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Abstract

We study optimal filtering for continuous-time linear stochastic systems with Poisson-sampled observation processes.
For each realization of the sampled observation process, the posterior distribution is a Gaussian process whose mean and
covariance are described by continuous-discrete process. We are particularly interested in analyzing the expectation of
the first and second moment of the estimation error with respect to the sampling process. Using the system-theoretic
properties like observability and controllability, our results provide tractable conditions on the mean sampling rate for
convergence of the expected error covariance, its boundedness and convergence of expected estimation error to zero. Some
comparisons are also drawn with the solution of Riccati differential equation associated with the continuous-observation
process.
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1. Introduction

Filtering in stochastic dynamical systems is one of the
fundamental research areas as it deals with computing an
estimate of unknown variables using noisy observations.
Apart from developing efficient algorithms, an important
research direction is to study the filtering problem with
constraints on the information available for computing the
optimal distribution [1]. In particular, motivated by the
idea of implementing filters subject to observations trans-
mitted over networks through some communication proto-
cols, it is natural to stipulate that the observations arrive
at some random time instants [2, 3].

In discrete-time stochastic systems, the transmission of
observations over a network may be subjected to dropouts,
and the arrival of observations at a remote estimation site
is modeled by a random process. In [4], the observations
are subjected to a Bernoulli process. After computing the
estimate, the performance of such estimators is analyzed
by computing expectation of the error covariance matrix
with respect to the Bernoulli process associated with the
observations. In [5], a similar setup is concerned but the
packet dropouts are modeled using a two state Markov
chain. In certain cases, in addition to dropouts, the ef-
fect of communication channel is modeled via quantization
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effect [6], where the authors study remote state estima-
tion across a channel with an average power constraint
and show that it is better to transmit an innovation term
through the channel when data loss acknowledgment is
available, else it is more efficient to transmit an estimate
computed by the Kalman filter. In [7], the authors solve
the problem of optimal estimation and control across mul-
tiple links with packet drops, where they separate out the
control and estimation objective costs, and analyze the
particular case of Kalman estimation forwarding over the
links. Similar works involving stability of state estimation
over discrete and continuous communication networks can
be found in [8]. In these works, a common theme is to find
conditions on channel parameters and system data that
ensure state estimation with reasonable accuracy.

When dealing with continuous-time stochastic systems,
and a discrete observation process, it is of interest to com-
pute the conditional distribution of the state process con-
ditioned upon this discrete observation process [9]. Such
a setup for continuous-discrete filters is motivated by the
implementation of filters over networks where the observa-
tion process is discretized by the presence of a digital chan-
nel between the plant and the filter. For certain technical
reasons, and to better study the effect of mean sampling
rate, the authors stipulate in their previous works that
the sampling process is a Poisson counter. In particular,
for a system class very close to the one studied in this
paper, the authors in [10] propose a continuous-discrete
filter and analyze the boundedness of error covariance as
a function of the mean sampling rate. In related works,
we note that stochastic optimal control problems under
random sampling have been studied in [11]. Moreover, the



authors of [12] study state estimation and optimal network
resource allocation for continuous-time weakly-coupled lin-
ear systems with sensor measurements arriving at fixed
discrete time intervals.

In this paper, we analyze Kalman filters for continuous-
time stochastic systems when the observation process is
Poisson-sampled. In particular, our focus is on study-
ing the expectation of first and second moment of the er-
ror process. We provide condition using system-theoretic
properties to show boundedness of the error covariance.
In contrast to [10], we give explicit conditions in terms of
controllability and observability Gramians, and the mean
sampling rate. In addition, we show that similar condi-
tions allow us to show the convergence of the expectation
of first moment to zero asymptotically.

The remainder of the paper is organized as follows: In
Section 2, we discuss the problem setup and provide an ex-
pression for expected covariance and estimation error. We
provide the first main result on existence of fixed point
for expected error covariance in Section 3. We then com-
pute tractable analytical bounds on the error covariance
in Section 4, and use them for fluctuation analysis in Sec-
tion 5. The asymptotic convergence of first moment is
studied in Section 6, and some concluding remarks appear
in Section 7.

2. Prelimnaries

In this section, we will describe the filtering problem
that will be analyzed in this article. We first propose the
system class and the associated measurement process. The
optimal filter in our case is a continuous-discrete process
for which we describe the dynamics for first moment of
error and the error covariance. In the remainder of this
paper, we analyze the expectations of these process.

2.1. System Class

We consider the class of stochastic linear systems of the
form

dxt = Axtdt+Gdωt (1)

where (xt)t≥0 is an Rn-valued diffusion process describing
the state Let (Ω,F ,P) denote the underlying probability
space. In (1), ωt is an Rm-valued standard Wiener process
adapted to the filtration F with E[dωtdω

⊤
t ] = Im×mdt for

all t ≥ 0. The matrices A ∈ Rn×n and G ∈ Rn×m are
constant.

We study the state estimation problem when the noisy
output measurements are available only at random times.
The motivation to work with randomly time-sampled
measurements comes from several applications, such as,
communication over networks which allow information
packets to be sent at some discrete randomly distributed
time instants. Thus, we consider a monotone nondecreas-
ing sequence (τn)n∈N taking values in R≥0 which denote

the time instants at which the measurements are available
for estimation. We introduce the process Nt defined as

Nt := sup
{
n ∈ N

∣∣ τn ≤ t
}

for t ∈ R, (2)

and it is assumed that (Nt)t≥0 is a Poisson process of in-
tensity λ > 0 and it is independent of the noise and the
state processes. The Poisson process is among the most
well-studied processes, and standard results (see, e.g., [13,
§2.3]) show that it is memoryless and Markovian.

The discretized, and noisy, observation process is thus
defined as

yτNt
= Cx(τNt

) + ντNt
, t ≥ 0, (3)

where C ∈ Rp×n is a constant matrix, and νk is a sequence
of i.i.d. Gaussian noise processes and ν0 ∼ N (0, V ). Equa-
tion (3) is motivated by the fact that a continuous obser-
vation process dzt = Cxtdt + dηt for a Wiener process
(ηt)t≥0 is formally equivalent to yt = Cxt + νt, with the

identifications yt ∼ dzt
dt and νt ∼ dηt

dt , so that νt is a
Gaussian process; see [9, Chapter 4] for further details.
Our goal is to construct the estimate x̂t, which minimizes
the mean square estimation error, using the observations
Yt := {yτk | k ≤ Nt}.

2.2. Optimal Filter

The basic problem in filter design is to find an estim-
ate of the state process which minimizes the mean square
estimation error. This optimal estimator is described by
the expectation of the state process (xt)t≥0 conditioned
upon the measurements observed over the interval [0, t],
that is, Yt. In particular, with the structure imposed
on the system dynamics in this section, the conditional
expectation is Gaussian and the two moments are simu-
lated through ordinary differential equations with updates
at times when a new measurement arrives. For an ar-
bitrary strictly increasing real-valued sequence (τk)k∈N∗ ,
(where N∗ := N ∪ {0}) this procedure is also proposed in
[9, Thm. 7.1]. If we specify a sequence (τk)k∈N∗ so that it
corresponds to the arrival times of a Poisson process, we
simulate the mean of the conditional distribution as:

˙̂xt = Ax̂tdt, t ∈ [τNt , τ1+Nt [ (4a)

x̂+t = x̂t +Kt(yt − Cx̂t), t = τNt
(4b)

where the injection gain Kt = PtC
⊤(CPtC

⊤ + V )−1, and
the process (Pt)t≥0 is described as

Ṗt = (APt + PtA
⊤ +GG⊤), t ∈ [τNt

, τ1+Nt
[ (5a)

P̂+
t = Pt − PtC

⊤(CPtC
⊤ + V )−1CPt, t = τNt

. (5b)

We denote the estimation error χt := xt − x̂t and the
covariance of this error process is described by (5). From
analysis perspective, we are also interested in studying the
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first moment of the estimation error, which follows the
dynamics

dχt = Aχtdt+Gdωt,

χτ+
Nt

= χτ−
Nt

−Kτ−
Nt

(
yτ−

Nt

− CX̂τ−
Nt

)
,

=
(
I −Kτ−

Nt

C
)
χτ−

Nt

−Kτ−
Nt

ντ−
Nt

.

