In the user prompt, information specific to the206

system being modeled is provided. We also make use of the FDT, which is an established technique207

to generate ARRs for fault diagnosis from physical models. We will therefore show that our method208

can automatically create physical fault diagnosis models for process industrial use cases.209

In every step, a prompt with some external information is sent to the MLLM that can be sum-210

marised as the tuple (P,A,Zp,Zc,X ,Fdes), with P&ID P , assumptions for the physical model211

A, parameter names Zp, control variable names Zc, unknown variable names X , and faults that212

should be detected, with a short description, Fdes. We refer to A,Zp,Zc,X ,Fdes ∈ I with external213

information I.214

The five steps of our prompting approach are the following: i) Let the MLLM read the diagram215

image data and represent it in some partially specified intermediate format, ii) Identify the sensors216

from the diagram, iii) Create the physical equations, iv) Match sensors and variables, and v) Format217

the model for the FDT. The steps are formalised in Algorithm 1 and will be described in more detail218

below. All steps provide the MLLM with the P&ID as input. In addition, the steps take a system219

message and a user prompt as input. The system message contains the generic task for the respective220

step. However, taking current abilities of MLLMs into account, it is still domain dependent. The user221

DX 2024



6:6 Using Multi-modal LLMs to Create Models for Fault Diagnosis

message contains a subset of the external information I ′ ⊂ I which is specific for the system. The222

prompts can be found in GitHub1. So far, our approach aims to work for water tank systems with223

standard components, such as tanks, pumps, valves, flow indicators, and level indicators.224

Algorithm 1 Create Physical Models with MLLMs:

Data: P,A,Zp,Zc,X ,Fdes

Result: M̃
1 CompsConnections← ReadDiagram(P);
2 Sensors← IdentifySensors(P, CompsConnections) ;
3 Equations← CreateEquations(P, CompsConnections,X ,Zp,Zc,A) ;
4 M←Matching(P, Sensors, Equations, CompsConnections,Zp,Zc,Fdes) ;
5 M̃ ← Formatting(P,M)
6 return M̃ ;

Step 1: Read Diagram: In the first step, the components of the system and their connections225

are extracted from the diagram P with the vision capabilities of the MLLM. The output, which is226

formatted as a table with additional explanatory information is captured in CompsConnections.227

The model receives context about the diagram in the system message. It is requested to output the228

components and their connections in a simple table that can easily be interpreted by the MLLM in229

later steps. To avoid that the sensors are listed as elements, they should be ignored in this step. The230

model is also instructed to write ’unclear’ for connections it cannot identify. In previous work we231

found that including these ’unclear’ connections significantly reduces hallucinations [17]. At the232

end, the MLLM is told to make sure that the valves only occur once in the input and output columns.233

Otherwise, inconsistent models are generated that cannot be used by subsequent steps. In this step,234

no user prompt is needed, the input is just the diagram.235

Step 2: Identify Sensors: The second step creates another table Sensors containing the existing236

sensors Zs, their type, and their placement from diagram P and from the output from step 1 in the237

form of CompsConnections. Context about P&IDs, possibly occurring sensors, and the placement238

of the sensors in the diagram are provided in the system message. To reduce hallucinations, the239

MLLM is advised to check if the combination of number and sensor type is actually in the image and240

that each number can only occur once. To make sure there is an output, the MLLM is advised to try241

the task, even if it tends to say the diagram is too complex. The user prompt contains only the input242

from the previous step CompsConnections.243

Step 3: Create Equations For the creation of the physical equations Equations, the MLLM gets244

the diagram P , the names of the unknown variables X , CompsConnections, the parameter names245

Zp, the control variable names Zc, and the assumptions A as input. The model is instructed to use246

as many of the given symbols as possible to take care that the equations are detailed enough for the247

later steps. It is also told to calculate the values that could be measured with the sensors (volume flow248

through valves and pumps, and levels of the tanks) to make the model suitable for fault diagnosis later.249

