
HAL Id: hal-04790225
https://laas.hal.science/hal-04790225v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex Pulse Profile Optimization by Chromatic
Dispersion Management in Coupled Opto Electronic
Oscillator based on Semiconductor Optical Amplifier

Alexis Bougaud, Arnaud Fernandez, Aliou Ly, Stéphane Balac, Olivier Llopis

To cite this version:
Alexis Bougaud, Arnaud Fernandez, Aliou Ly, Stéphane Balac, Olivier Llopis. Complex Pulse Profile
Optimization by Chromatic Dispersion Management in Coupled Opto Electronic Oscillator based
on Semiconductor Optical Amplifier. IEEE Journal of Quantum Electronics, 2024, 60 (6), pp.1-9.
�10.1109/JQE.2024.3372575�. �hal-04790225�

https://laas.hal.science/hal-04790225v1
https://hal.archives-ouvertes.fr


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract—An Ikeda map iterative numerical model completed 

with an analytical Gaussian analysis and experimental 

measurements of complex pulse profile and phase noise 

performance at 10 GHz are proposed. This work aims to study and 

optimize the chromatic dispersion of a fibered mode-locked laser 

(MLL) based on a semiconductor optical amplifier (SOA) as part 

of a coupled optoelectronic oscillator (COEO). We will 

demonstrate that a close to zero anomalous dispersion regime is 

preferred as it allows the generation of optical picosecond pulses 

with minimum full width at half maximum (FWHM) and 

maximizes the absolute value of chirp and peak power. This 

guarantees the generation of narrow and diffraction-limited 

optical pulses after the chromatic dispersion compensating stage 

prior photodetection in order to lower the phase noise of the 

microwave signal generated at 10 GHz but also for high-order 

microwave harmonics synthesis. 

 
Index Terms—Optical pulses, semiconductor fiber ring laser, 

mode-locked lasers (MLLs), ultrafast optics, coupled 

optoelectronic oscillator (COEO). 

I. INTRODUCTION 

INCE their apparition in the late 90’s [1], COEO (Fig. 1) 

have demonstrated unprecedented results for highly 

spectrally pure microwave and millimeter-wave (mm-wave) 

signals synthesis using optical devices. Such device can 

generate a train of short optical pulses that are suitable for many 

applications, as to mention, RADAR and signal processing [2], 

[3]. 

A COEO generating a 10 GHz beat tone with -140 dBc/Hz 

phase noise at 10 kHz frequency offset was proposed by 

Matsko et al. [4], [5]. Based on a nearly similar design, Ly et al. 

have synthesized a 90 GHz frequency reference with lower than 

-120 dBc/Hz phase noise at 10 kHz frequency offset through 

third harmonic generation from a COEO operating at 30 GHz 

repetition rate [6]. 

Whether in fiber [4], [5], [6] or integrated technology [7], the 

conventional design of a COEO closely resembles that of a  
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Fig. 1. Schematic of the COEO under experimental study accompanied by the 
stepped-heterodyne setup for pulse characterization. SOA: semiconductor 

optical amplifier, MZM: Mach Zehnder modulator, PC: polarization controller, 

OBPF: optical bandpass filter. I1, I2: optical isolators. C1,2,3,4: optical couplers, 

L1, L2: optical fiber spools, PD1, PD2: photodiodes, A: RF amplifier, ∅: RF 

phase shifter, C5: RF coupler, BPF: RF band-pass filter, EDFA: Erbium Doped 

Fiber Amplifier, TLS: tunable laser source, OSA: optical spectrum analyzer, 

RTO: real time oscilloscope. 

regenerative harmonically MLL laser (Fig. 1) but genuinely 

departs from it since the optical loop is stabilized so that the RF 

noise is minimized [3], [4]. The spectral noise purity of the RF 

drive determines the jitter of the optical pulses allowing a phase 

noise enhancement of the photo-generated RF signal compared 

to a classical harmonically MLL, limited by the external RF 

synthesizer phase noise performance. The dependence of the 

photodetected phase noise on pulses properties has been 

analyzed theoretically and experimentally [5], [8], [9].These 

studies demonstrate that a high energy and narrow pulse prior 

photodetection is of importance to reduce the timing jitter of 

mode-locked pulse train. Analytical [5] and semi-analytical 

studies [10], [11] have shown that group velocity dispersion 

(GVD) management in the optical cavity (𝛽2𝛴,1, Fig. 1) can act 

favorably in the pulse peak power increase and its halfwidth 

decrease. For COEO employing a SOA [5], a 𝛽2𝛴,1 close to zero 

is optimal as it minimizes the optical pulse FWHM and 
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maximizes its absolute value of chirp at the fiber spool input 

(L2). Consequently, the external spool chromatic dispersion 

(𝛽2𝛴,2 in Fig. 1) has to be adjusted in order to fully compensate 

this chirp. While these studies are relevant and highly useful, 

they lack precision and detailed interpretation concerning the 

behavior of COEO in the vicinity of null GVD. The study of 

COEO based on SOA considers the gain medium as a nonlinear 

component that instantly saturates compared to the pulse 

duration [5]. We will show that spectral and temporal distortion 

brought by SOA gain saturation, which is likely to be observed 

with pulses showing 10 ps FWHM and gain recovery time of 

200 ps [12] has a strong impact on MLL steady state properties 

in the zero-dispersion area. Hence, we have developed a 

comprehensive and accurate numerical iterative model. The 

nonlinear chirp induced by gain saturation in the SOA is 

computed through a time domain evolution method. GVD and 

Kerr nonlinearity in optical fiber are described by the nonlinear 

Schrödinger equation, which is computed through the Runge 

Kutta 4 Interaction Picture algorithm that shows advantages in 

terms of ease of implementation and computational cost 

together with adaptive step-size control. A close look to the 

steady state property of the temporal and spectral complex 

envelope at the vicinity of each component in the optical loop 

is discussed in order to describe the physical effects leading to 

equilibrium. An analytical study based on a Gaussian approach 

will complete the discussions on the pulse properties and 

stability of the MLL close to a null GVD. Experimental 

measurements of phase noise performance and of the complex 

envelope through stepped-heterodyne method will corroborate 

our numerical and analytical analysis.  