2.3. Expected Covariance and Estimation Error

From analysis viewpoint, it is important to look at the
expectation of the process (Pt)t≥0 with respect to the
sampling times (τNt

)t≥0. From our previous works [10,
Proposition 4.1], it can be shown that the expected cov-
ariance for the linear optimal filtering case, takes the form

Ṗt = APt + PtA⊤ +GG⊤ − λPtC⊤M−1
Pt
CPt (6)

where the matrix MPt ∈ Rp×p is given by

MPt
:= CPtC⊤ + V. (7)

Similarly, we denote by χt := E[χt] the expected error
with the expectation taken with respect to the sampling
process Nt. Using [14, Theorem 1], the evolution of the
expected value of the error are given by:

χ̇t = (A− λKtC)χt. (8)

Main Contribution:. The primary problem studied in this
paper is to provide conditions in terms of the bounds
on the mean sampling rate λ > 0 and the structural
assumptions on controllability and observability of the
pairs (A,G) and (A,C) that guarantee convergence to a
steady state solution for Pt. Using comparison with the
Riccati differential equation associated with continuous-
observation processes, we derive bounds on the expected
error covariance. These results are then used for asymp-
totic analysis of the first moment of the error process
(χt)t≥0, to provide conditions under which E[χt] converges
to zero asymptotically.

Reformulation:. For our purposes, it is also useful to in-
troduce the notation Kt = PtC⊤M−1

Pt
, which results in the

following equivalent expressions for Pt:

Ṗt = APt + PtA⊤ +GG⊤ − λ(KtCPt + PtC⊤K⊤
t )

+ λKtVK⊤
t + λKtCPtC⊤K⊤

= APt + PtA⊤ +GG⊤ + λKtVK⊤
t

+ λ(I −KtC)Pt(I −KtC)⊤ − λPt
= APt + PtA⊤ +GG⊤ + λKtVK⊤

t

+ λ(I −KtC)Pt(I −KtC)⊤ − λ

2
Pt −

λ

2
Pt

=

(
A− λ

2
I

)
Pt + Pt

(
A− λ

2
I

)⊤

+GG⊤

+ λKtVK⊤
t + λ(I −KtC)Pt(I −KtC)⊤.

Thus, by letting Aλ :=
(
A− λ

2 I
)
, (6) can now be equival-

ently expressed as

Ṗt = AλPt + PtA⊤
λ +GG⊤ + λKtVK⊤

t

+ λ(I −KtC)Pt(I −KtC)⊤. (9)

We denote the deterministic flow associated with (6) as
ϕs,t(Q), with s ≤ t and ϕs,s := Q, where Q ∈ Sn×n+ , where
Sn×n+ denotes the set of positive semi-definite matrices in
Rn×n. Whenever s = 0, we denote ϕ0,t := ϕt. When the
focus is on specifying the solution of (9) with an initial
condition Q ∈ Sn×n+ , then we equivalently write

ϕt(Q) = Eλt QEλt
⊤
+

∫ t

0

Eλt−s
[
λ(I−KsC)ϕs(Q)(I−KsC)⊤

+ λKsVK⊤
s +GG⊤

]
Eλ

⊤

t−sds. (10)

We also consider the following notation

Eλs,t := exp

[(
A− λ

2
I

)
(t− s)

]
and we let Eλt := Eλ0,t. By a slight abuse of nota-

tion we use K1 = ϕt(Q1)C
⊤(Cϕt(Q1)C

⊤ + V )−1 and
K2 = ϕt(Q2)C

⊤(Cϕt(Q2)C
⊤ + V )−1 to denote the time

varying optimal gains corresponding to flows ϕt(Q1) and
ϕt(Q2) when two positive semidefinite matrices Q1 and
Q2 are involved in the same expression and when the
time instant t is clear from the context. The notation
KQ := QC⊤(CQC⊤ + V )−1 is used to denote the gain
when Q does not vary with time.

3. Asymptotics of Expected Covariance

We now develop the first main result which concerns the
convergence of solution of equation (9) to its steady state.
To do so, we need two basic assumptions on the system (1)
and the observation process (3) which are stated below:

(A1) The pair (A,C) is observable for each λ > 0, that is,
there exists θCλ > 0 such that,∫ ∞

0

Eλt C⊤V −1CEλt
⊤
dt ≥ θCλ I.

(A2) The pair (A,G) is controllable, for each λ > 0, that
is, there exists θGλ > 0 such that,∫ ∞

0

Eλt GG⊤Eλt
⊤
dt ≥ θGλ I.

Also, we consider a constant β such that CC⊤ ≤ βV ,
and denote the logarithmic norm (associated with Euc-
lidean induced matrix norm) of a matrix A by µ(A). For
the Euclidean induced matrix norm, µ(A) can be com-

puted as µ(A) = λmax(
A+A⊤

2 ) [15, Fact 11.15.7], where
λmax(·) denotes the maximum eigenvalue of its matrix ar-
gument.
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Theorem 1. Consider system (1) and the observation
process (3) with Nt a Poisson process of intensity λ > 0,
and suppose that Assumptions (A1) and (A2) are satis-
fied. If it holds that

λ(λ− 2µ(A))θCλ > 2µ(A)β (11)

then there exists a unique P that solves the equation

0 = AP + PA⊤ +GG⊤ − λPC⊤M−1

P CP, (12)

and for every P0 ∈ Sn×n+ , it holds that limt→∞ ϕt(P0) = P.

Remark 1. Note that the condition (11) also implies that
λ > 2µ(A). Assuming otherwise, if λ ≤ 2µ(A), then the
inequality holds only if µ(A) is negative and consequently
λ < 0, which is not possible.

The proof of Theorem 1 involves several steps and in the
process we can prove several intermediate results for the
differential equation (6) of independent interest. These de-
velopments are carried out in Section 3.1 and Section 3.2,
and used to complete the proof in Section 3.3.

3.1. Monotonicity and Recursive operator

We first prove two properties of the solutions of (6). The
first one relates to the monotoncity with respect to initial
conditions, and the second property relates to comput-
ing upper and lower bounds on the difference of solutions
starting from different initial conditions.

Proposition 1. The error covariance flow ϕt(Q) is non-
decreasing with respect to the Loewner partial order, that
is, we have ϕt(Q1) ≥ ϕt(Q2), whenever Q1 ≥ Q2.

Proof. From (10) it can be seen that

ϕt(Q1)− ϕt(Q2) = Eλt (Q1 −Q2)Eλt
⊤

+ λ

∫ t

0

Eλt−s
[
(I −K1C)ϕs(Q1)(I −K1C)

⊤ +K1VK⊤
1

−(I −K2C)ϕs(Q2)(I −K2C)
⊤ −K2VK⊤

2

]
Eλ

⊤

t−s ds.
(13)

Using Lemma 4 in Appendix, and in particular equation
(.2), we can write (13) equivalently as

ϕt(Q1)− ϕt(Q2) = Eλt (Q1 −Q2)Eλt
⊤

+λ

∫ t

0

Eλt−s [(I −K1C)ϕs(Q1)− (I −K2C)ϕs(Q2)] Eλ
⊤

t−s ds.

Recall the fact that given two positive definite matrices
Q1, Q2 if Q1 ≥ Q2, then, Q

−1
1 ≤ Q−1

2 . Note from Lemma
3 that, (I − KsC)ϕs(Q) = (ϕs(Q)−1 + CV −1C⊤)−1. If
ϕs(Q1) ≥ ϕs(Q2) > 0, we have

ϕs(Q2)
−1 ≥ ϕs(Q1)

−1

ϕs(Q2)
−1 + CV −1C⊤ ≥ ϕs(Q1)

−1 + CV −1C⊤

(ϕs(Q1)
−1 + CV −1C⊤)−1 ≥ (ϕs(Q2)

−1 + CV −1C⊤)−1

(I −K1C)ϕs(Q1) ≥ (I −K2C)ϕs(Q2).

