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Abstract—Network security has been a significant concern in
recent years. Due to the rising number and complexity of cyber-
attacks, Machine Learning (ML) models have been proposed
to enhance intrusion detection. However, training these models
requires extensive data, which is challenging to collect. To tackle
this issue, previous work has focused on the generation of
synthetic network traffic data using generative neural networks.
Considering network traffic as a sequence of packets that contains
continuous, discrete, and binary features, we propose a novel
approach to learn a discrete representation of network traffic
using Vector-Quantized Variational Autoencoders (VQ-VAE). In
this paper, we adapt this model to learn how to represent network
flows as a sequence of discrete tokens, called NetGlyphs. We
evaluate the model on a dataset of Command & Control flows and
compare performances to another model that uses a continuous
representation. We show that our model is able to, reconstruct the
data accurately and better preserve the original distribution. We
also find promising results on network traffic generation using
a state-of-the-art Transformer model to generate new NetGlyphs
sequences that can be decoded back into real network traffic.

Index Terms—Representation Learning, Autoencoder, Trans-
former, Generative Model, Network Security

I. INTRODUCTION

The continuous growth and complexity of network traffic,
along with the rise of sophisticated cyber-attacks, have empha-
sized the need for strong network security in today’s digital
environment. This has led to a growing interest in Machine
Learning (ML) solutions applied to network traffic analysis
and security. Despite their promising results on classification
tasks and behavior analysis, the development of these models
is still challenging due to the lack of realistic, updated, and
diverse datasets. These data are hard to collect due to privacy
concerns, and it requires a lot of time and resources to generate
data by deploying enterprise-level infrastructures, performing
attacks, and collecting data.

With this in mind, previous work focused on how to use
generative models to generate realistic network traffic data that
could be used to develop and test network security systems.
Most of existing approaches have used Generative Adversarial
Networks (GANs) or Variational Autoencoders (VAEs) to
create new network traffic data. However, they differ in the
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way they represent the data. While some of them used flow-
level features without capturing the packet-level information,
others focused on packet generation without a proper flow
context. Regardless of the chosen features used in network
security solutions to analyze network traffic, they can be
extracted from network capture, i.e. from a packet capture
(Pcap) file.

In addition, the development of supervised models needs
labeled datasets. Labeling is expensive, time-consuming, and
requires a lot of expertise to classify the data correctly. Thus,
the chosen network traffic representation should facilitate the
labeling process while being able to reconstruct real network
traffic in Pcap format.

In this paper, we suggest representing network traffic as a
collection of bidirectional flows, where each flow is a series
of packets. Each packet is represented by a set of different
features dependent on the time and the direction in the flow.
We believe that having a representation that captures the
packet-level information is essential for the construction of
realistic network traffic data in Pcap format and the flow-level
representation is useful for labeling.

Network data is composed, in majority, of discrete and cat-
egorical features, thus we believe that a discrete representation
of network traffic could be more efficient than a continuous
one. We therefore propose a method to discretize network
traffic by using representation learning with Vector-Quantized
VAE (VQ-VAE), a variant of the VAE.

We modified the VQ-VAE to work with sequential data
using Recurrent Autoencoders (RAE) and introduce FlowVQ-
RAE. This model learns a way to transform a series of
packets into a sequence of corresponding discrete vectors
we called NetGlyphs. These NetGlyphs are learned during
model training and regrouped in a codebook. We can thus
represent network traffic as a sequence of NetGlyphs, similar
to how words are represented in Natural Language Processing
(NLP) tasks. Using an autoregressive model like the Trans-
former, we can generate new sequences of NetGlyphs that
can be decoded back into packets. We show that FlowVQ-
RAE better represents network data compared to a baseline
model using continuous latent space. We also demonstrate that
this approach generates network traffic with better precision
than existing methods using GAN on a learned continuous
representation.
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This study focused on malware Command & Control chan-
nel traffic to train and validate our approach. Real packet
captures are available in the Stratosphere Laboratory (Czech
Technical University in Prague) datasets [1]. The contributions
of this paper can be summarized as:

• Proposing a new representation of network traffic as a
collection of flows, where each packet is represented by
a set of different features that allows reconstruction of a
packet capture (Pcap) file.

• Introducing FlowVQ-RAE, a modified VQ-VAE, used to
learn a discrete representation of network traffic (Net-
Glyphs), which showed good results in reconstruction
assessment compared to continuous models.

• Using a state-of-the-art Transformer architecture to learn
the distribution of NetGlyphs and generate new sequences
that can be decoded back into real traffic flows.