This paper is organized as follows. Section 2 brings a short 

description of COEO followed by a presentation of the 

numerical model. In section 3, our simulation results are 

interpreted and completed by an analytical Gaussian approach. 

Section 4 is mainly dedicated to experimental results referring 

to previous sections. 

II. NUMERICAL MODEL 

A. COEO principle 

The architecture of our COEO, depicted in Fig. 1, was 

presented for the first time in 1996 by Yao et al. [1]. It is made 

of two coupled loops: an optical loop (black) and an opto-

microwave loop (black and blue). The optical loop is a fiber 

ring MLL whose main components are a SOA acting both as an 

active medium and a source of light, and a MZM acting as a 

temporal gate. As both loops are sharing a common optical link, 

the COEO oscillation starts when Vernier effect between each 

cavity produces in-phase RF beat tone whose frequency is 

filtered by a dielectric bandpass filter centered at 10 GHz with 

3 MHz bandwidth. Also, one must guarantee a sufficient gain 

so that oscillation build-up occurs. The solution to lower the 

phase noise of the microwave signal consists in building 

sufficiently long cavities in order to increase their Q factor thus 

enhancing the filtering effect of the phase noise. Coupled to a 

GVD management of the mode-locked loop leading to a close 

to zero total intracavity dispersion, we synthesized a 10 GHz 

signal with a phase noise of -120 dBc/Hz at 1 kHz frequency 

offset [13]. 

B. Ikeda map for COEO optical loop modeling 

In order to simulate the optical cavity operation of our 

COEO, several simplifying approximations must be made. We 

have employed a numerical model for light wave propagation 

in the SOA and in the optical fiber spool. The effects of MZM 

and frequency bandpass filtering are taken into account through 

transfer functions. The physical parameters taken by the 

modeled components are reported in Table 1.  

TABLE I 

PHYSICAL PARAMETERS USED FOR NUMERICAL AND ANALYTICAL SIMULATION 

 Symbol Description Value 

Fiber 𝐿𝛴,1 Length 472 m 

𝛽2𝛴,1 Chromatic 

dispersion 

-0.89 ps² 

𝑛𝑔 Group index 1.5 

𝛾𝛴,1 Nonlinear 
coefficient 

0.72 W-1 

SOA 𝑔0 Small signal gain 39.3 cm-1  

G0=25.6 dB net gain 

𝛼𝑖𝑛𝑡 Internal loss 3 cm-1 

𝑃𝑠𝑎𝑡 Saturation power 14.9 dBm 

𝛼𝐻 Henry factor 4 

𝜏𝑐 Carrier lifetime 200 ps 

𝐿𝑆𝑂𝐴 SOA active length 1.5 mm 

𝛥𝜔𝑆𝑂𝐴 Spectral broadening 

bandwidth 

4.5 nm 

MZM 𝐾0 Insertion loss 5 dB 

𝐹𝑟𝑒𝑝 RF frequency 10 GHz 

𝑃𝑅𝐹 RF power 20 dBm 

𝑉𝐷𝐶 DC polarization 3 V (Vπ/2) 

𝛿𝑚 Modulation depth 0.57 

Optical 

filter  
𝐻0 Insertion loss 1 dB 

𝜈0 Filtering frequency 193.4 THz 

𝛥𝜈−3 𝑑𝐵 Bandwidth 20 nm 

Optical 

loss 

𝛼𝛴,𝑇𝑂𝑇 Intracavity loss 2.8 (~12 dB) 

Intracavity light propagation in optical fiber can be 

accurately described by the nonlinear Schrödinger equation 

(NLSE) for the slowly varying envelope 𝐴(𝑧, 𝜏) of the electric 

field where 𝜏 denotes the local time in a so-called moving frame 

travelling along with the optical envelope at group velocity 

𝑣𝑔 = 𝑐/𝑛𝑔, with 𝜏 = 𝑡 − 𝑧/𝑣𝑔. The linear and dispersive 

phenomena taken into account by NLSE are the linear 

attenuation through coefficient 𝛼 and the dispersion through 

coefficients 𝛽𝑛 (n = 2, 3, 4). Instantaneous nonlinear Kerr effect 

manifests itself through the term j𝛾𝐴(𝑧, 𝜏)|𝐴(𝑧, 𝜏)|2. 

 
𝜕𝐴(𝑧, 𝜏)

𝜕𝑧
= −

𝛼

2
𝐴(𝑧, 𝜏) −∑𝑗𝑛+1

𝛽𝑛
𝑛!

𝑛>1

𝜕𝑛𝐴(𝑧, 𝜏)

𝜕𝜏𝑛

+ 𝑗𝛾𝐴(𝑧, 𝜏)|𝐴(𝑧, 𝜏)|2 

(1) 

When dealing with COEO devices where the optical pulse 

width is larger than 5 ps, excluding external cavity pulse 

compression, it is not necessary to include gain dispersion 

effect in SOA since its time constant is close to 0.1 ps [14]. 