Thus the integral on the right-hand side of (13) is nonneg-
ative definite, whence the result follows.

Proposition 2. Let Q1, Q2 ∈ Sn×n+ Consider the two
flows Q1 7→ ϕt(Q1) and Q2 7→ ϕt(Q2) and their differ-
ence ϕt(Q1)− ϕt(Q2) as in (13). Then, we have

ϕt(Q1)− ϕt(Q2) ≥ Eλt (Q1 −Q2)Eλt
⊤

(14)

+ λ

∫ t

0

Eλt−s
[
(I −K1C)(ϕs(Q1)− ϕs(Q2))(I −K1C)⊤

]
Eλt−s

⊤
ds

and

ϕt(Q1)− ϕt(Q2) ≤ Eλt (Q1 −Q2)Eλt
⊤

(15)

+ λ

∫ t

0

Eλt−s
[
(I −K2C)(ϕs(Q1)− ϕs(Q2))(I −K2C)⊤

]
Eλt−s

⊤
ds.

Proof. For the ease of notation, for a given s ≥ 0, let us
denote ϕs(Q1) by P1 and ϕs(Q2) by P2. Let the associated
optimal gains be K1 and K2 respectively. Let us first prove
the following which will be useful in the rest of the proof:

(I −K1C)P1C
⊤(K1 −K2)

⊤ ≥ (I −K2C)P2C
⊤(K1 −K2)

⊤

(16)

Indeed, from Lemma 3 we have

(I −K1C)P1C
⊤(K1 −K2)

⊤ − (I −K2C)P2C
⊤(K1 −K2)

⊤

= K1V (K1 −K2)
⊤ −K2V (K1 −K2)

⊤

= (K1 −K2)V (K1 −K2)
⊤

≥ 0

Now, notice,

(I −K1C)(P1 − P2)(I −K2C)
⊤

− (I −K1C)(P1 − P2)(I −K1C)
⊤

= (I −K1C)(P1 − P2)C
⊤(K1 −K2)

⊤

= ((I −K1C)P1 − (I −K1C)P2)C
⊤(K1 −K2)

⊤

= (I −K1C)P1C
⊤(K1 −K2)

⊤ − (I −K1C)P2C
⊤(K1 −K2)

⊤

(a)

≥ (I −K2C)P2C
⊤(K1 −K2)

⊤ − (I −K1C)P2C
⊤(K1 −K2)

⊤

= ((I −K2C)P2 − (I −K1C)P2)C
⊤(K1 −K2)

⊤

= (K1 −K2)CP2C
⊤(K1 −K2)

⊤

≥ 0,

where inequality (a) is obtained using (16). Thus, we have
(I −K1C)(P1 −P2)(I −K2C)

⊤ ≥ (I −K1C)(P1 −P2)(I −
K1C)

⊤. Putting back ϕs(Q1) and ϕs(Q2) in place of P1

and P2 respectively we have the first statement of our Pro-
position 2. That is:

ϕt(Q1)− ϕt(Q2) = Eλt (Q1 −Q2)Eλt
⊤

+ λ

∫ t

0

Eλt−s
[
(I −K1C)(ϕs(Q1)− ϕs(Q2))(I −K2C)⊤

]
Eλt−s

⊤
ds

≥ Eλt (Q1 −Q2)Eλt
⊤

+ λ

∫ t

0

Eλt−s
[
(I −K1C)(ϕs(Q1)− ϕs(Q2))(I −K1C)⊤

]
Eλt−s

⊤
ds

The proof of the second statement of the Proposition 2 follows
from a similar argument.
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3.2. Existence of fixed point

We can relate the solutions of (6) with the mapping
Fλ : Rn×n → Rn×n defined as

Fλ(P ) := λ

∫ ∞

0

Eλt (I −KPC)PEλt
⊤
dt

+

∫ ∞

0

Eλt GG⊤Eλt
⊤
dt (17)

where KP = PC⊤(CPC⊤ + V )−1. In this subsection, we
derive conditions for the fixed point of Fλ. To do so, we
introduce the mapping T : R → R, defined as

T (α) := f(α) + θ
G

λ , (18)

where the constant θ
G

λ satisfies∫ ∞

0

Eλt GG⊤Eλt
⊤
dt ≤ θ

G

λ I

and the function f : R → R is defined as

f(α) :=
λα

λ− 2µ(A)
− λθCλ α

2

βα+ 1
.

The existence of a finite positive θ
G

λ is guaranteed from the
condition (11) in Theorem 1 which implies that λ > 2µ(A).
To see that, we can write∫ ∞

0

Eλt GG⊤Eλt
⊤
dt ≤ λmax(GG

⊤)

∫ ∞

0

Eλt Eλt
⊤
dt.

Now using [15, Fact 11.15.6] we have

Eλt Eλt
⊤ ≤ e(2µ−A)tI.

Thus,

λmax(GG
⊤)

∫ ∞

0

Eλt Eλt
⊤
dt ≤ λmax(GG

⊤)
1

λ− 2µ(A)
I

=: θ
G

λ I.

Lemma 1. If the sequence {T (k)(α)}k∈N converges to
a unique fixed point for each α ∈ R+, then there ex-
ists a fixed point to Fλ, which is unique and the se-

quence {F (k)
λ (P0)}k∈N converges to the fixed point for each

P0 ∈ Sn×n+ .

Proof of Lemma 1. We provide the proof in three parts.
First, we will show that the convergence of {T (k)(α)}k∈N
implies that a fixed point Q exists for the operator Fλ;
Second, we show that the fixed point of Fλ is unique; and
third, we show that the successive iterations of the map-
ping Fλ on any positive definite matrix converge to the

fixed point Q, thus guaranteeing that lim
k→∞

F (k)
λ (P0) = Q

for any P0 ∈ Sn×n+ .
Existence: We know from the monotonicity property of

Fλ, that if F (n1)
λ (αI) ≥ F (n2)

λ (αI), then F (n1+k)
λ (αI) ≥

F (n2+k)
λ (αI) for all k ≥ 0. To show the existence of a

fixed point of Fλ, we look at the iterations F (k)
λ (αI) for

α = 0. Clearly, Fλ(0) > 0 and thus F (k+1)
λ (0) ≥ F (k)

λ (0)

for all k ≥ 0. Also, F (k)
λ (0) ≤ T (k)(0)I and thus if T

is convergent, lim
k→∞

F (k)
λ (0) = Q exists, since it is both

monotone increasing and upper bounded by a convergent
operator. Thus there exists a fixed point Q of Fλ.

Uniqueness: Next we show that if there exists a fixed
point of Fλ, it is unique. We do so by using contradiction.
Let us assume that there exists two distinct fixed points
Q1,Q2 ∈ Sn×n+ of Fλ and define KQ2 = Q2C

⊤(CQ2C
⊤ +

V )−1, KQ1 = Q1C
⊤(CQ1C

⊤ + V )−1. Then we can write

Q2 −Q1 = Fλ(Q2)−Fλ(Q1)

= λ

∫ ∞

0

Eλt (I −KQ2
C)(Q2 −Q1)(I −KQ1

C)⊤Eλt
⊤
dt

(a)

≤ λ

∫ ∞

0

Eλt (I −KQ1C)(Q2 −Q1)(I −KQ1C)
⊤Eλt

⊤
dt,

where inequality (a) results from Proposition 2. Now re-
arranging the above and using (10) we have

Q2 ≤ Q1 + λ

∫ ∞

0

Eλt (I −KQ1C)(Q2 −Q1)(I −KQ1C)⊤Eλt
⊤
dt

=

∫ ∞

0

Eλt
[
λ(I −KQ1C)(Q1)(I −KQ1C)⊤ + λKQ1V K

⊤
Q1

+ GG⊤
]
Eλt

⊤
dt

+ λ

∫ ∞

0

Eλt (I −KQ1C)(Q2 −Q1)(I −KQ1C)⊤Eλt
⊤
dt

= λ

∫ ∞

0

Eλt (I −KQ1C)(Q2)(I −KQ1C)⊤Eλt
⊤
dt

+ λ

∫ ∞

0

Eλt KQ1V K
⊤
Q1

Eλt
⊤
dt+

∫ ∞

0

Eλt GG⊤Eλt
⊤
dt

=: GQ1(Q2).