The ’unclear’ connections from CompsConnections are excluded to obtain an executable model. In250

our approach, we prefer an incomplete model over a wrong model. At the end of the system message,251

there are some formatting instructions to prepare the equations for the usage in the FDT. Unlike in252

our previous work [17], we do not provide any equations and rely completely on the equations known253

to the MLLM to increase usability. In the user prompt, we include the external information I ′. To254

1 https://github.com/silkeme/DX24_Model_Creation_LLMs
The repository contains the prompts, all mentioned information about the systems used for the evaluation, the
resulting physical models, and all intermediate outputs.

https://github.com/silkeme/DX24_Model_Creation_LLMs
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provide the model with additional context it is exemplary mentioned that the variables and parameters255

have the same names as in OpenModelica. When the method is applied to other systems that are256

not modelled with OpenModelica, the variables and parameters should have self-explaining names257

such that the MLLM is able to use them correctly. In this case, the hint to OpenModelica in the user258

prompt would need to be adjusted accordingly.259

Step 4: Sensor Matching and Variable Assignment In this step, all the results from the previous260

steps are merged, the faults are added to the equations and the resulting physical modelM is created.261

The step takes as input the diagram P , the identified Sensors, the Equations, CompsConnections,262

the parameter names Zp, the control variable names Zc, and the faults with a short description Fdes.263

The system message contains an explanation of how to handle the input, how to match the sensors Zs264

with the variables from the equations, to identify parameters Zp, and how to handle control variables265

Zc. In addition, it is instructed to add the faults Fdes as multiplicative or additive faults to the model.266

The variables should be stored in a dictionary, assigning them to the suitable key depending on if267

they are known (Z), unknown (X ), faults (F), or parameters. The user prompt contains only the268

mentioned input with a short introductive description.269

Step 5: Format Model for Fault Diagnosis Toolbox In the final step, the physical modelM270

is transformed to be suitable for the Fault Diagnosis Toolbox into M̃. In the system message, the271

structure of the model is provided which just needs to be filled in by the MLLM. It contains many272

specific instructions to how the format should look like and to force the MLLM to output only the273

desired format, since otherwise, M̃ is not executable. The user prompt only contains the physical274

modelM that already includes all the other external information at this point.275

4 Evaluation276

To evaluate our approach we used three different multiple tank systems (i.e. S1-S3) from the277

benchmark from Balzereit et al. [3]. The P&ID for system S1 is shown exemplarily in Figure 1.278

We manually re-created the P&IDs to ensure that the MLLM has not seen them before as part of its279

training data. The P&IDs follow the standard DIN EN ISO 10628 [6]. For each system we generated280

physical models to evaluate our MLLM approach. For the qualitative evaluation, we compared the281

models created by the MLLM to manually created models. We looked at the following aspects:282

visual analysis of the diagram, usability of the model, and correctness of the model. In addition, we283

performed a quantitative evaluation to check how our approach is able to diagnose real injected faults284

with simulated data.285

Figure 1 P&ID diagram of the one-tank system S1.

The implementation was done in Python, using the OpenAI library to call OpenAI’s GPT4286

via the API. The version of the model is ’gpt-4-vision-preview’ and the following parameters287

were used to make the model less creative and more reliable: seed=42, temperature=0, top_p=0.1,288

frequency_penalty=0, and presence_penalty=0. We repeated the experiment for each of the three289

systems 100 times. For each step’s input we used exactly the output of the previous step.290

The data we used was created using OpenModelica 1.13 with the benchmark of Balzereit et al.291

DX 2024



6:8 Using Multi-modal LLMs to Create Models for Fault Diagnosis

[3]. We extracted the variable names and excluded internal variables (those starting with ’$cse’). We292

listed the names of control variables Zc separately and created another list with the names of the293

parameters Zp. A list with faults to be detected Fdes was created manually for the systems. The294

assumptionsA are used to simplify the model and are the same for all systems. An excerpt of external295

information I for system S1 is shown in Table 1. An overview of the number of elements and names296

is listed in Table 2.297

Table 1 Inputs for S1

Input Count Content

Parameter names Zp 16 [’pipe_Diameter’, ’pipe4_Diameter’, ’tank1_Diameter’, ’pipe1_Diameter’,
’pipe2_Diameter’, ’pipe_Length’, ...]