Carrier recovery and gain saturation are the dominant effects in 

SOA (in this regime). Thus, light wave propagation in the SOA 

can be described by the following system of coupled equations 
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(2) and (3), where the unknown is 𝐴 the slowly varying 

envelope propagating in the forward direction and g the gain 

rate. The parameters involved in equations (2) and (3) are 

described in Table (1). 

𝜕𝐴(𝑧, 𝜏)

𝜕𝑧
=
1

2
𝑔[(1 − 𝑗𝛼𝐻) − 𝛼𝑖𝑛𝑡]𝐴(𝑧, 𝜏) (2) 

 

𝜕𝑔(𝑧, 𝑡)

𝜕𝑡
=
𝑔0 − 𝑔

𝜏𝑐
− 𝑔

|𝐴|2

𝐸𝑠𝑎𝑡
 (3) 

The MZM is biased at quadrature point and with an RF power 

(PRF) at 10 GHz repetition frequency (Frep) corresponding to RF 

amplifier saturation power located in the feedback loop. The 

transfer function is expressed as, 

𝑇𝑀𝑍𝑀(𝜏) =
𝐾0
2
(1 + 𝑒

𝑗𝜋
𝑉𝐷𝐶+𝑣(𝜏)

𝑉𝜋 ) (4) 

The bandpass filter is ideally represented as a high order 

Gaussian. We choose 𝑚 = 3 to match with flat top filters. 

𝐻̃𝐵𝑃𝐹(𝜈) = 𝐻0𝑒
−
1
2
(
𝜈−𝜈0
𝛥𝜈

)
2𝑚

 (5) 

To solve equations (1)-(5), we use a numerical scheme 

referred to as Ikeda map [15]. Starting with a low average power 

seeder (-40 dBm), modeled as a white Gaussian noise, it 

consists in computing separately and sequentially the slowly 

varying envelope 𝐴(𝑧, 𝜏) of the electrical field within the laser 

cavity components (optical fiber, SOA, MZM and bandpass 

filter) until a steady state pulse train is reached. The NLSE (1) 

can be solved very efficiently by the Interaction Picture (IP) 

method that can be seen as an improved symmetric split-step 

method combined with an embedded Runge-Kutta (RK) 

scheme with order 4 to solve the nonlinear part of the NLSE. It 

provides a robust and efficient step-size adaptive numerical 

method well suited for the purposes of the present study [16]. 

Equations (2) and (3) are two ordinary differential equations 

(with respect to the variable z for equation (2) and to the 

variable t for equation (3)). They are coupled through their 

right-hand sides that do not involve derivatives of the two 

unknowns 𝐴 and 𝑔. These two equations are discretized using 

Euler method over a grid spanning the computational domain 

[0,LSOA]x[0,t] for (z,t). 𝐴 and 𝑔 are computed at each grid node 

from their values at initial time 𝑡=0, taking into account 

boundary conditions at the fiber ends. This method is detailed 

in [17] in the context of bi-directional signal propagation. Ikeda 

map iterations end when a steady state regime is obtained. 

III. NUMERICAL RESULTS AND DISCUSSIONS 

A. Anomalous dispersion 

The results displayed in Fig. 2 show the steady state pulse 

profile both in the temporal and in the spectral domain at 

different locations of the optical loop for a total chromatic 

dispersion  𝛽2𝛴,1 of −0.89 ps2. This produces at coupler exit 

(C2) a distorted pulse with an energy of 3.7 pJ, a peak power of 

281 mW and a FWHM of 11.7 ps. Its instantaneous frequency 

denoted, 𝑓𝑖(𝜏) = −
1

2𝜋

𝑑𝜙(𝜏)

𝑑𝜏
, is monotonously decreasing and 

showing a quasi-linear negative slope (chirp) favored by 

anomalous dispersion such that 𝑑𝑓𝑖/𝑑𝜏 = −31 GHz/ps. 

The saturation of ℎ(𝜏) is responsible for additive nonlinear 

chirp due to the self-phase modulation (SPM) induced by gain 

saturation expressed by: 𝜙𝐿𝑆𝑂𝐴(𝜏) = 𝜙0(𝜏) −
1

2
𝛼𝐻ℎ(𝜏) [12]. 

This nonlinear phase variation induces a distorted V shape 

instant frequency variation (Fig. 3), source of spectral red-shift 

and interference pattern in the power spectrum density (PSD) 

(Fig. 2b). 

 
 

 
 

 
Fig. 2. Intra-cavity optical signal’s progression under anomalous chromatic 

dispersion (𝛽2𝛴,1 = −0.89 ps
2): the input (blue) and output (red) signals in the 

temporal domain (left column) and spectral domain (right column) are 

juxtaposed. Each line is dedicated to a specific optical component (a-b: SOA, 

c-d: fiber spool, e-f: MZM). In the spectral domain, the violet curves represent 
the gain ratio (PSDOUT/PSDIN) expressed in dB, while in the temporal domain 

(e) the MZM gating effect is represented. Instantaneous frequencies are 

depicted in the temporal domain by dotted curves, with their color 

corresponding to the optical pulse shape. 

 
Fig. 3. In complement to Figure 2, this figure presents the normalized steady-

state pulse profile upon entering (IN, dashed blue) and exiting (OUT, dashed 

red) the SOA. Additionally, it illustrates the associated integral gain ℎ(𝜏) (solid 

blue) and the nonlinear instantaneous frequency variation ∆𝑓𝑖 (solid pink) 

induced by self-phase modulation within the SOA. 