See that applying the operator Fλ once on both sides of
Q2 ≤ GQ1(Q2) results in Q2 = Fλ(Q2) ≤ Fλ(GQ1(Q2)).
Using the comparison argument from [10, Lemma 5.1], it

is easy to see that Fλ(GQ1
(Q2)) ≤ G(2)

Q1
(Q2). In general

for k > 0 we can write Q2 ≤ G(k)
Q1

(Q2). Notice from [16,
Theorem 4.1, Lemma 5.1] for the same class of operators as
GQ, controllability of (A,G) in addition to the existence of
a fixed point for the operator GQ guarantees the uniqueness
and convergence to the same. We can clearly see that
Q1 is indeed the fixed point of the operator GQ1

and is
unique, from the previous argument. As a result, Q2 ≤
lim
k→∞

G(k)
Q1

(Q2) = Q1. Now, since in the entire argument

Q1 and Q2 did not have any pre-defined ordering, we can
repeat the arguments the other way around to get Q1 ≤
Q2, which can simultaneously hold only when Q1 = Q2.
This shows that if there exists a fixed point of Fλ, it is
indeed unique.

Convergence: Let us denote the fixed point of T as the
scalar α⋆. To show that Fλ is convergent for every ini-
tial positive definite matrix, notice that for any initial

5



positive definite matrix P0, we can always find a scalar

z > 1 such that P0 ≤ zα⋆I. In that case, F (k)
λ (0) ≤

F (k)
λ (P0) ≤ F (k)

λ (zα⋆I), for all k ≥ 0. To show the conver-

gence of F (k)
λ (P0), it is enough to show that F (k)

λ (zα⋆I)
is convergent for any z > 1 since due to the unique-

ness of the fixed point of Fλ, if F (k)
λ (zα⋆I) converges, it

converges to the same point as F (k)
λ (0). We know that

F (k)
λ (zα⋆I) ≤ T (k)(zα⋆)I. If T is convergent, then, for any

e > 0, there exists a k0 such that T (k)(zα⋆) ≤ α⋆+e for all
k > k0. Let e be chosen such that e < (z−1)α⋆. Then, we

will have F (k)
λ (zα⋆I) ≤ T (k)(zα⋆)I < zα⋆I for all k > k0.

Now, invoking the monotone property of Fλ, we see that

Fλ(k+k0)(zα⋆I) < F (k)
λ (zα⋆I) for every k ≥ 0. Thus,

F (k)
λ (zα⋆I) is monotone decreasing after every k0 itera-

tions and since these iterations are lower bounded by the

convergent F (k)
λ (0), it can be seen that lim

k→∞
F (k)
λ (zα⋆I) =

Q. Since this was done for a general z > 1, it is valid for

all z > 1. Recalling, F (k)
λ (0) ≤ F (k)

λ (P0) ≤ F (k)
λ (zα⋆I),

we thus have lim
k→∞

F (k)
λ (P0) = Q for any positive definite

matrix P0. □
We next study the convergence of the mapping T to-

wards a fixed point. To do so, we let α, and α⋆, be the
fixed points of the mappings f and T respectively, that is,

f(α)− α = 0 and f(α⋆)− α⋆ + θ
G

λ = 0.

By definition,

f(α)− α =
λα

λ− 2µ(A)
− λθCλ α

2

βα+ 1
− α

= α

(
(2µ(A)β − λ(λ− 2µ(A))θCλ )α+ 2µ(A)

(λ− 2µ(A))(βα+ 1)

)
.

It is easy to see that when the condition in (11) holds,

there exists a unique fixed point α = 2µ(A)

λ(λ−2µ(A))θCλ −2µ(A)β

to f (and thus to T ) in the interval (0,∞). We next ob-
serve that

• For α > α, we have f(α) < α,

• For 0 < α ≤ α, we have f(α) ≥ α.
With these properties of the mapping f , we can now study
the convergence of the sequence obtained by successive
iterations of the mapping T .

Lemma 2. For a given α0 ≥ 0, consider the sequence
αk = T (k)(α0), for k ∈ N. If the inequality (11) holds,
then

lim
k→∞

T (k)(α0) = α⋆.

Proof of Lemma 2. The proof is carried out in three
parts. We examine the evolution of T (k)(α0), k ≥ 0 and
show the following:

• for every α0 ∈ (0, α], there exists k such that T k(α0) >
α;

• the set (α,∞) is forward invariant under the mapping
T , that is, if α0 ∈ (α,∞) then T (k)(α0) ∈ (α,∞) for all
k ≥ 0;

• the mapping T restricted to (α,∞) is contractive.

The convergence of T (k) clearly follows from the above
three properties. To show these properties, we first note
the monotonicity of the operator T in its arguments.

T (a)− T (b)

=

(
λa

λ− 2µ(A)
− λθCλ a

2

βa+ 1

)
−

(
λb

λ− 2µ(A)
− λθCλ b

2

βb+ 1

)

=
λ(a− b)

λ− 2µ(A)
− λθCλ

(
a2

βa+ 1
− b2

βb+ 1

)
=

(
λ

λ− 2µ(A)
− λθCλ (βab+ a+ b)

(βa+ 1)(βb+ 1)

)
(a− b) (19)

Let ρ =
(

λ
λ−2µ(A) −

λθCλ (βab+a+b)
(βa+1)(βb+1)

)
. Then we have

T (a)− T (b) = ρ(a− b).

To prove the monotonicity of the operator T in its argu-
ments what remains to show is that ρ > 0 for all a, b ≥ 0.
For this, we first show that θCλ ≤ β

λ−2µ(A) . Notice that∫ ∞

0

Eλt C⊤V −1CEλt
⊤
dt ≤ λmax(V

−1)

∫ ∞

0

Eλt C⊤CEλt
⊤
dt

=
1

λmin(V )

∫ ∞

0

Eλt C⊤CEλt
⊤
dt

(a)

≤ β

λmax(CC⊤)

∫ ∞

0

Eλt C⊤CEλt
⊤
dt

≤ βλmax(C
⊤C)

λmax(CC⊤)

∫ ∞

0

Eλt Eλt
⊤
dt

≤ β

λ− 2µ(A)
I,

where inequality (a) holds since CC⊤ ≤ βV . Now since

θCλ ≤
∫∞
0

Eλt C⊤V −1CEλt
⊤
dt, we have that the inequality

θCλ ≤ β
λ−2µ(A) holds. Now using the same we have,

ρ =

(
λ

λ− 2µ(A)
− λθCλ (βab+ a+ b)

(βa+ 1)(βb+ 1)

)

≥
(

λ

λ− 2µ(A)
− λβ(βab+ a+ b)

(λ− 2µ(A))(βa+ 1)(βb+ 1)

)
=

λ

λ− 2µ(A)

(
1

(βa+ 1)(βb+ 1)

)
> 0.

This shows that for all a ≥ b, T (a) ≥ T (b). Putting
b = T (a), we can easily arrive at the fact that if T (a) ≥ a,
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then T (k+1)(a) ≥ T (k)(a) for all k ∈ N and vice versa
when the inequalities are reversed.