In reference to hieroglyphs used in Ancient Egypt to repre-
sent ideas and concepts, we call codebook vectors used in the
discrete representation of network traffic: NetGlyphs.

To the best of our knowledge this is the first time that Vector
Quantized Variational Autoencoders are used to learn a rep-
resentation of network traffic. And the first time that network
traffic is represented as a multivariate time series composed
of a collection of categorical and continuous attributes.

The paper is organized as followed: Section II reviews
existing works on network traffic generation and presents
the Vector Quantized Variational Autoencoders. Section III
describes the chosen format and selected features to represent
network traffic. Section IV introduces the compared models
used for the representation learning. Section V presents the
experiments along with network traffic generation. Finally,
Section VI presents the results and discusses the experiments.

II. RELATED WORK

A. Network Traffic Generation

In recent years, the success of generative models in various
fields has led to an increased interest in using them to pro-
duce high-quality network traffic. Different approaches were
adopted, some of them focused on flow-level features while
others concentrated on packet-level generation.

Ring et al. used Generative Adversarial Networks (GAN)
to create unidirectional flow-based data [2]. Based on Cisco
NetFlow format [3], a flow is defined by the 5-tuple that
includes the source IP address, destination IP address, source
port, destination port, and transport protocol. Metrics are
associated to each flow like the number of packets, the total
amount of bytes sent, the duration or the TCP flags for
example. In their research, Ring et al. proposed three distinct
methods to preprocess this heterogeneous data, composed of
continuous, categorical and numeric data, thereby making it
compatible with generative models.

In a similar approach based on flow-level features, Rigaki et
al., proposed to use a GAN to generate flow metrics (duration,
total bytes and inter-flow time) that mimic Facebook chat
message traffic [4]. The authors demonstrated that GAN was

able to generate realistic flow metrics that could be used
to avoid detection of malware traffic by Network Intrusion
Detection Systems (NIDS).

These studies were exclusively concentrated on flow meta-
data and metrics, which restricts their capacity to precisely
replicate flow packets. Additionally, the use of unidirectional
flow representation makes it difficult to consider the relation-
ship between packets traveling in both directions, such as in
client-server communications.

Other approaches in the literature focused on the generation
of network packets. Taking advantage of the large capacity of
GAN and Convolutional Neural Networks (CNN) in image
generation, A. Cheng introduced a method to generate raw
network packets using an image representation [5]. His ap-
proach consisted of representing a packet bytes stream into
an image that allows the use of image-based generators to
generate new, realistic packets. He successfully demonstrated
the generation of realistic packets that can be transmitted over
a network.

Dowoo et al. proposed PcapGAN [6], a method to generate
realistic network traffic data using Style-Based Generative
Adversarial Networks (Style-GAN) [7]. This method uses
an encoder that decomposes Pcap data into IP graphs, time
images, layer sequences, and option data, a generator that
creates new data for these components, and a decoder that
reconstructs the data into coherent Pcap files. The generated
data is validated through tools like Wireshark and performance
improvements in intrusion detection algorithms. The limit for
this approach is that they do not consider a flow as we would
like. They only consider the packets exchanged between two
IP addresses, which is not sufficient to represent a flow.

Most of the existing works are separated in two categories.
Firstly, the flow-level features generation, that does not rep-
resent accurately the distribution of packets within a flow.
Secondly, methods that focus on network traffic generation
at packet-level, but does not relate the generated packets to a
flow entity that could be labeled as an attack procedure.

This conclusion was first made by Shahid et al. in their
work on IoT network traffic generation [8]. In the paper they
present a way to use GAN to mimic real IoT network traffic
at packet level. They insist on the use of a hybrid traffic rep-
resentation that combines the two approaches by considering
bidirectional flows as sequences of packet sizes. However, they
only consider the packet size as a feature, and that a packet
sent is immediately followed by a packet received, i.e. that
endpoints talk strictly one after another. In their context of
IoT, they also consider the payload size as categorical data
to avoid generating non-representative data that could lead
to an easier detection of the generated traffic. To generate
new sequences of packet sizes they used an autoencoder
architecture with Long Short-Term Memory (LSTM) layers
[9] to learn a continuous representation of their sequences of
one-hot encoded packet sizes. A variant of GAN, the WGAN-
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GP [10], is then used to generate new representations in the
latent space that are then decoded back to sequences of packet
sizes. Learning a continuous representation to then train a
GAN is used to tackle the difficulties of generating sequence
of discrete data with GAN [11].

Nevertheless, processing packet size as categorical data
could be a problem if we want to consider all the possible
values of the payload size in dataset augmentation purposes.
Additionally, we need to consider the case where an endpoint
sends multiple packets before receiving a response. Finally,
they do not consider either the time distribution of packet in
time, an important feature that could be used to identify traffic
[12], [13], thus detect attack patterns.