At steady state the impact of SOA nonlinearity on instant 

frequency at each round trip is in the same order of magnitude 

than dispersive effects brought by optical fiber (see Fig. 2a and 

c). To maintain a steady state the SOA provides a sufficient 

12 dB gain to balance the total cavity loss (Fig. 2a). Its 

nonlinear response distorts the temporal profile of the pulse 

(Fig. 3) by producing a steeper raising edge and a sharpened 

pulse profile. Higher gain ℎ(𝜏) (see Fig. 3) at raising edge 

favors the amplification of high-frequency components (Fig. 

2b) as the steady state shows a general negative chirp. The SPM 
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effect induced by gain saturation at the vicinity of the amplified 

peak power tends to emphasize the negative instant frequency 

slope and red-shift. Propagation through the fiber spool L1 is 

mainly ruled by group velocity dispersion effect that enlarges 

the pulse FWHM and compensate chirp increase in SOA (Fig. 

2c). Finally, the MZM raising edge of the temporal gating effect 

will compensate the SOA temporal distortion effect thus 

producing a more symmetric pulse (Fig. 2e) and in the same 

time filtering high-frequency components (Fig. 2f). 

B. Normal dispersion 

 
 

 
 

 
Fig. 4. Similar numerical results as in Fig. 3 but for a normal fiber dispersion 

𝛽2𝛴,1 = 2.9 ps
2. 

In contrast to the anomalous dispersion case, the SOA 

nonlinear amplification favors the low frequency components 

(Fig. 4b). The carving of the instant frequency induced by SPM 

in SOA still creates red-shift but here increases the positive 

chirp across the pulse. Hence, we still observe similar values of 

instant frequency for two distinct points 𝜏. This is responsible 

for interference pattern on the spectrum (Fig. 4b), which is 

characteristic of SPM in nonlinear media [12]. Similar to 

anomalous case, the chromatic dispersion effect from L1 

compensates the FWHM narrowing and chirp increase in SOA 

(Fig. 4c). Finally, the MZM raising edge of the temporal gating 

effect produces a more symmetric pulse (Fig. 4e) and filters the 

low-frequency components (Fig. 4f). 

C. Pulse properties with chromatic dispersion 

Changing properties of the steady state pulse as a function of 

𝛽2𝛴,1 are discussed here. For comparison, we have observed and 

compared the steady state pulse peak power (Ppk), energy (𝜉𝑝) 

(Fig. 5a), FWHM (𝜏𝑝), chirp (Fig. 5b), depending on 𝛽2𝛴,1 

ranging between -8 and 12 ps2 by adding to the 400 m initial 

length of SMF 28 (-22 ps2.km-1) an increasing length of DCF 

(115 ps2.km-1). The results were obtained by considering Kerr 

effect in the fiber spool. However, it is important to notice that 

similar results have been obtained without Kerr effect 

(𝛾𝛴,1 = 0). Hence, in such fiber ring laser, the nonlinear Kerr  

  
Fig. 5. Numerical results illustrating the variation of the steady state pulse 

parameters with 𝛽2𝛴,1. For all figures the blue dashed lines (square marks) and 

red plain lines (triangle marks) respectively refer to the left and right vertical 

axis. 

effect in optical fiber plays a less important role due to moderate 

values of Ppk.  

The steady-state pulse profile is primarily shaped by the 

compensating interplay among SPM in SOA, GVD represented 

by 𝛽2𝛴,1  in optical fiber, and the gating effect of the MZM. The 

findings depicted in Fig. 5.a illustrate a decrease in pulse energy 

as 𝛽2𝛴,1  increases. This decrease is governed by the SOA 

saturation energy, influenced by electrical pumping, and the 

losses induced by the MZM, as demonstrated in Fig. 4e. 

However, 𝜏𝑝, chirp and Ppk evolve monotonously as |𝛽2𝛴,1 | 

decreases. Interestingly, as |𝛽2𝛴,1 | approaches zero, we observe 

a steeper pulse narrowing and a simultaneous peak power and 

absolute value of chirp increase. Despite this behavior is not 

well detailed in the literature, this was already observed in 

previous semi-analytical studies on amplitude modulated (AM) 

[5], [11], [18] or frequency modulated (FM) [10] MLL. 

Moreover, we were unable to reach numerically a steady state 

regime for a total dispersion ranging between -0.45 and 2.5 ps2. 

This reflects an instability of the MLL that manifest itself 

preferably in the normal dispersion regime.  

A phenomenological explanation is however possible. 

Indeed, the SPM effect induced by the SOA will systematically 

add up in the same way to the positive chirp imposed by the 

dispersive fiber. For a normal dispersive case, the dynamic 

saturation of the SOA will exacerbate the red-shift effect by 

SPM and will shift the optical pulse toward the leading edge of 

the modulation window. As a result, the loss induced by the 

MZM will strongly affect the red components of the optical 

spectrum. The combined effect of the MZM and SOA leads to 

significant PSD variations per round trip thus destabilizing the 

MLL. For anomalous dispersion, the red-shift effect is partially 

compensated by the negative chirp, this explains why the MLL 

keeps its stability close to zero dispersion and thus allows 

narrower pulses with higher absolute value of chirp.  

We will demonstrate analytically in the next section the 

evolution of chirp and pulse FWHM with 𝛽2𝛴,1. The existence 

of asymmetrical results of the pulse properties with dispersion 

regime and instability close to a zero chromatic dispersion will 

also be discussed. 

D. Analytical approach 

The numerical results presented in the previous part 

highlighted an instability area around zero dispersion which 

predominates in the normal dispersion regime (Fig. 5). This 
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singularity has been rarely reported in literature, but is of prior 

importance in this paper dedicated to the dispersion 

management of COEO or even fibered MLL.  