Control variable
names Zc

3 [’pump_N’, ’valve0_opening’, ’valve1_opening’]

Unknown variable
names Xn

348 [’time’, ’pump_medium_T’, ’pump_medium_p’, ’tank1_level’,
’tank1_medium_T’, ’der_pump_medium_T’, ’der_pump_medium_p’, ...]

Faults Fdes 4 Leakage of tank1: ’f_tank1leak’. Valve0 blocked: ’f_valve0’. Valve1 blocked:
’f_valve1’. Degraded rotational speed of pump: ’f_pumpSlow’.

Assumptions A 5 \nThe fluid in the system is water\nThe fluid is incompressible\nThere are no
energy losses\nThe process is adiabatic\nThe tanks are open.

Table 2 Overview of the number of elements and names in S1-S3

System Components Sensors Zp Zc Xn Fdes A

S1 4 4 16 3 348 4 5
S2 8 7 32 5 691 5 5
S3 11 9 36 7 1007 4 5

4.1 Qualitative Evaluation298

Our motivation for the qualitative evaluation was to generate insights on how well current MLLMs299

can be used for fault diagnosis. We therefore manually analyzed the models created for each system.300

The models were assessed according to the following criteria: i) Visual analysis of the diagram. We301

investigated the recognition of elements, of connections, and sensors (step 1 and step 2). ii) Usability302

of the model. We identified errors that lead to non-executable models and analysed how this affects303

usability. iii) Correctness of the model. We checked the assignment of the variables to the four304

categories (unknown variables X , faults F , known variables including control variables Zc and sensor305

variables Zs, and parameters Zp), the number and design of equations, and if the assumptions were306

interpreted correctly. We will now present each of the analysis results in detail.307

i) Visual Analysis of the Diagram: In step 1 (Read Diagram) almost all components were308

recognized correctly, except for some cases in S3, where valveLinear7 was missing. The sensors were309

successfully ignored in this step, such that they are not misclassified as components. The complete310

structure of S1 and S2 was identified correctly in all cases. For S3 with its complex structure and311

more elements, some connections were hallucinated or confused. The upper part of the diagram312

was always recognized correctly, while the connections to valveLinear7 were never identified and313

the output of valveLinear5 was interpreted diversely. This leads to wrong inputs for tank4 and, in314

some cases, valveLinear6. Some repetitions were completely correct, except for valveLinear7, which315
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was marked as unclear. A model resulting from that would be incomplete and not wrong. In step 2316

(Identify Sensors) the level indicators were nearly always correct in all systems. The flow indicators317

were always correct in S1. In S2, FI3 was always wrong, FI7 was sometimes right. The sensors were318

interpreted left of valveLinear1, and valveLinear3, respectively, instead of the actual placement at the319

right side of the valves. The wrong placement does not necessarily make the model wrong in the end,320

if the sensor is assigned to the valve and there is no leak in the pipe. The same issue occurred in S3,321

where in addition two sensors (FI15 and FI16) were identified at wrong locations, such as between322

valveLinear3 and tank3 for sensor FI15. Also in the mostly correct repetitions, these two sensors323

were at the wrong position, leading to wrong measurement assignments. In total, there was not much324

variation in the outputs of steps 1 and 2, the same tables occurred quite often. For a more detailed325

evaluation on the frequency of unique results, please check our previous work [17].326

ii) Usability of the Model: We validated the output of step 3-5 by checking the final model for327

its usability from an expert’s standpoint. In all repetitions for all systems, the models had the correct328

basic structure, consisting of the import of the required libraries and the dictionary in which the model329

was stored. The correct variable names were used in most cases but sometimes variables were not330

defined or contained special characters which cannot be handled by the Diagnosis Toolbox, leading to331

non-executable models. ChatGPT was advised to check if variables are in the equations but not in332

the dictionary with the variables. Instead of adding the missing variables to the dictionary directly,333

they were added at the end of the model in some cases. The missing symbol definition resulted in334

a non-executable model, if the symbol was needed for solving the equations. It did the same for335

equations, but since they do not need to be defined as symbols, the models were still executable.336