B. Vector Quantized Variational Autoencoders

Vector-Quantized Variational Autoencoders (VQ-VAE)
were first introduces by Van Den Oord et al. [14] in 2018.
Their proposition was to modify the VAE architecture by
adding a Vector Quantizer (VQ) to discretize the latent
space, essentially transforming it into a VQ-VAE. This model
excludes the layers necessary for distributional projection
typically found in a standard VAE. The encoder produces a
continuous latent representation that is then quantized using
a codebook. The codebook is a collection of learned vectors
that are used to represent the data in the latent space. The
latent representation can then be reduced to a set of codebook
vector indexes. The distribution of these codebook indexes can
be learned using autoregressive models like PixelCNN [15]
or Transformers [16]. The decoder then reconstructs the data
from this quantized latent space.

This architecture has shown promising results on image
generation, even in high-resolution with VQGAN architecture,
a VQ-VAE coupled with a GAN discriminator to improve
quality of reconstruction [17], [18].

III. SEQUENCE OF PACKETS

In this Section we present the chosen format and selected
features to represent network traffic. We will first expose the
context and motivation for our choice, then we will describe
the selected features.

A. Background and Motivation

On their work on traffic characterization, in 2016, Draper et
al. demonstrated that flow-based time-related features could be
used to classify encrypted traffic over Virtual Private Network
(VPN) and identify a type of application (e.g. browsing,
streaming, etc. . . ) [12]. In 2017, the same team shown similar
results on encrypted traffic over Tor network [13]. This kind
of analysis is only relevant on a flow or an aggregation of
flows by computing metrics on the individual packets within
those flows.

Considering this, our representation of network traffic must
be dual, i.e. it should be able to represent a flow as a collection
of packets. Representing a flow as a set of metrics could be
inefficient for adaptability and compatibility with all possible
network security systems that could need different metrics.

In addition, the fact that the majority of network traffic is
encrypted, we do not consider the payload content in our
representation. However, we suppose the encrypted payload
as random data, and therefore we consider its size as a key
feature.

To summarize, generated traffic must be realistic. Its distri-
bution, in terms of packet size, inter-arrival time, and direction
must be similar to real traffic. We want to capture an accurate
distribution of packets within a flow, from which we should
be able to reconstruct a real packet capture file (Pcap). This
format is essential for maximum compatibility with existing
and future network security systems based on flow metrics
analysis.

B. Traffic Representation and Selected Features

Network traffic data is composed of an ensemble of packets
that have multiple features. These features can be divided into
two categories: flow-level features and packet-level features.

Flow-level features are metadata that describe the endpoints
of the communication, such as the source and destination IP
addresses, the source and destination ports, and the protocol
used. These five features are known as the 5-tuple, they are
used to identify a flow as they are common to all packets
in a same flow. The flow is bidirectional, so the 5-tuple can
be used to identify the flow in both directions by reverting
source and destination features. This allows us to account for
the relationship between packets traveling in both directions
between the endpoints.

In addition to these, we have the total number of packets,
bytes, the total duration, etc. . .

Packet-level features are the characteristics of each packet
in the flow. Depending on the protocol, these features can be
different. However, we can identify three main features that are
common to all protocols. The inter-arrival time: it is the time
spent since the last packet in the flow was encountered. The
direction: it is used to identify the sender of each packet. Then,
the packet size, which is the total size of the packet in bytes.
The advantage of working at flow level is that we can consider
only the payload size as a feature instead of the total packet
size. That way, we avoid considering the header size, which is
protocol-dependent and avoid generation of short packet size
(lower than header size).

Additionally, our work focuses on Transmission Control
Protocol (TCP) traffic, well known as a connection-oriented
protocol, that guarantees the delivery of packets in the correct
order. To do this, TCP uses a set of features used to control the
connection. They are exchanged in the packet’s header during
the communication.

We believe that considering all of these features in our
representation is counterproductive, as it could lead to many
errors. For example, generate counters like sequence number
and acknowledgment number could be inaccurate with the size
of the payload, but can be derived from it. Other features
like TCP flags are important to consider. Indeed, they are
used as control signals to establish, maintain, and terminate
the connection. Famously, the SYN flag (Synchronize) is used
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to initiate a connection, the ACK flag (Acknowledgment) is
used to acknowledge the receipt of a packet, and the FIN flag
(Finish) is used to properly terminate the connection. Other
flags are relevant like the PSH flag (Push), used to notify the
application that there is data to be read (e.g. a chat message)
or the RST flag (Reset), used to reset the connection (abrupt
termination).