First part: We now look at the first part of the proof to
show that for every α0 ∈ [0, α), there exists k such that

T k(α0) > α. Using the properties of f above, we have that
for any α0 ∈ (0, α], we have f(α0) ≥ α0 and consequently,
T (α0) > α0. Moreover, note that for this choice of α0,

T (α0)− α0 = f(α0)− α0 + θ
G

λ

≥ θ
G

λ ,

which shows that T (k+1)(α0) > T (k)(α0) for all k ∈ N and
also that whenever T (k)(α0) ≤ α, T (k+1)(α0)−T (k)(α0) ≥
θ
G

λ . Now using contradiction we can show that there exists

k such that T (k)(α0) > α. Let us assume that for all k > 0,
T (k)(α0) ≤ α, then using a telescopic sum on the above

inequality implies that T (k+1)(α0)−α0 ≥ (k+1)θ
G

λ , which
is an increasing function in k. α being finite, the above

implies that there has to exist a k for which T (k)(α0) > α
which is a contradiction and thus, the sequence T (k)(α0)
cannot be in the region (0, α] for all k and has to escape
into (α,∞) at some iteration.
Second part: We move to the next part of the proof

where we show that there does not exist an iteration
for any k ∈ N and some α0 ∈ (0,∞), such that
T (k)(α0) > α and T (k+1)(α0) ≤ α hold. The proof
is simple thanks to the monotonicity property of T .
T (k0)(α0) > α and T (k0+1)(α0) ≤ α for some k0 ∈ N
implies that T (k+1)(α0) < T (k)(α0) for all k ∈ N us-
ing the monotonicity of T . However, we know from the
proof of the previous part that whenever T (k)(α0) ≤
α, T (k+1)(α0) > T (k)(α0). This would mean that
T (k0)(α0) > T (k0+1)(α0) < T (k0+2)(α0), which is not pos-
sible since T is monotonous and this completes the proof to
show that once the sequence T (k)(α0), k ∈ N, α0 ∈ (0,∞)
is in the region (α,∞), all future iterations are restricted
to the same region.

Third part: Now we proceed to the final part of the
proof to show that the mapping T restricted to (α,∞), is
contractive. Notice that

1− ρ =
−2µ(A)

λ− 2µ(A)
+
λθCλ (βab+ a+ b)

(βa+ 1)(βb+ 1)

=

(
λ(λ− 2µ(A))θCλ − 2µ(A)β

)
(βab+ a+ b)− 2µ(A)

(λ− 2µ(A))(βa+ 1)(βb+ 1)
,

(20)

where, clearly the expression (20) takes positive values if
and only if condition (11) holds, which also implies that
λ > 2µ(A), thus making the denominator positive for all
positive pairs a, b. Moreover, notice that for any a, b ≥
0, βab + a + b is an increasing function in both a and b
and for some fixed a, the expression βab+ a+ b takes on
the minimum value at b = 0. It is easy to show that for
any a > α and b = 0, the expression in the numerator is

positive and it remains positive for a > α and b > α due to
the increasing nature of βab+ a+ b. This implies that for
any a > α and b > α, 1− ρ > 0, or in other words ρ < 1.
Thus, T is a contraction mapping for α0 > α, using (19).

□

3.3. Proof of Theorem 1

Having the results on the existence, uniqueness and con-
vergence to a fixed point of operator Fλ, we prove Theorem
1 by relating the solution (6) to the evolution of the op-
erator Fλ. From Lemma 3 it is possible to rewrite (10)
as

ϕt(Q) = Eλt QEλt
⊤
+

∫ t

0

Eλt−s
[
λ(I −KsC)ϕs(Q)

+GG⊤
]
Eλ

⊤

t−sds. (21)

Using the above, it is easy to see that a solution P of (12)
can be equivalently written as the solution of

P =

∫ ∞

0

Eλt−s
[
λ(I −KPC)P +GG⊤

]
Eλ

⊤

t−sds. (22)

Now, a fixed point Q of Fλ, satisfies Fλ(Q) = Q which
implies the existence of a solution to (22). We define the

sequence P
(k)
t , k = 0, 1, . . ., t ≥ 0 with P

(0)
t = 0

P
(k+1)
t = Eλt QEλt

⊤
+

∫ t

0

Eλt−s
[
λ(I −KsC)P (k)

s

+GG⊤
]
Eλ

⊤

t−sds. (23)

Now following the exact methodology as in [17, Proof of

Lemma 3.1 (ii)] we can relate ϕt(Q) to P
(k)
t as lim

k→∞
P

(k)
t =

ϕt(Q). Now in the limit t → ∞, notice that the first
term on the right hand side of (23) goes to 0 (owing to
λ > 2µ(A)) and the second term takes the exact form as
Fλ:

P (k+1) := lim
t→∞

P
(k+1)
t

=

∫ ∞

0

Eλt−s
[
λ(I −KP (k)C)P (k) +GG⊤

]
Eλ

⊤

t−sds

= Fλ(P (k)).

Thus we have lim
t→∞

ϕt(Q) = lim
k→∞

F (k)
λ (Q). This ends the

proof of the theorem.

3.4. Approximating the lower bound in (A1)

We provide an algorithm to compute the range of λ sat-
isfying the condition (11) by numerically constructing a
lower bound on θCλ . In general, we do not know how θCλ
depends on the sampling rater λ which makes it difficult
to describe the range of λ for which (11) holds. The pro-
cedure outlined in this section will provide a lower bound
on θCλ as an explicit function of λ. We will refer to such

an approximation as θCλ
⋆
and describe the procedure to

compute it in Algorithm 1.
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Algorithm 1 Computing θCλ
⋆

Input: δ ∈ R>0, matrices A,C,G, V .

Output: θCλ
⋆
, where θCλ

⋆
I ≤

∫∞
0

Eλt C⊤V −1CEλt dt for all λ ≥ 2µ(A) + δ

1: Compute Mλ⋆ =
∫∞
0

Eλt C⊤V −1CEλt
⊤

dt with λ⋆ = 2µ(A) + δ and calculate its minimum eigenvalue mλ⋆ :=
λmin(Mλ⋆).

2: Compute L⋆, where L⋆ is the smallest positive integer such that
∫ L⋆

0
e(

λ⋆

2 I−A)tC⊤V −1Ce(
λ⋆

2 I−A
⊤)t dt ≥ mλ⋆I.

3: Choose the pair K,L such that K ≤ mλ⋆ and L ≥ L⋆.

4: Compute the scalar c such that c = 1
2 log

(
λmin(e

ALeA
⊤L)
)

5: Set θCλ
⋆
= Ke−L(λ−2c) for all λ ≥ 2µ(A) + δ.

Proposition 3. For some δ > 0 and λ ≥ 2µ(A) + δ, the

constant θCλ
⋆
obtained from Algorithm 1 satisfies

θCλ
⋆
I ≤

∫ ∞

0

Eλt C⊤V −1CEλt
⊤
dt, ∀ λ ≥ 2µ(A) + δ. (24)

Proof. Algorithm 1 yields θCλ
⋆
= Ke−L(λ−2c), for some

choice of K,L, and c. For λ⋆ = 2µ(A) + δ, θCλ
⋆
takes

the value Ke−2L(µ(A)−c+δ). Notice that due to the choice
K < λmin(Mλ⋆), we have that θCλ

⋆
< θCλ for λ = λ⋆. In

what follows, we will show that by choosing L and c as in

Algorithm 1, we have θCλ
⋆
I ≤

∫∞
0

Eλt C⊤V −1CEλt
⊤

dt for
all λ ≥ 2µ(A) + δ. Towards this end, we note that, for
every λ ≥ 2µ(A) + δ, we have

θCλ

θCλ
⋆ I ≥ eL(λ−2λmin(A))

mλ⋆

∫ ∞

0

Eλt C⊤V −1CEλt
⊤
dt

=
1

mλ⋆

(∫ ∞

0

eL(
λ
2 −c)Eλt C⊤V −1CEλt

⊤
eL(

λ
2 −c) dt

)
(a)

≥ 1

mλ⋆

(
λmin

(∫ L

0

e(
λ
2 I−A)tC⊤V −1Ce(

λ
2 I−A

⊤)t dt

)

+

∫ ∞

L

eL(
λ
2 −c)Eλt C⊤V −1CEλt

⊤
eL(

λ
2 −c) dt

)
To show how inequality (a) holds, note that∫ L

0

eL(
λ
2
−c)Eλt C⊤V −1CEλt

⊤
eL(

λ
2
−c) dt

=

∫ L

0

eL(
λ
2
−c)e(A−λ

2
I)(L−t)C⊤V −1Ce(A

⊤−λ
2
I)(L−t)eL(

λ
2
−c) dt

= e(A−cI)L
(∫ L

0

e(
λ
2
I−A)tC⊤V −1Ce(

λ
2
I−A⊤)t dt

)
e(A

⊤−cI)L

≥
(
e(A−cI)Le(A

⊤−cI)L
)
λmin

(∫ L

0

e(
λ
2
I−A)tC⊤V −1Ce(

λ
2
I−A⊤)t dt

)
.