Some model definitions being not exactly consistent with the modeling conventions of the Diagnosis337

Toolbox, for example that only variables in X can be used in differential constraints, often result in338

index out of bound errors during matching computation while creating the residuals. For residuals,339

the values for some parameters, such as π or the gravity acceleration, were not present since they340

were not defined in the model provided by ChatGPT. Some of the successfully computed residuals341

did not work due to numerical errors, such as square root of a negative number, division by zero, or342

numerical overflow. An examination of how many residuals were calculated correctly, can be found343

in the quantitative evaluation.344

In addition to the errors leading to non-executable models, we made some observations that did345

not disturb the usability of the model. The format of the models varies. Sometimes the equations were346

defined directly in the model structure, sometimes they were defined before and converted afterwards.347

Sometimes they were stored in variables that are summarized in a list later, sometimes they were348

directly listed. And sometimes single equations were added to the dictionary at a later point. In the349

majority of the models, the equations were suitably structured and the code was well commented,350

making it easy to gain an overview of the model.351

iii) Correctness of the Model: The assignment of the given variables (X , F , Zc, Zs, and Zp)352

to the four categories unknown variables, faults, known variables, and parameters, was in most353

cases completely correct, and depended on the sensors that were identified in step 2. Faults and354

known variables were always correct, parameters sometimes contained values that were not in Zp.355

Sometimes, the unknown variables also contained some parameters, which is probably due to the356

instructions of step 4 (Sensor Matching) to store all not-assigned variables in the unknown variables.357

The consequence are more unknown variables and thus potentially an under-determined model for358

the system.359

The number of equations varies strongly. Many models have one equation per component as360

intended, others have more redundant equations, such as equations for the water volume and mass in361

the tank in addition to the level. In general, there are many models with correct equations. In some362

models, single equations were wrong. In other models, it seems like more assumptions were applied363
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than provided, resulting in simpler equations with fewer variables, such that, for example, the model364

works only with nominal flow. In general, the assumptions were included as intended, for example by365

ignoring the density of water. Sometimes the wrong variables were used, such as the pump’s volume366

instead of the pump’s volume flow. For each sensor there should be an extra equation but in some367

cases, the sensors were added to other equations as well. Sometimes the sensors were matched with368

the wrong variables, for example a level sensor was matched with the derivative tank level instead of369

the tank level. Under these conditions, residuals can be calculated without errors but do not work370

according to theoretical fault sensitivity, which will be checked in the quantitative evaluation. Another371

aspect are missing equations. ChatGPT does not add flow balance equations to valves or pumps, only372

to tanks. More faults might be detected with these equations. The system message of step 3 (Create373

Equations in Python) might be the reason why the balance equations are not there.374

4.2 Quantitative Evaluation375

The Quantitative evaluation was done with the Fault Diagnosis Toolbox [10]. Our five-step approach376

generated models in the form of a Python module that is expected to be consistent with FDT377

requirements. Only modules that load without errors are considered for further evaluation. We created378

a FDT model object for each model, computed all FMSO sets [15], and selected only the sets that can379

give residuals in integral or algebraic causality. Integral causality is preferred to derivative causality380

because numerical differentiation is noisy, and residual generators in integral causality correspond to381

the standard state-space formulation (eq. 1). For each FMSO, we tried to create a residual generator382

(corresponding to an ARR). We evaluated each correct residual generator on simulated benchmark383

data and verified fault detection and isolation performance. For each system S1-S3, we evaluated 100384

generated models.385

Table 3 presents the number of models imported into Python without errors and the mean number386

of FMSOs computed for each model. For each FMSO, we tried to compute residual generators. The387

following rows of Table 3 show the mean number of residual generators computed without errors388

(in the ideal case, we have one residual generator per FMSO) and the number of residuals that were389

correctly evaluated on the simulation files (in the ideal case each residual generator gives one residual390

that can be assessed with data). For S1, we consider tank leakage (tank1leak) and blockage of valve0.391

The last rows of Table 3 show the fraction of cases when these faults were successfully detected out392

of all correctly imported models. Fault detection results for S2 and S3 are presented in a similar way.393