Finally, other features that focus on congestion control,
or additional options, are not considered in this study. We
suppose that the traffic is well-formed and fully protocol-
compliant, i.e. there are no malformed packets or protocol
misuse.

To summarize, the features relevant to this study for packet
representation are shown in Table I. We used the three main
features along with the TCP flags. As we can see in the
table, the type of each feature is different. The inter-arrival
time (IAT) is continuous while payload size is considered a
numerical feature (it is usually set between 0 and 1460). The
direction, is represented as a binary attribute depending on
the direction of the packet in the flow (forward or backward
packet). We represented flags not as single features but as
combinations of flags. That way, we ensure to avoid errors in
the usage of flags. For example, we want to avoid forbidden
combinations like SYN and FIN in the same packet. They are
categorical features that are one-hot encoded to be processed
by ML.

TABLE I
LIST OF PACKET FEATURES USED IN NETWORK TRAFFIC REPRESENTATION

Type Example

IAT (Inter Arrival Time) Continuous 1.389s

Payload size Numeric 388

Direction Binary 0 (forward)

Flags Categorical PA (Psh/Ack)

To conclude, we propose a representation of network traffic
as a collection of packet features belonging to a bidirectional
flow. This flow is identified by the same 5-tuple. The selected
features allow us to reconstruct a packet in a Pcap format.
The main features (IAT, Direction and Payload size) are used
to capture the distribution of traffic in the flow. The TCP
flags are used to identify the different steps of the connection.
Together with the main features, we can compute additional
TCP attributes and reconstruct a valid packet header. This
approach can be seen as an extension of the work of Shahid
et al. [8] on IoT traffic generation.

IV. REPRESENTATION LEARNING MODELS

The following Section presents the compared models used
for the representation learning of network traffic. As discussed
in Section III, network traffic data is represented as a sequence
of packet features. These features are heterogeneous, com-
posed of continuous, categorical, and discrete data. The chosen
approach for generation is to first learn a representation of the
data, then train a generator to produce new instances in this

learned latent space that can be decoded back to the original
data format.

Representation learning can be done using the autoencoder
architecture. It is composed of an encoder that learns a
projection of the data in a given latent space, and a decoder that
reconstructs the data from this representation. Considering the
sequential nature of the data, we use a Recurrent Autoencoder
(RAE) architecture (Fig. 1). This autoencoder is composed
of Recurrent Neural Networks (RNN) layers that process
sequences iteratively and maintain a hidden state that captures
the context of the sequence. These models are well-suited for
sequential data.

The chosen RNN layers are Long Short-Term Memories
(LSTM) layers. They are known to learn long and short-term
dependencies in sequences. These layers are used in both
the encoder and decoder blocks for this study. Differences
between the compared models rely on the latent space repre-
sentation. The baseline model, FlowRAE, learns a continuous
representation of packet sequences. It performs a sequence-
to-vector transformation. The proposed model, FlowVQ-RAE,
learns a discrete representation of the sequence of packets, a
sequence of packets is transformed into a sequence of indexes,
corresponding to learned vectors in a codebook.

Through this work, we want to know if VQ-VAE is a
suitable approach for representation learning on network data.

A. Flow RAE - Baseline model for comparison

Based on the work of Shahid et al. [8], we use a Recurrent
Autoencoder (RAE) to transform our sequence of packet
features into a single vector. The encoder is composed of
LSTM layers that process the sequence of packets. These
layers can either return the last output of the sequence or the
full sequence. In the case of sequence-to-vector, we use the
last vector of the encoder output as latent representation. This
last vector is meant to retain the context of the sequence as it
is computed considering all previous vectors in the sequence.
The decoder then tries to reconstruct the sequence of packets
from this latent representation performing a vector-to-sequence
transformation. Similarly, the decoder uses LSTM layers to
distill the latent representation into a sequence of packets.

The structural limitation of this model is the non-
consistency of the flow length in the model. As we keep only
the last vector of the encoder output, the flow length is lost
during the flow processing by the model.

To process sequences with this kind of model, we must fix
a sequence length N for the sequences and apply padding
and truncation to the input data. In the model architecture, the
decoder needs to know N to reconstruct the sequence. The
model is limited, by design, to reconstruct sequences of fixed
length N . It is unable to produce sequences of length greater
than N , thus we should set N big enough to handle long
sequences. This leads to shorter sequences requiring a lot of
padding that the model will process uselessly.