Now given the choice of c in Algorithm 1, it readily

follows that
(
e(A−cI)Le(A

⊤−cI)L
)

≥ e−2c
(
eALeA

⊤L
)

≥

e−2cλmin

(
eALeA

⊤L
)
≥ I. As a result,∫ L

0

eL(
λ
2
−c)Eλt C⊤V −1CEλt

⊤
eL(

λ
2
−c) dt

≥ λmin

(∫ L

0

e(
λ
2
I−A)tC⊤V −1Ce(

λ
2
I−A⊤)t dt

)
,

and proceeding from inequality (a), we have

θCλ

θCλ
⋆ ≥ 1

mλ⋆

λmin

(∫ L

0

e(
λ
2 I−A)tC⊤V −1Ce(

λ
2 I−A

⊤)t dt

)
(b)

≥ 1

mλ⋆

λmin

(∫ L

0

e(
λ⋆

2 I−A)tC⊤V −1Ce(
λ⋆

2 I−A
⊤)t dt

)
≥ I,

where inequality (b) holds since∫ L

0

e(
λ
2 I−A)tC⊤V −1Ce(

λ
2 I−A

⊤)t dt

is clearly an increasing function in λ. The foregoing in-
equalities, hence, show that θCλ ≥ θCλ

⋆
.

Remark 2. In step 2 of Algorithm 1 existence of an L⋆ is
guaranteed from the fact that for any λ > 2µ(A), (λ2 I−A)
is not Hurwitz and as a result as L⋆ becomes larger, the
integral starts growing and eventually explodes as L⋆ →
∞. Thus, there always exists a particular value of L⋆ at
which the integral goes beyond the finite valued mλ⋆ .

Algorithm 1 thus provides us an approximate by per-
forming computations just with one specific value of λ.
Choosing a λ⋆ arbitrarily close to 2µ(A) will lead to

m⋆
λ ≥ θCλ for all λ ≥ 2µ(A). Using this θCλ

⋆
, condition

(11) can be used to compute an exact range of λ which
guarantees the existence of a fixed point of Fλ. This can
be simply done by solving for values of λ which satisfy

λ(λ− 2µ(A))Ke−(λ−2c)L > 2µ(A)β, (25)

where K,L,C are computed using Algorithm 1. The val-
ues of the mean sampling rate which satisfy the above
inequality above lie within a range

λ < λ < λ,

where λ and λ are the roots of

λ(λ− 2µ(A))Ke−(λ−2c)L = 2µ(A)β.

In the scalar case, (n = 1), when all the matrices
A,C,G, V are scalar, θCλ can be directly computed as
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θCλ = β
λ−2A . Thus, the sufficient condition for convergence

can be expressed as

λ(λ− 2A)
β

λ− 2A
> 2Aβ

or, λ > 2A (in the scalar case),

which is also a necessary condition for the convergence
as shown earlier. Thus in the scalar case, λ > 2A is a
necessary and sufficient condition for the existence of a
fixed point for the expected error covariance equation.

4. Bounds using continuous-time Riccati flows

We perform a comparison analysis of the expected er-
ror covariance ϕt(Q) with that of standard Kalman-Bucy
filters with the same (A,C,G) but with the covariance
scaled by a constant τ so that the system is represen-
ted by (A,C,G, τV ). We denote the error covariance flow
associated with the standard Kalman Bucy error covari-
ance (ψτt (Q)) for a continuous time system described by
(A,C,G, τV ) and with initial error covariance Q as:

∂tψ
τ
t (Q) = Aψτt (Q) + ψτt (Q)A⊤ +GG⊤

− ψτt (Q)C⊤V −1Cψτt (Q)

τ
(26)

4.1. Lower bound

We can compute a lower bound on ϕt(Q) in terms of
ψτt (Q) as stated in the following result:

Proposition 4. For any Q ∈ Sn×n+ and τ ≤ 1
λ , it holds

that ϕt(Q) ≥ ψτt (Q) for all t ≥ 0.

Proof. Notice that,

∂t(ϕt(Q)− ψτt (Q))

= Aϕt(Q) + ϕt(Q)A⊤ − λϕt(Q)C⊤(Cϕt(Q)C⊤ + V )−1Cϕt(Q)

−Aψτt (Q)− ψτt (Q)A⊤ +
ψτt (Q)C⊤V −1Cψτt (Q)

τ

≥ Aϕt(Q) + ϕt(Q)A⊤ − λϕt(Q)C⊤(V )−1Cϕt(Q)

−Aψτt (Q)− ψτt (Q)A⊤ +
ψτt (Q)C⊤V −1Cψτt (Q)

τ
(a)

≥ Aϕt(Q) + ϕt(Q)A⊤ − λϕt(Q)C⊤(V )−1Cϕt(Q)

−Aψτt (Q)− ψτt (Q)A⊤ + λψτt (Q)C⊤V −1Cψτt (Q)

(b)
=

(
A− ϕt(Q) + ψτt (Q)

2
λC⊤V −1C

)
(ϕt(Q)− ψτt (Q))

+ (ϕt(Q)− ψτt (Q))

(
A− ϕt(Q) + ψτt (Q)

2
λC⊤V −1C

)⊤

,

where inequality (a) holds by using τ ≤ 1
λ

and equality (b)
holds by using the following identity:

MSM −NSN

=

(
M +N

2
S

)
(M −N) + (M −N)

(
S
M +N

2

)
, (27)

where M,N and S are all symmetric and positive semidefinite
matrices of appropriate dimension. Thus,

ϕt(Q)− ψτt (Q) ≥ e
∫ t
0 Ms ds(ϕ0(Q)− ψτ0 (Q))e

∫ t
0 M

⊤
s ds

= 0, (28)

where Mt =
(
A− ϕt(Q)+ψτ

t (Q)

2
λC⊤V −1C

)
for Q ∈ Sn×n+ .

Let us define the controllability and observability
Gramians associated with ψτt as

C(t, t− t0) :=

∫ t

t−t0
eAs(GG⊤)eA

⊤s ds,

Oτ (t, t− t0) :=

∫ t

t−t0
eAs(C⊤(τV )−1C)eA

⊤s ds

respectively, where the superscript τ is to remind the
reader that the Gramians depend on the particular choice
of τ . If the continuous-time linear system defined by
(A,C,G, τV ), τ ≤ 1

λ is uniformly completely controllable
and uniformly completely observable, it means that there
exists a t0 ≥ 0 such that for all t ≥ t0, we have

0 < γ
C
I ≤ C(t, t− t0) ≤ γCI, (29a)

0 < γr
O
I ≤ Oτ (t, t− t0) ≤ γrOI, (29b)

respectively. Note that the t0 need not be the same for
both the controllability and observability Gramians. How-
ever, here for the ease of notation we consider t0 as the
maximum among the two for C and Oτ respectively. Then,
we have the following result.