Additionally, Table 4 shows the frequencies of ambiguity groups. For S1, in 74% of cases, all394

system states are correctly isolated; in 12% of cases, only tank1 leak can be detected; in 10% of cases,395

only valve0 fault can be detected, and in 3% of cases, none of the faults is detected. For S2, in 73%396

of cases, none of the faults are detected; in 25% of cases, only tank2 leak can be detected, and in 2%397

of cases, all system states are correctly diagnosed. For S3, in 1% of cases, all faults can be detected;398

in 4% of cases, all faults except tank2 leak are correctly diagnosed, and in 34% of cases, none are399

detected. We assume that the errors in the image interpretation lead to the bad performance for S3.400

Table 4 also shows the statistically required number of executable models to expect at least one that401

supports the ambiguity group with a chance of 95%. The number of models n is calculated with402

n ≥ ln(1− P )
ln(1− p) , (2)403

where P is the desired chance (95%), and p is the frequency in which the ambiguity group was404

observed.405

Figure 2 shows computed residuals for module S1_3, which gives complete fault isolability for406

two simulation files. In each file, the fault starts 250 seconds after the start of the simulation. We407

can observe that residual generator ResGen0 is sensitive to tank leakage, and residuals ResGen2 and408
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Table 3 Model results of models generated for S1-S3. Valve faults are cloggings and tank faults are leaks.

System S1 S2 S3
# correctly imported models 93 85 83
Mean # FMSOs 5.40 22.27 48.70
Mean # corr. res. gen. per FMSO 0.9830 0.2247 0.5783
Mean # correct res. per gen. 0.9825 1 0.9251
Individual Fault Isolation Accur-
acy

valve0 0.8495 tank1 0.0235 pipe4 0.2169

tank1 0.8710 tank2 0.2706 tank2 0.0120
valve3 0.6627
valve6 0.1928

ResGen4 are sensitive to valve blockage. ResGen0 computes tank level from the flow measurements409

and equation e1; ResGen2 and ResGen4 use valve equations. It can be observed that these residuals410

are not precisely zero on the time intervals where they should, for instance ResGen2 and ResGen4411

should be zero in [t=0,t=250], as the approximate valve flow is based on nominal flow and valve412

opening. As valve differential pressure measurement is not available, this is a reasonable attempt.413

For comparison, we created the model for S1 by hand (see GitHub). It correctly detects and414

isolates two faults considered for S1 (residuals in Fig. 3). Therefore, we achieve optimal performance415

in 74% of automatically generated models and would need 3 models to have a probability of at least416

95% that one of the models has optimal performance (Table 4).417

For S2 and S3 we found a common pattern for worse performing cases. We observe that the418

generated models do not adequately handle the situations where the flow is split (like after pump in419

S2) and where the flows merge (like before tank4 in S3). The lack of direct measurements of tank420

inflows causes poor performance for tank1 leak in S2. The poor performance for tank2 leak in S3 is421

caused by the lack of measurement of tank4 inflow. These situations can be correctly detected with422

correct models but require writing balance equations for flows.423

Table 4 Ambiguity groups for S1 and S3 with the required sample size (indicating how many executable
models need to be created to have at least one that works for the ambiguity group with a probability of 95%)

System Ambiguity groups Frequency Required Sample Size

S1

{valve0}, {tank1leak}, {NF} 0.7419 3
{valve0, NF}, {tank1leak} 0.1183 24
{valve0}, {NF, tank1leak} 0.0968 30
{valve0, tank1leak, NF} 0.0323 92
{valve0, tank1leak}, {NF} 0.0108 276

S2
{tank2leak, NF, tank1leak} 0.7294 3
{tank2leak}, {NF, tank1leak} 0.2471 11
{tank2leak}, {NF}, {tank1leak} 0.0235 126