In our case we set the flow length N to 32 packets,
which corresponds to almost 98% of our dataset. As the input
sequences are padded with zeros, we detect the end of a flow
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by monitoring the l2-norm of decoder output vectors. If the
value falls below a certain threshold, it is interpreted as the end
of the flow (similar to a noise threshold in signal processing).
This provides a mechanism to handle the variable length of
flows.

B. FlowVQ-RAE

Despite the continuous inter-arrival time between packets,
network data is composed of a lot of categorical and discrete
features. Considering this, we believe it would be easier
trying to learn discrete data representations, using VQ-VAE
architecture, rather than a continuous representation.

Based on the FlowRAE model, we modify the encoder to
output the full sequence of vectors rather than a single vector.
Thus, latent representation is a sequence. The first benefit of
this, is that flow length is kept along the model, allowing the
model to efficiently process sequences of different lengths. The
decoder is also modified to reconstruct the sequence of packets
from the latent sequence. We call this model FlowVQ-RAE.

For a flow F composed packets Pi, the encoder produces
a continuous latent sequence Ze of corresponding vectors
zei . As we can see in Fig. 1, vector quantization is applied
to discretize the latent sequence Ze into sequence Zq . Each
vector zei is mapped to the closest vector ek in a codebook,
s.t. zei ≈ ek as follows:

zqi = ek, where k = argminj ||zei − ej || (1)

The quantized latent sequence Zq is then used as input to the
decoder that reconstruct the flow F ′ as sequence of packets P ′

i .
Using this model, a sequence of packets is associated to a list
of discrete vectors as a set of codebook indexes. Sampling new
indexes sequences from this latent space can be done using
autoregressive models, like Transformers. Once the sequence
of indexes is generated, it can be decoded back to network
data using the decoder.

A limitation of this model is that it suffers from low
codebook usage (Table II). This is usually due to a poor
codebook vectors initialization.

C. Codebook Improvement

To improve the usage of the codebook, we implemented
a similar method to that proposed by Yu et al. [18]. In
this method we normalize and reduce the dimension of the
codebook. The l2-norm constraint is applied to the encoder
output and codebook vectors. The reduction of dimension in
the latent space is done by adding a fully connected layer to
the encoder output applied to each vector in the sequence.
This reduces the dimension of the sequence and the codebook
vectors. A similar layer is added to the decoder input to
retrieve the original dimension. Yu et al. [18] proposed in their
paper to apply linear projection to the latent space. However,
we experienced that applying hyperbolical tangent activation
function to the fully connected layer output helps in training
stability of the codebook.

In this work, the model with enhanced codebook is called
FlowVQ-RAE-EC.

P1 P2 P3 PN

Input Flow

Encoder

ze1 ze2 ze3 zeN

Codebook - NetGlyphs

Quantization
e1 e2 eK

zq1 zq2 zq3 zqN

Decoder

P ′
1 P ′

2 P ′
3 P ′

N

Reconstructed Flow

Fig. 1. Flow VQ-RAE model architecture. Input flows are cut up into individ-
ual packets, F = {P1, P2, . . . , PN}. The Encoder transforms this sequence
of packets into a sequence of continuous vectors {ze1 , ze2 , . . . , zeN } cor-
responding to each packets. These vectors capture the dependencies between
input packets. The Quantization layer then maps each continous vector to
the nearest vector from a codebook. Mapping continuous data to discrete
data allows us to better generate flows which are by nature discrete. For the
purpose of this study we call these discrete vectors NetGlyphs. The Decoder
then reconstructs the input flow F ′ from the sequence of NetGlyphs using
LSTM layers.

V. EXPERIMENTS

In this Section we present the conditions of the experiments.
We first want to evaluate the representation learning, we want
the model to learn a meaningful latent space representation,
i.e. can it reconstruct the data with a good accuracy? We then
use generative models to generate new latent representations
and compare to existing methods.

A. Dataset

We evaluated our system on data provided by Stratosphere
Laboratory at Czech Technical University in Prague (CTU)
[1]. The selected data contains approximately 500k flows of
Command & Control (C&C) traffic of presumed Trickbot
malware. It consists of packet captures of real network traffic.
The malware is deployed in a controlled environment and the
traffic is captured. As we focused on TCP flows, we filtered
the dataset to keep only TCP traffic from the original dataset.