Proposition 5. Suppose that there exist positive scalars
γ
C
, γC , γ

r
O
, γrO, and t0 such that (29) is satisfied. Then,

for every Q ∈ Sn×n+ and any τ ≤ 1
λ , the following inequal-

ity holds for t ≥ 0:

ϕt(Q) ≥
(
C−1(t, t− t0) +Oτ (t, t− t0)

)−1

≥

(
γ
C

1 + γ
C
γrO

)
I. (30)

Proof. We know from [9, Lemma 7.2] that given uniform
complete controllability and observability that the error
covariance flow ψτt for a continuous-time linear system de-
scribed by system parameters (A,C,G, τV ) satisfies

ψτt (Q) ≥
(
C−1(t, t− t0) +Oτ (t, t− t0)

)−1 ≥

(
γ
C

1 + γ
C
γrO

)
I,

for all initial Q ∈ Sn×n+ (see [9, Chapter 7] for the proof).
From Proposition 4 we know that for all τ ≤ 1

λ , we have

ϕt(Q) ≥ ψτt (Q) for any initial Q ∈ Sn×n+ and t ≥ 0.

4.2. Upper bound

To get the upper bound on the flow of expected error
covariance, we consider α = α⋆ + δ for some δ > 0 and
α⋆ being the fixed point of the mapping T introduced in
(18). We let Λα := maxt≥0 λmax(ϕt(αI)) and let Kα be
such that CΛαC

⊤ ≤ KαV and Lα := λ
1+Kα

.
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Proposition 6. For every Q ∈ Sn×n+ and τ > 1
Lα

, there

exists tQ > 0 and Q1 ∈ Sn×n+ such that

ϕt(Q) ≤ ψτt (Q1), for t ≥ tQ.

In particular, Q1 is chosen such that ψτtQ(Q1) ≥ ΛaI.

Proof. We will proceed with the proof as follows: first, we
define a set of matrices for which we show that irrespective
of the initial expected error covariance Q, there always
exists a t = tQ > 0 at which ϕt(Q) ∈ Q where Q is a set
that will be defined soon. Second, we show that all flows
starting from Q can be upper bounded by a continuous-
time Riccati flow for all times.

We start with the first part of the proof here. Recall
the operator T from Section 3.2. Let us define the set
Q := {P ∈ Sn×n+ : P ≤ α⋆I} and the fixed point of ϕt as
P∞. We know that lim

t→∞
ϕt(Q) = P∞ ≤ α⋆I < αI for

any initial Q ∈ Sn×n+ . Considering the evolution of the
real part of the maximum eigenvalue of ϕt(Q) we see that
lim
t→∞

λmax(ϕt(Q)) < α. As a result, there exists a time

t = tQ at which λmax(ϕt(Q)) < α occurs for the first time.
As a result at t = tQ we have ϕt(Q) < αI occurring for
the first time too. It is easy to see that ϕtQ(Q) ∈ Q. Thus,

starting from any Q ∈ Sn×n+ there exists a time at which
the flow enters the set Q.
For the second part, we start with the known fact from

the monotonicity property (Proposition 1) that Q1 ≤ Q2

implies that ϕt(Q1) ≤ ϕt(Q2) for all times t ≥ 0. Thus
for all matrices P ∈ Q it holds that ϕt(P ) ≤ ϕt(αI) for
all t ≥ 0. The flow ϕt(αI) is continuous and converges
to P∞. Thus, Λα = max

t≥0
λmax(ϕt(αI)) exists and is finite.

We then have that ϕt(P ) ≤ ϕt(αI) ≤ ΛαI for all t ≥ 0 and
for a general Q ∈ Sn×n+ , using the first part of the proof,
the same can be re-written as ϕt(Q) ≤ ΛαI holds for all
t ≥ tQ. Now, notice that for all t ≥ tQ and some initial
Q1 ∈ Sn×n+ for the continuous-time Riccati flow, which we
will talk more about later, we have

∂t(ψ
τ
t (Q1)− ϕt(Q))

= Aψτt (Q1) + ψτt (Q1)A
⊤ − ψτt (Q1)C

⊤V −1Cψτt (Q1)

τ

−Aϕt(Q)− ϕt(Q)A⊤ + λϕt(Q)C⊤(Cϕt(Q)C⊤ + V )−1Cϕt(Q)

(a)

≥ Aψτt (Q1) + ψτt (Q1)A
⊤ − ψτt (Q1)C

⊤V −1Cψτt (Q1)

τ

−Aϕt(Q)− ϕt(Q)A⊤ + λϕt(Q)C⊤(CΛαC
⊤ + V )−1Cϕt(Q)

(b)

≥ Aψτt (Q1) + ψτt (Q1)A
⊤ − Lαψ

τ
t (Q1)C

⊤V −1Cψτt (Q1)

−Aϕt(Q)− ϕt(Q)A⊤ + Lαϕt(Q)C⊤V −1Cϕt(Q)

(c)
=

(
A− ϕt(Q) + ψτt (Q1)

2
LαC

⊤V −1C

)
(ψτt (Q1)− ϕt(Q))

+ (ψτt (Q1)− ϕt(Q))

(
A− ϕt(Q) + ψτt (Q1)

2
LαC

⊤V −1C

)⊤

,

where inequality (a) is an application of ϕt(Q) ≤ ΛαI
for all t > tQ. Inequality (b) can be seen as follows: we

find the smallest scalar Kα such that CΛαC
⊤ ≤ KαV and

as a result we have (CΛαC
⊤ + V )−1 ≥ V −1

Kα+1 and finally

put Lα = λ
Kα+1 . Together with this we use τ > 1

Lα
to

the get the desired expression. Equality (c) is simply the
application of the identity (27). Next, integrating both
sides, we can write for all t ≥ tQ

ψτt (Q1)− ϕt(Q) ≥ e
∫ t
tQ

Ns ds
(ψτtQ(Q1)− ϕtQ(Q))e

∫ t
tQ

N⊤
s ds

≥ e
∫ t
tQ

Ns ds
(ψτtQ(Q1)− αI)e

∫ t
tQ

N⊤
s ds

,

(31)

where Nt =
(
A− ϕt(Q)+ψτ

t (Q1)
2 LαC

⊤V −1C
)

for all t ≥
tQ. Notice that for ψτt (Q1) ≥ ϕt(Q) to hold for all times
bigger than tQ, all we need to ensure is ψτtQ(Q1) ≥ αI since
that automatically implies ψτtQ(Q1) ≥ ϕtQ(Q). Using the
backward Riccati flow as in [18, Section 5.7], we know
that we can always find a Q such that ψτtQ(Q) = αI and
choosing Q1 ≥ Q gives us ψτt (Q1) − ϕt(Q) ≥ 0 for all
t ≥ tQ, which completes the proof.

Remark 3. From the proof of the Proposition 6, it is clear
we could in practice define the set Q in a similar manner
with any matrix that upper bounds the fixed point of the
flow, that is, using any R > P∞. However, we use αI
in relation to the fixed point of the operator T since its
computation is easy as seen in Section 3.2 and moreover
because it allows computation of an upper bound of P∞
without actually computing P∞ which might not be so
easy.

Thus, to derive the upper bounds, we work with τ ≥
1
Lα

and to avoid any confusion, we consider the following

bounds on observability Gramian Oτ , for τ ≤ 1
Lα

:

0 < γs
O
I ≤ Oτ (t, t− t0) ≤ γsOI. (32)

Using t0 in (29a) and (32), and tQ as in Proposition 6, we
consider

t := max{t0, tQ}. (33)

Proposition 7. Let τ ≥ 1
Lα

and suppose that there ex-

ist positive scalars γ
C
, γC , γ

s
O
, γsO, and t0 such that (29a)

and (32) are satisfied. Then, for every Q ∈ Sn×n+ and t
satisfying (33), the following inequality holds for t ≥ 0:

ϕt(Q) ≤ [Oτ (t, t− t0)]
−1 + C(t, t− t0) ≤

(
1 + γs

O
γC

γs
O

)
I.

(34)

Proof. The proof is similar to the proof of Proposition 4.
We can write

ψτt (Q) ≤ [Oτ (t, t− t0)]
−1 + C(t, t− t0) ≤

(
1 + γs

O
γC

γs
O

)
I,

for all initial Q ∈ Sn×n+ (see [9, Chapter 7] for the proof).
From Proposition 6 we know that for all τ ≥ 1

Lα
, we have
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ϕt(Q) ≤ ψτt (Q1) for any initial Q ∈ Sn×n+ , for Q1 ≥ Q and
for all times t ≥ tQ. Now choose t = max{t0, tQ} and we
get the bound in (34) for t ≥ t.