S3

{valve6, tank2leak, pipe4, NF}, {valve3} 0.4458 6
{pipe4, valve6, valve3, NF, tank2leak} 0.3373 8
{pipe4, valve6}, {NF, tank2leak}, {valve3} 0.1325 22
{pipe4}, {NF, tank2leak}, {valve3}, {valve6} 0.0482 61
{pipe4}, {valve3}, {valve6, tank2leak, NF} 0.0241 123
{pipe4, valve6, tank2leak, valve3}, {NF} 0.0120 249
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Figure 2 Residuals for model S1_3
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Figure 3 Residuals for the correct model

5 Discussion424

The evaluation shows the potential of MLLMs like OpenAI’s GPT4 (ChatGPT) for the fully automated425

creation of models for fault diagnosis. Within the five steps of our approach, there are many influencing426

factors and many decisions to be made by the MLLM that are potentially wrong. Especially because427

MLLMs are highly non-deterministic. Under these circumstances, we find the results to be surprisingly428

good. Even though the quantitative evaluation shows severe limitations of overall fault diagnosis429

performance, it indicates that the creation of such models is possible with MLLMs, especially to430

support practitioners with some acceptable drafts they can choose from. By creating a number of431

models with our approach and evaluating them in terms of executability and correctness, a good432

model can be selected. However, in its current form, our approach is not reliable enough to be applied433

without an expert checking the models.434

We evaluated our approach with simulated data from OpenModelica. Hence we do not know how435

it reacts to other sources of data, such as real-world data. In S3, some of the faults were easier to436

detect than tank1 leak in S2, which makes the results not fully comparable between the systems. In437

our opinion, the image analysis is the biggest issue, as those diagrams are the most common in the438

process industry. While the image analysis works perfectly for small systems, the missing ability to439

detect long lines and the correct placement of sensors for complex systems leads to errors in the first440

two steps which then subsequently propagate. With sensors assigned to the wrong variables, it is not441

possible to calculate correct residuals, even though the residual generators were created successfully.442

A more reliable method to extract the system structure needs to be developed. Alternatively, the443

extraction of the structure and sensor placements could be done manually and provided to the model444

as input for step 3. We assume, that the approach does not work well for systems in which the flow445

is split, since ChatGPT did not create flow balance equations correctly. This issue might be solved446

by explicitly mentioning it in the prompt of step 3. Another way to improve the results could be to447

include sample equations to reduce the arbitrariness of the models and to be less dependent on the448

data the MLLM has seen during training. This was done in our previous work [17] successfully but449
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has the disadvantage that suitable equations need to be identified in advance. Our approach was only450

validated on ChatGPT so far which makes it unpredictable how it might work with other MLLMs.451

Unfortunately we had to restrict our approach within the prompts with the following assumptions.452

Our approach is intended to only work for flow sensors that are between exactly two elements, valves453

that are connected to one element without a split or a merge, components and sensors with unique454

names, and P&IDs that follow the standard DIN EN ISO 10628 [6]. The units of the variables and455

parameters were not provided to ChatGPT and could lead to wrong residuals if they are not consistent.456

Since MLLMs are inherently non-deterministic, the reliability of our quantitative evaluation based on457

100 repetitions for each system is uncertain.458

6 Conclusion459

We presented a novel five step-approach to generate physical models for fault diagnosis with MLLMs.460

We showed that it is possible to generate suitable models with a completely automated chain for461

small systems. In 74% of the cases we were able to detect and isolate all faults for the small system462

S1. In 97% of the cases, we could detect and isolate at least one fault correctly. For the other two463

systems, the performance was weaker, leading to a detection rate of 27% for S2 and 66% for S3.464

For S3 in no case the faults were completely isolable. Our results show that MLLMs can be used465

for the generation of models for fault diagnosis, but so far MLLMs are not reliable enough to truly466

automate model creation. Instead, we still need an expert to check and evaluate the generated models.467

The main weakness we identified is that the bad performance mainly stems from the imprecise468

detection of connections between elements and sensor placements (i.e. the image interpretation by469

the MLLM). However, we think that the image recognition feature of MLLMs will strongly improve470

in the future and scalable divide-and-conquer approaches will emerge. Future work should focus on a471

more reliable method to extract the system structure of complex systems, evaluating the approach472

with other MLLMs, and trying more assumptions about the system behaviour,473
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