By using an analytical approach borrowed to Kuizenga et al. 

[19] we demonstrate that the instability is closely related to the 

nonlinear properties of the SOA, whose fast gain saturation and 

recovery produce new frequencies resulting in a systematic 

spectral enlargement that is proportional to the steady state 

pulse energy (Fig. 2b and Fig. 4b). Despite the spectral red-shift 

and distorted pulse profile observed numerically, and 

confirmed experimentally in the next section, we make the 

approximation of a complex Gaussian solution whose 

properties remain unchanged after one cavity round trip. This 

approximation facilitates the calculations both in the temporal 

and spectral domain, and yields to analytical results on the pulse 

halfwidth and chirp dependence to 𝛽2𝛴,1. 

The Gaussian pulse solution is described by a complex 

envelope 𝐴(𝜏) = 𝐴0 𝑒𝑥𝑝(−𝛤𝜏
2)𝑒𝑥𝑝(𝑗𝜔0𝑡) with 𝛤 = 𝑎 − 𝑗𝑏. 

Also, the real part of 𝛤, ℛ𝑒(𝛤) = 2𝑙𝑛2/𝜏𝑝 
2 , is inversely 

proportional to the quadratic FWHM, and its imaginary part is 

proportional to the chirp, ℐ𝑚(𝛤) = −𝜋𝑑𝑓𝑖/𝑑𝜏.  
The steady state condition is determined by a self-consistent 

Gaussian solution. By assuming a pulse FWHM shorter than the 

modulation period, the complex pulse will undergo the gating 

effect of the MZM (6), with 𝛿𝑚 the modulation depth and 

𝐹𝑟𝑒𝑝 = 𝜔𝑚/2𝜋. The temporal operator describing the MZM is, 

𝑇𝑀𝑍𝑀(𝜏) = 𝑒𝑥𝑝(−𝛿𝑚𝜔𝑚
2 𝜏2) (6) 

Then the GVD induced by the optical fiber is preferably 

described in the spectral domain as follows, 

𝑇̃𝛽2𝛴,1(𝜔) = 𝑒𝑥𝑝(−𝑗𝛽2𝛴,1[𝜔 − 𝜔0]
2/2) (7) 

The combined effect of spectrum enlargement and chromatic 

dispersion from the SOA is depicted as follows in the temporal 

domain, 

𝑇𝑆𝑂𝐴(𝜏) = 𝑒𝑥𝑝[(1 − 𝑗𝛼𝐻)𝑔2𝜏
2] (8) 

In equation (8), 𝑔2 is related to the quadratic polynomial 

approximation of the pulse integral gain, 𝑔(𝜏), whose 

approximated solution applied to a Gaussian pulse train, issued 

from eq. (3), is given by eq. (9), with 𝑔 the average saturated 

gain over the pulse train and 𝜉𝑝 the pulse energy. 

𝑔(𝜏) =
𝑔0 − 𝑔̅

𝜏𝑐
𝜏 −

1

2
𝑔̅
𝜉𝑝

𝐸𝑠𝑎𝑡
(1 + 𝑒𝑟𝑓 (

𝜏

𝜏𝑝
)) (9) 

Hence, 𝑔2 is expressed in eq. (10). As observed numerically in 

the anomalous (Fig. 2a) and normal (Fig. 4a) dispersive cases, 

the sign of 𝑔2 refers to SOA nonlinear adaptation to the intra-

cavity dispersive regime described by sign(𝛽2𝛴,1). 

𝑔2 = 𝑠𝑖𝑔𝑛(𝛽2𝛴,1)
𝑔

𝜏𝑝
2√2𝜋

𝜉𝑝

𝐸𝑠𝑎𝑡
𝑒𝑥𝑝 (−

1

2
) (10) 

Hence, the SOA leads to the temporal Gaussian pulse shape 

variation 𝛥𝛤𝑆𝑂𝐴 = 𝑔2(1 − 𝑗𝛼𝐻) which corresponds to the 

variation 𝛥(1/4Γ)𝑆𝑂𝐴 = 4𝑔𝑏/𝛥𝜔
2 + 𝑗𝛽2,𝑆𝑂𝐴/2 of the 

Gaussian pulse Fourier transform. The real part of 𝛥(1/4𝛤)𝑆𝑂𝐴 

expressed below, refers to a spectral broadening effect brought 

by the gain saturation and recovery in SOA. Moreover, its 

imaginary part refers to additive chromatic dispersion. 

Therefore, SOA and optical fiber contribute to an effective 

intra-cavity chromatic dispersion defined by: 

𝛽2 = 𝛽2,𝑆𝑂𝐴 + 𝛽2𝛴,1 (11) 
By combining eq. (6), (7) and (8) we can express, after 

reasonable calculation step, a self-consistent Gaussian solution. 

The steady state pulse shape is expressed by the following 

expression.  

𝛤 =
𝛿𝜔𝑚

2

2

(

 
 
1 + √1 +

1

𝛿𝜔𝑚
2 (
4𝑔𝑏
𝛥𝜔2

+ 𝑗
1
2
𝛽2)

)

 
 

 (12) 

with: 

4𝑔𝑏
𝛥𝜔2

= −
𝑔2[𝑎

2 − 𝑏2 + 2𝛼𝐻𝑎𝑏 + 𝑔2𝑎(1 + 𝛼𝐻
2 )]

|2𝛤(𝛤 + (1 − 𝑗𝛼𝐻)𝑔2)|
2

 (13) 

and 

𝛽2,𝑆𝑂𝐴 =
𝑔2[𝛼𝐻(𝑎

2 − 𝑏2 − 2𝑎𝑏 + 𝑔2(𝑎 − 𝑏 − 𝛼𝐻(𝑎 + 𝑏))]

2|𝛤(𝛤 + (1 − 𝑗𝛼𝐻)𝑔2)|
2

                                                                                                    (14)

 

   

 
Fig. 6 .a) Pulse FWHM (𝜏𝑝) and chirp (𝑏) solution of eq.(12) for an intra-cavity 

chromatic dispersion 𝛽2Σ,1 ranging between -6 and 6 𝑝𝑠². The black vertical 

doted lines delimit the central instability area based on the criteria of stability 

given by eq.(16), obtained by the evaluation of 𝑑ℛ𝑒(𝛤) 𝑑𝑎⁄  illustrated in b) ; 

c) SOA spectral broadening (eq. 13) and chromatic dispersion contribution (eq. 