We build a tool to extract the data into the specified format
in Section III. It takes a packet capture file as input, identifies
the different flows and extracts the features of each packet.
Because there is some reused ports and IP addresses, we use
the first sequence number as sixth criteria to parse flows. The
dataset is split into a training set composed of 80% of network
flows. We keep the remaining 20% for tests and evaluation.
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TABLE II
COMPARATIVE METRICS FOR FEATURE RECONSTRUCTION ON NETWORK TRAFFIC

Flow RAE Flow VQ-RAE Flow VQ-RAE with Enhanced Codebook

Latent shape (32) (32, 12) (32, 6) (32, 4) (32, 3) (32, 2)

IAT Wasserstein 0.0131 0.0081 0.0037 0.0043 0.0055 0.0018
Payload Distance 0.0536 0.0046 0.0021 0.0034 0.0019 0.0020

Direction
Error 0.53% 0.1% 0% 0% 0% 0%
F1-Score 0.995 0.999 1.0 1.0 1.0 1.0

Flags
Error 0.47% 0.22% <0.1‰ 0% 0% 0%
F1-Score 0.983 0.881 >0.999 1.0 1.0 1.0

Codebook Usage N/A 1.76% 10.35% 23.24% 58.50% 85.74%

B. Preprocessing

As discussed in Section IV, RNN require fixed-size se-
quences to be processed. We choose to fix the flow length at 32
packets because it represents at most 98% of the dataset. The
longer flows are truncated, and shorter ones are padded with
zeros. Note that padded data carry a mask to indicate where the
padding is located. It allows models that are consistent with
the sequence length, like the FlowVQ-RAE, to skip processing
on padded data.

The packet features are normalized in the range [0, 1] prior
to training. The normalization on the payload size and inter-
arrival time (IAT) is done using Quantile Transformer from
Scikit-Learn [19] to get a normal distribution and applying
min-max scaling to get the values in the range [0, 1]. Direction
does not need to be normalized as it is a binary attribute.
Furthermore, we apply one-hot encoding to flag combinations
after removing unwanted flags used for congestion control.

After this step the variable-length sequences of 4 features
are transformed into a sequence of 32 vectors of 11 features
that regroup IAT, Direction, Payload size and 8 categories for
flags.

C. Model size

To compare the two architectures, both models, FlowRAE
and FlowVQ-RAE, share a common architecture of two LSTM
layers of 12 units in the encoder and decoder. This number of
units is close to the size of sequence vectors (11 in this case)
and can be easily divided for dimension reduction analysis in
the latent space. A Dense layer is applied to each member of
sequences (time-distributed layer) at the output of the decoder
to get the original dimension of the data (11 units) and a
sigmoid activation function is applied to get the values in the
range [0, 1]. Nevertheless, the models differ in the latent space
representation:

FlowRAE has an LSTM layer of 32 units at the encoder
output that returns the last vector of the sequence. The latent
representation is a vector of dimension 32. The decoder is
preceded with a specific layer that repeats the latent vector
32 times to regain the sequence of 32 vectors. We denote the
latent shape (32) as it is a single vector of dimension 32.

FlowVQ-RAE produces sequences of 32 vectors of dimen-
sion 12 at the encoder output. This latent representation is then

quantized using a codebook of 1024 vectors of dimension 12.
The decoder takes as input the sequence of discrete vectors
directly. We denote the latent shape (32, 12) as it is a 32-
vectors sequence composed of dimension 12.

FlowVQ-RAE-EC has the same structure of FlowVQ-RAE
with additional codebook improvements. The encoder output
is followed by a time-distributed Dense layer that reduces
the dimension of the latent space. It is also followed by
a time-distributed UnitNorm layer that normalizes the latent
sequence latent vectors. The codebook is then a collection of
1024 vectors, with unit-normalization. Finally, the decoder is
preceded by a time-distributed Dense layer of 12 units that
restores the original latent space dimension. We present four
latent vectors dimension reductions to compare their efficiency
in codebook usage. The latent shape is respectively (32, 6),
(32, 4), (32, 3) and (32, 2).

D. Training

The six models were trained on the same dataset during 300
epochs. The optimizer used was Adam [20], with a learning
rate set to 2 × 10−4. The loss function used was the mean-
squared error. Learning codebook vectors is done through an
additionnal loss function defined in the first work on VQ-VAE
[14] as follow:

LV Q = ||sg[E(x)]− e||22 + β||E(x)− sg[e]||22 (2)

The first term is used to minimize the distance between the
encoder output E(x) and the codebook vector e. The second
term is known as commitment loss. It is used to force the
encoder to produce outputs close to codebook vectors. The β
parameter is set to 0.25 as suggested in the original work [14].
sg() is the stop gradient function that prevents the gradient
from backpropagating. Therefore, the codebook vectors are
optimized by the first term only, and the encoder optimizes
the second term.