14) depending on 𝛽2Σ,1 ; d) Transformations 𝑇̃𝑀𝑍𝑀 ,  𝑇̃𝑆𝑂𝐴,  𝑇̃𝛽2 occurring at 

steady-state in the 1 𝛤⁄  plan for three distinct anomalous dispersive cases 

(𝛽2Σ,1) whose solution is presented in a).  𝑇̃𝑆𝑂𝐴(𝛤) has been separated here into 

its spectral broadening contribution  𝑇̃4𝑔𝑏 Δ𝜔²⁄ (𝛤) (blue path) and its equivalent 

chromatic dispersion contribution ( 𝑇̃𝛽2,𝑆𝑂𝐴(𝛤)), so that the green path represents 

the effective chromatic dispersion in the MLL loop :  𝑇̃𝛽2(𝛤) =  𝑇̃𝛽2,𝑆𝑂𝐴(𝛤) 

+ 𝑇̃𝛽2Σ,1. 

Graphical interpretation of eq. (12) is given in Fig. 6. The 

respective pulse FWHM and chirp displayed in Fig. 6a, show a 

dependence to 𝛽2𝛴,1 that fairly correspond to the numerical 

results previously exposed in Fig. 5. It demonstrates that despite 

the SOA nonlinearity, source of pulse distortion, red-shift and 

nonlinear chirp through SPM effect (Fig. 2-4), it is yet possible 

to consider the interplay between the linear chirp induced by 

𝛽2𝛴,1 and SOA with a Gaussian formalism. Thus, the linear 

chirp of the Gaussian pulse obtained with eq. (12) corresponds 
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to the quasi-linear chirp, obtained from numerical results, 

located respectively at the pulse leading edge when 𝛽2Σ,1 < 0 

and pulse trailing edge when 𝛽2Σ,1 > 0. It is also important to 

point out that the pulses asymmetry due to the SOA saturation, 

(Fig.3), infers higher energy located at the leading edge 

compared to the trailing edge of each individual pulses. The 

Gaussian approach proposed here is able to take into account 

this asymmetry by considering in eq. (9) two distinct pulse 

energy 𝜉𝑝 depending on the sign of 𝛽2Σ,1. It is by applying a 

ratio of 4 that we were able to obtain the asymmetrical results 

displayed in Fig. 6a.  

This analytical description allows us to describe the 

mechanisms leading to the steady-state pulse increasing chirp 

and the pulse decreasing FWHM when |𝛽2𝛴,1 | decreases. 

Indeed, this can be understood in the spectral domain in the 1 𝛤⁄  

plan (Fig. 6d). The SOA effect is represented by a complex 

contribution, 𝑇̃𝑆𝑂𝐴, showing an equivalent chromatic dispersion 

ℐ𝑚(𝑇̃𝑆𝑂𝐴) = 𝛽2,𝑆𝑂𝐴 (Fig. 6c (purple)) and a spectral broadening 

coefficient ℛ𝑒(𝑇̃𝑆𝑂𝐴) = 4𝑔𝑏 𝛥𝜔
2⁄  (Fig. 6c (black)). We can 

then draw the effect of the effective chromatic dispersion 𝛽2 

(eq. (11)), represented by a vertical green path, while the SOA 

spectral broadening corresponds to a horizontal blue path. In a 

MLL configuration, the transformation imposed by the MZM is 

independent to 𝛽2Σ,1 and follows a circular trajectory centered 

on its origin (red path, Fig. 6d). A steady state can then be 

reached whether 𝛤 evolution at steady-state respect a close 

trajectory in the 1 𝛤⁄  plan, 

𝑇̃𝑀𝑍𝑀 + 𝑇̃𝛽2Σ,1 + 𝑇̃𝑆𝑂𝐴(𝛤) = 0 (15) 

 thus, assuring the pulse shape recovery at each round trip.  

As |𝛽2𝛴,1| tends to 0, the length the fiber induced GVD path 

denoted ‖𝑇̃𝛽2Σ,1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ gets shorter. Hence the steady-state solution 

𝛤 will be located at a position where ‖𝑇̃𝑆𝑂𝐴
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ and ‖𝑇̃𝑀𝑍𝑀

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖  

trajectories will also be decreased while conserving the closure 

condition, eq. (15). This will respectively reduce amplitude and 

phase modulation efficiency affecting both MZM and SOA 

transformations. As a consequence, we observe greater absolute 

chirp values and lower pulse FWHM as |𝛽2Σ,1| tends to zero. 