E. Evaluation methods

Our data is made of different types of features, such as
numerical, categorical, and binary. We evaluate the models
using different methods adapted to these types of features
(Table II). We refer to the test data, as the original data, and
the reconstructed data is the test data after being processed by
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Fig. 2. PCA plots for reconstruction analysis of inter-arrival time (IAT) and payload size features for three different models. The plots show the distribution of the
original data (blue) and the reconstructed data (red) for three models. FlowRAE, is the baseline model, using a single vector as continuous latent representation.
FlowVQ-RAE architecture discretizes the latent representation using a codebook. FlowVQ-RAE-EC, enhances the codebook usage by normalization and
reducing the codebook dimension. The results show that the FlowVQ-RAE-EC model is able to reconstruct the data with a distribution close to the original
data, thus more accurately than the other models. In the IAT plots, principal components 1 and 2 represented on axes x and y explain 93.86% and 3.48% of
the variance respectively. For Payload Size plots, they explain 81.69% and 7.40%, respectively.

the model. We expect the reconstructed data to be close to the
original data.

1) Reconstruction metrics: To compare the distribution
between original and reconstructed data on IAT and Payload
size we calculate the Wasserstein distance. Also known as the
Earth Mover’s Distance, it represents the minimum amount
of work required to transform one distribution into the other.
A good reconstruction would lead to a Wasserstein distance
close to 0, meaning that the distributions are close. The value
for this distance on each feature is shown in Table II.

For categorical and binary data, we use the F1-score and an
error rate to evaluate the model. We do not compare sequences
to sequences like in PCA analysis, but we compare the values
individually, e.g. the ith flag of the nth test flow must be the
same as the ith flag of the nth reconstructed flow. Table II
presents the results for these metrics for each tested models.
The error rate is the percentage of misclassified data, i.e. the
sum of false negatives and false positives, the closest to 0 the
better. The F1-score is a metric used in classification models
analysis, the closest to 1 the better. This evaluation is done on
the flags and the direction features.

2) Codebook usage: For FlowVQ-RAE models, we want
to assess the codebook usage. Codebook usage is represented
as a percentage of codebook vectors used to represent the test

data. We count the number of different NetGlyphs used to
represent the test dataset, against the total number of vectors
in the codebook. The closer to 100% the better. The results
are shown in Table II.

3) Principal component analysis (PCA): The Principal
Components Analysis (PCA) is well suited for continuous or
numerical data. We use it to analyze the distribution of IAT
and payload size. The features are analyzed in their normalized
format to have better visualization. The results are shown in
Fig. 2 where each point is a projection of a sequence. In blue,
we can see the distribution of the original data and in red, the
distribution of the reconstructed data. We expect the points of
the reconstructed data to recover the distribution of the original
data. This visual method allows us to see if the model is able
to reconstruct the data correctly and if the distribution of the
data is preserved.

F. Generation of new flows

Having learned a discrete representation of network packet
sequences, we now wish to create new flows by generating
discrete sequences of NetGlyphs. Generation of discrete se-
quences can be done using autoregressive models. Literature
supports the use of Transformers with VQ-VAE architecture,
highlighting their ability to generate high resolution images
[17], [18]. We use then a state-of-the-art Transformer model
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to generate new sequences of NetGlyphs indices that can be
decoded back to network data.

The chosen model is a model derived from the first architec-
ture proposed by Vaswani et al. [16]. It is composed of 6 layers
of multi-head attention with 4 heads. The model is trained
on the full dataset transformed into sequences of NetGlyphs
indexes by the FlowVQ-RAE-EC model with a compression
dimension of 2. The model is trained for 100 epochs. The
loss function used is the sparse categorical cross-entropy with
a scheduled learning rate as proposed in [16].

The generation of new sequences is done by iteratively
predicting the next NetGlyph index using the previously gen-
erated indexes. The model stops generating when the end
of the sequence token is predicted. The generated indexes
are then decoded back to network data using the decoder of
the FlowVQ-RAE-EC model. Because all first packets in a
flow are the same, they all correspond to the same NetGlyph
index. We use this index to initialize the generation of a new
sequence.

We compare this approach to existing literature. Based on
the work of Shahid et al. [8], we use the FlowRAE that learned
a continuous representation of packet sequences coupled with
a Wasserstein GAN with Gradient Policy (WGAN-GP) model
[10] to generate new packet sequences. WGAN-GP is a variant
of GAN that improves training stability. It produces new
continuous representations reconstructed into network data
using the FlowRAE decoder.

The evaluation of generated sequences is done using PCA
analysis for IAT and payload size distribution. Additionally,
we analyze the generated sequences by verifying the correct
protocol usage.