This graphical approach can then be completed by providing 

an analytical criterion on the MLL stability for a calculated 

steady-state value of 𝛤. A stable system needs to be robust to 

any pulse shape fluctuation. By assuming a Gaussian pulse of 

constant energy (𝜉𝑝) for each chromatic dispersion regime, the 

SOA non-linearity only depends on 𝜏𝑝 (the pulse peak power 

being given by 𝑃𝑝𝑘 = 𝜉𝑝/(√𝜋𝜏𝑝)). Under such conditions, a 

stable oscillation is obtained whether: 

𝑑ℛ𝑒(𝛤)

𝑑𝑎
< 0 (16) 

This stability criteria imposes that any pulse width fluctuation 

𝛿𝜏𝑝 must produce a variation of 𝛿ℛ𝑒(𝛤) with the same sign. By 

looking at the sign of eq.(16), we are then able to delimitate the 

instability area as depicted by Fig. 6b. The broader instability 

area for 𝛽2Σ,1 > 0 results from a lower SOA non-linearity under 

normal chromatic dispersion leading to uneven path in the 1/ 𝛤 

plan : ‖𝑇̃𝑆𝑂𝐴
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖

|𝛽2Σ,1|
<‖𝑇̃𝑆𝑂𝐴
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖

−|𝛽2Σ,1|
.  

Hence, those numerical and analytical approaches confirm 

that the interaction between a dispersive fiber and the SOA non-

linearity favors the shortest pulses with highest absolute chirp 

value and peak-power by choosing a close to zero anomalous 

dispersion. This dispersive regime is of high interest for 

reducing the timing jitter of the optical pulse train by chirp 

compensation, and improving the RF phase noise of a COEO. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Experimental setup 

The mode-locked optical cavity is designed as depicted in 

Fig. 1. The intracavity GVD of the optical cavity defined by 

𝛽2𝛴,1 has been experimentally adjusted by using different 

spools of SMF (400 m, -23 ps2.km-1), DCF (55 m,115 ps2.km-1) 

and DSF (200 m,5 ps2.km-1) combined with two types of 4.2 nm 

bandwidth chirped fiber Bragg gratings (CFBG) centered at 

1550.2 nm with respectively a group delay of ±9 ps2 and 

±33 ps2. By combining the above listed dispersive components, 

we are able to provide an experimental study based on 15 

different total intracavity chromatic dispersions ranging over a 

wide span between ~-40 and 40 ps2. The estimated total 

dispersion of the optical cavity based on the technical datasheet 

of the fiber and CFBG makes difficult to estimate 𝛽2𝛴,1 with a 

precision lower than 1 ps2. It is crucial to highlight that for 

attaining low chromatic dispersion values, the (CFBG) was 

substituted with an unchirped tunable bandpass filter (TBPF) 

with the same bandwidth. The stability of oscillations is notably 

influenced at low intra-cavity chromatic dispersion. Therefore, 

fine-tuning the central wavelength of the TBPF enhances 

synchronization between MLL and the optoelectronic (OE) 

feedback loop, thereby improving overall oscillation stability. 

A part from the intra-cavity chromatic dispersion 

management, the OE feedback loop include a 200 m spool of 

SMF, a 23.4 GHz bandpass PIN photodiode, a dielectric 

resonator centered at 10 GHz with 3 MHz bandwidth, a RF 

amplifier (𝐺𝑅𝐹 = 25 dB, 𝑃−1𝑑𝐵 = 21 dBm) and a z-cut MZM 

polarized at quadrature. The synchronization between both 

loops is manually adjusted using a RF delay-line in the OE 

feedback loop and eventually the central wavelength of the 

OBPF whenever our TBPF is included in the MLL loop. 

B. Stepped-heterodyne measurements 

To validate the numerical results presented earlier, we 

utilized a well-established stepped-heterodyne technique [19], 

as illustrated in Fig. 1, to retrieve the complex pulse profile of 

the MLL. This technique captures the complex spectrum 

(amplitude and phase) of the MLL by mixing its signal with an 

optical local oscillator (TLS) placed between two signal modes. 

Recorded beat signals on a real-time oscilloscope (12.5 GHz 

bandwidth) and simultaneous acquisition of the MLL's PSD by 

an OSA enable the recovery of amplitude and phase differences 

between adjacent modes. By systematically stepping the local 

oscillator across all signal modes, we obtain a comprehensive 

measurement of the optical signal's amplitude and phase using  
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Fig. 7 Experimental results obtained using the stepped-heterodyne method in 

two cases of intracavity dispersion, 𝛽2Σ,1, namely -2.86 ps² (a,b) and 7.9 ps² 

(c,d). For each dispersive case, figures a) and c) display the relative power 

spectrum density (blue square) and phase (red circles) of the spectral comb 
modes, the first measurable mode being taken as reference. Figures b) and d) 

display the deduced amplitude (plain black) and instant frequency (dashed 

green) of the complex pulse profile obtained by inverse Fourier transform of 

the corresponding measured complex spectrum (respectively a) and c)). 

a recurrence method [19]. The temporal pulse profile is then 

derived through inverse Fourier transform.  

Fig. 7 provides the experimental measured spectrum and the 

associated phase from which the temporal pulse profiles were 

recovered. A linear variation of the instant frequency 

corresponds to a quadratic phase profile that is both apparent on 

the complex temporal and spectral profile. The respective 

concavity or convexity of the quadratic phase refers to the 

steepness of the negative and positive instant frequency slope. 

The displayed measurements confirm that the instant frequency 

extracted from the recovered complex pulse evolves with a 

quasi-linear fashion in the vicinity of the pulse peak power. 