VI. RESULTS AND DISCUSSIONS

A. Network Flow reconstruction

The results for all metrics presented in Table II show
that the FlowVQ-RAE architecture with its discrete latent
representation outperforms the baseline model that uses a con-
tinuous latent space. The accuracy on categorical features is
higher for FlowVQ-RAE than for FlowRAE, reaching perfect
reconstruction for some versions on flags and packet direction
in the flow. Additionally, the adjustment made to improve
codebook usage proved their efficiency as the codebook usage
reach 85.74% against 1.76% for the FlowVQ-RAE without
these modifications.

The Wasserstein distance between the original and recon-
structed data distribution is also decreased with our solution.
This results in a better representation of the original distribu-
tion. The PCA analysis shown in Fig. 2 confirms this result by
showing a better covering from red dots (reconstruction data)
over blue ones (original data). The distribution of continuous
and discrete data is better preserved with FlowVQ-RAE than
with FlowRAE.

Considering these results, we chose to keep the FlowVQ-
RAE with Enhanced Codebook and a compression dimension
of 2 as the best model for our study. Its higher codebook

FlowRAE + WGAN-GP FlowVQ-RAE-EC + Transformer
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Fig. 3. PCA plots for generated flows analysis of inter-arrival time (IAT)
and payload size features for two different generative models. The plots
show the distribution of the original test data (blue) and the generated data
(red). On the left, a WGAN-GP model is used to generate new latent vectors
decoded back to packets with FlowRAE, used as baseline. On the right, a
Transformer decoder-only architecture is used to generate new sequences of
NetGlyphs decoded back to packets with FlowVQ-RAE-EC, our proposed
approach. The results show that, using a WGAN-GP that learns continuous
latent vectors decoded with the FlowRAE, results in generated data that could
not fit the original distribution. On the other side, the FlowVQ-RAE-EC model
coupled with a Transformer can generate data with a distribution of IAT and
Payload Size close to the original data. In the IAT plots, principal components
1 and 2 represented on axes x and y explain 93.86% and 3.48% of the
variance respectively. For Payload Size plots, they explain 81.69% and 7.40%,
respectively.

usage is preferred to its higher Wasserstein distance than the
one with a compression dimension of 3.

B. Traffic Generation

Using the two generative approaches, we generated 100,000
new flows. The analysis of IAT and Payload size distributions
are shown in the PCA plots in Fig. 3. These plots show
the distribution of the original test data in blue, and the
generated data in red. We can see that IAT and Payload
size distributions are not perfectly preserved with the use
of WGAN-GP and a continuous latent space (FlowRAE).
Nevertheless, generated data using our approach better fits the
original data distribution. Because the WGAN-GP generates
accurate latent codes, this result is due to a poor representation
of distribution data in the continuous latent space.

In addition, the 3-way hanshakes were successfully gener-
ated without error in 99.99% of the cases with both models.
They also generated correct connection attempts flows by early
termination (SYN/RST) or timeout (two SYN replay). Finally,
the two approaches differ on the second aspect. Our approach
using Transformer verify the rule of a packet with a PSH flag
having a non-zero payload size at 98.5%, against 88.6% for
the baseline model.

2024 20th International Conference on Network and Service Management (CNSM)



Some flows have a correct termination, although it is chal-
lenging to verify. It is recommended that future work should
consider the use of network tools to assess the conclusion of
communication.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented FlowVQ-RAE, a model used to
learn a discrete representation of network traffic. This model is
based on the Vector Quantized Variational Autoencoder (VQ-
VAE) architecture. We adapted its architecture to work with
sequential data using LSTM layers. The model learns a way to
transform a series of packets into a sequence of corresponding
discrete vectors we called: NetGlyphs. These NetGlyphs are
learned during model training and regrouped in a codebook.
This representation allows the use of a Transformer to generate
new sequences of NetGlyphs that can be decoded back into
packets. FlowVQ-RAE analysis showed it has better results in
discrete representation learning for network data, compared to
a baseline model using continuous latent space.

Additionally, the generation of individual network flows
using this discrete representation demonstrates promising re-
sults. Protocol usages like the 3-way handshake, has been
successfully replicated. Additionally, a variety of different
flows, including connection attempts, have been generated.
Our generative model showed better accuracy for protocol
usages like the Psh with non-zero payload size. The model
also generated flows with a similar distribution of the original
data.

For future work, we should train this model with more
diverse data including different class of traffic like benign
browsing or streaming along with other attack techniques.
We should also consider extend NetGlyphs to include more
features and protocols. For the assessment of the generated
data, we should use more metrics and rules to verify the gen-
erated flows, especially to assess the end of communication.
Finally, additional work should be done on the context or
attack scenario that links several individual flows together.
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