In order to compare numerical and experimental results, we 

have run the stepped-heterodyne measurement with a large 

number of dispersive fibered samples in order to map the 

evolution of the pulse chirp and FWHM (Fig. 8a) with 

intracavity dispersion 𝛽2𝛴,1. Depending on the nature of the 

chromatic dispersion (anomalous or normal) and its magnitude, 

the sign and steepness of the instant frequency slope is affected 

as it was observed in the previous section. The pulse FWHM 

and chirp deduced from the stepped-heterodyne method are in 

good 

accordance with the numerical results displayed in Fig. 5b. In 

addition, measured spectral width depicted in Fig. 8b confirms 

the spectrum widening effect due to stronger chirp 

accumulation and pulse FWHM reduction as |𝛽2𝛴,1 | decreases. 

Hence, optimal pulse compression by using the right amount of 

chromatic dispersion (𝛽2𝛴,2) with fiber spool L2 (see Fig. 1) is 

achievable by compensating the quasi-quadratic phase of the 

measured optical spectrum so that one obtains the flattest phase 

profile. The pulse compression was numerically estimated by 

compensating the quadratic part of the optical spectrum phase 

measured by stepped-heterodyne technique.  

Application of this post-treatment to all the experimental 

values taken by 𝛽2𝛴,1 is depicted in Fig. 8a (red dots). With a 

GVD of -9 ps2, we were then able to reduce the pulse FWHM 

from 31.4 ps to 12.5 ps which corresponds to a pulse width 

reduction of 60 %. Also, it is important to mention that the pulse 

compression ratio will be higher for an initially shorter pulse as 

their chirp increase with FWHM decrease [21]. As a 

consequence, the most favorable dispersion regime is obtained 

when |𝛽2𝛴,1 | gets close to zero.  

 
Fig. 8 a) Measurement with the stepped-heterodyne technique of the pulse 
FWHM (blue squares) and the instant frequency slope (black triangles) with the 

average optical cavity dispersion (𝛽2𝛴,1). Calculated pulse FWHM at maximum 

of compression is given (red circle) through analytical chirp compensation 

applied to the experimentally measured pulses in order to simulate the impact 

of  𝛽2Σ,2 in a COEO. b) Experimental measurement of the spectral width at  

-10 dB (red dots) and -50 dB (blue square) from the main mode. 

Unfortunately, we were unable to adjust 𝛽2𝛴,1with a 

sufficient precision in order to appreciate the instability area 

and the pulse FWHM/chirp asymmetry numerically and 

analytically observed in the above section. For COEO 

optimization, a good approach to maximize the absolute value 

of the chirp in the low anomalous dispersion regime would 

consist in fine-tuning 𝛽2𝛴,1 without changing L1 by using a 

mechanically tunable CFBG or programmable optical filters 

based on liquid crystal on silicon (LCoS) technology for 

instance.  

C. Phase noise 

 
Fig. 9 Experimental phase noise measurement of the 10 GHz beat tone issued 

from the COEO for different 𝛽2,𝛴1 (ps²) values (see legend). These phase noise 

curves were selected to show the global impact of the chromatic dispersion on 

the RF phase noise. The passive quality factor of the optical loop is also 

corrected here to an equivalent 400 m fiber spool COEO. 

Within the scope of COEO, it is essential to appreciate the 

effect of pulse compression on the phase noise of the 10 GHz 

RF beat note. The Fig. 9 shows the COEO phase noise 

dependence with a selected choice of experimental values of 

𝛽2𝛴,1 and by keeping 𝛽2,𝛴2 constant. The phase noise is lowered 

when |𝛽2𝛴,1 | decreases. We can appreciate a phase noise 

reduction of 8 dB at 1 kHz offset from the 10 GHz carrier for a 

variation of 42 ps2 of the intra-cavity GVD, as previously 

underlined theoretically [5]. However, by using different fiber 

spool length (L1) in order to vary experimentally the intracavity 
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dispersion, the passive quality factor of the optical loop is also 

modified. For this reason, the phase noise results presented here are 

plotted after correction of the passive quality factor for an equivalent 

400 m fiber spool length COEO. Fig. 9 clearly shows the progressive 

phase noise reduction on the flicker part of the spectrum (f < 5 kHz) 

as |𝛽2,𝛴1| gets close to zero. The small bump on phase noise curve 

around 50 kHz is due to the locking bandwidth between the optical 

and the optoelectronic feedback loop.  

V. CONCLUSION 

The paper introduces a numerical model, based on the Ikeda 

map, to predict and analyze mode-locked pulse behavior in a 

fibered AM MLL utilizing an SOA for COEO devices. The 

model reveals intricate interactions among the SOA's non-

linearity, fiber GVD, and MZM gating effect, elucidating the 

establishment of a steady-state pulse profile. Emphasizing the 

significance of intra-cavity GVD effects near zero-dispersion, 

an analytical study employs a Gaussian pulse approximation to 

illustrate optical pulse properties and MLL stability. For an 

SOA-based MLL, stability in the laser favors minimal 

anomalous dispersion (𝛽2𝛴,1), resulting in pulses with minimal 

FWHM, maximum chirp and peak power. 

The model guides COEO device design, aiding in the 

accurate determination of 𝛽2𝛴,1  and the selection of optical 

components within the MLL loop for optimal compression 

before photodetection. This aligns with the reduction of 

oscillator phase noise, as previously predicted and 

experimentally demonstrated. Experimental validation using a 

stepped-heterodyne method confirms steady-state pulse 

properties and their dependence on intracavity dispersion, along 

with phase noise enhancement of the RF beat tone with 

decreasing dispersion. 

The research lays the foundation for future COEO 

experimental endeavors, emphasizing the potential for precise 

tunability of 𝛽2𝛴,1  and 𝛽2𝛴,2  independent of optical cavity 

lengths, promising confirmation of theoretical insights, 

optimization of COEO phase noise, and the design of 

innovative COEO architectures. 
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