Example 1. To demonstrate the upper and lower bounds
derived in Proposition 4 and Proposition 6, we present
a numerical example here. The system parameters are

A =

(
−3 2
1 1

)
, C =

(
0 1

)
, G =

(
1
−1

)
and V = 0.1. The

mean sampling rate of the Poisson process is λ = 4. We
simulate the expected error covariance (6) with the initial

expected error covariance Q =

(
1.58 0.7
0.7 6

)
. The trace of

the expected error covariance is shown by the blue curve in
Figure 1. We simulate the flow of the trace of the solution
of continuous-time Riccati equation (26) with τ = 0.2 <
1
λ for the lower bound; and τ = 5 > 1/Lα > 4 for the

upper bound. The trace of the solution of Riccati equation
associated with the lower and upper bounds are shown by
red curves in the figure below.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
trace(

t
(Q)), =5

trace(
t
(Q)), =4

trace(
t
(Q)), =0.2

Figure 1: Time evolution of trace of the expected error covariance
(blue) in comparison with the trace of the solution of Riccati equation
(26), which provide the upper and lower bounds (red).

5. Fluctuation Analysis

The results from the preceding sections can now be used
for analyzing the difference in the flow of error covariance
matrices resulting from different initial conditions. Our
main result in this direction is stated next:

Theorem 2. Suppose that assumptions (A2), (A1), and
condition (11) are satisfied. Let ϕt(Q1), ϕt(Q2) denote the
respective expected error covariance flows for t ≥ 0, and
Q1, Q2 ∈ Sn×n+ . Then there exists mQ2

> 0 (depending on
Q2) such that the following holds

∥ϕt(Q1)− ϕt(Q2)∥ ≤ exp (−at) (1 + JQ2t) ∥Q1 −Q2∥ ,
(35)

where ∥·∥ denotes the induced Euclidean norm, a :=

2
(
λ
2 − µ(A)

)
and JQ2 := λm2

Q2
exp

(
λm2

Q2

a

)
.

Proof. Recalling (15) from Proposition 2, we can write

ϕt(Q1)− ϕt(Q2) ≤ Eλt (Q1 −Q2)Eλt
⊤

+ λ

∫ t

0

Eλt−sMϕs(Q2)(ϕs(Q1)− ϕs(Q2))M
⊤
ϕs(Q2)

Eλt−s
⊤
ds,

where Mϕt(Q2) := (I − ϕt(Q2)C
⊤(Cϕt(Q2)C

⊤ + V )−1C).
Introducing norm on both sides, the above inequality can
be re-written as

∥ϕt(Q1)− ϕt(Q2)∥ ≤
∥∥Eλt ∥∥2 ∥Q1 −Q2∥

+ λ

∫ t

0

∥∥Eλt−s∥∥2 ∥∥Mϕs(Q2)

∥∥2 ∥ϕs(Q1)− ϕs(Q2)∥ ds.

(36)

We would like to show that for any Q2 ∈ Sn×n+ , it is pos-
sible to find a constant scalar mQ2

such that
∥∥Mϕt(Q2)

∥∥ ≤
mQ2 , for t ∈ [0,∞). To do so, we use the fact that
for all t ∈ [t,∞) (with t as in (33)), the flow ϕt(Q2) is
bounded uniformly by constants as in Propositions 5 and
7. As a result, there exists a certain matrix R > 0 (lying
between the uniform upper and lower bounds established
in Section 4) which maximizes the norm

∥∥Mϕt(Q2)

∥∥ =∥∥(I −RC⊤(CRC⊤ + V )−1C)
∥∥. In other words, there ex-

ists a maximum for
∥∥Mϕt(Q2)

∥∥ over [t,∞). This maximum
is indeed independent of the initial Q2 for the upper and
lower bounds defining the search space is uniform. It only
remains to show that

∥∥Mϕt(Q2)

∥∥ achieves a finite max-
imum in the interval t ∈ [0, t), for then, the maxima over
the entire range of t ∈ [0,∞) will simply be the maximum
among the two finite maximum values obtained. The ex-
istence of the maximum over [0, t] can be proved from the
facts that t is finite and that the flow ϕt(Q2) is continuous
over a finite interval starting from Q2 (see [10, Proposi-
tion 5.2] for the proof of the continuity of ϕt(Q) over finite
intervals). Thus, ϕt(Q2) must achieve a maximum over
the finite interval t ∈ [0, t]. Note that this maximum, in
general, depends on the initial condition Q2. Thus, there
exists a maximum mQ2

such that
∥∥Mϕt(Q2)

∥∥ ≤ mQ2
for

all t ≥ 0.
We know that

∥∥Eλt ∥∥ ≤ exp
((
µ(A)− λ

2

)
t
)
. Let us take

a := 2
(
λ
2 − µ(A)

)
> 0. Then (36) can be written as

∥ϕt(Q1)− ϕt(Q2)∥ ≤ exp (−at) ∥Q1 −Q2∥

+ λm2
Q2

∫ t

0

exp (−a(t− s)) ∥ϕs(Q1)− ϕs(Q2)∥ ds.

Applying Grönwall’s inequality to the above we have

∥ϕt(Q)− ϕt(Q2)∥ ≤ exp (−at) ∥Q1 −Q2∥

+ λm2
Q2

exp (−at) exp

(
λm2

Q2

a

)
∥Q1 −Q2∥Et(λ,mQ2

, a),

where1 Et(λ,mQ2
, a) =

∫ t
0
exp

(
−λm2

Q2
exp (−a(t−s))
a ds

)
.

1Notice that it is possible to exactly compute the definite integral
in the definition of Et(λ,mQ2 , a). However, we do not write the
exact expression here for brevity.
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We note that exp

(
−λm2

Q2
exp (−a(t−s))
a

)
≤ 1 (which holds

since the exponent is always negative) and replace it by
the same. On doing so, we obtain

∥ϕt(Q)− ϕt(Q2)∥ ≤ exp (−at) ∥Q1 −Q2∥

+ λm2
Q2

exp (−at) exp

(
λm2

Q2

a

)
∥Q1 −Q2∥

∫ t

0

ds

≤ exp (−at) ∥Q1 −Q2∥

(
1 + λm2

Q2
exp

(
λm2

Q2

a

)
t

)
.

It is easy to see that in the limit as t → ∞, we have the

expression exp (−at)
(
1 +

(
λm2

Q2
exp

(
λm2

Q2

a

))
t

)
→ 0,

the quantity within the parantheses being linear in t,
which is indeed the expected result. Setting JQ2

:=

λm2
Q2

exp

(
λm2

Q2

a

)
completes the proof.

Remark 4. If we choose Q2 = P∞, Mϕt(Q2) is a constant
matrix for all t ≥ 0 and as a result, we can simply write
mQ2

=
∥∥(I − P∞C

⊤(CP∞C
⊤ + V )−1C)

∥∥.
6. Expected Estimation Error

Now, we turn our attention towards analysing the es-
timation error. The main result can be studied as follows:

Theorem 3. Suppose that assumptions (A2) (A1) and
the condition (11) are satisfied. Let γ

C
, γC be defined as

in (29a), γrO as in (29b), and γs
O

be as in (32). Then,

for every initial expected covariance Q ∈ Sn×n+ , there ex-
ists ζ > 0 such that the time-varying matrix (A − λKtC)
satisfies

exp

(∫ t

t′
(A− λKsC)ds

)
(37)

≤
γ
C
γs
O(

1 + γ
C
γrO
)(

1 + γs
O
γC

) exp

(
−

ζγ
C

1 + γ
C
γrO

(t− t′)

)

for each t ≥ t′ ≥ t.

Proof. We start by taking the derivative of the inverse of
the flow matrix and observe that,

∂tϕ
−1
t = −ϕ−1

t (∂tϕt)ϕ
−1
t . (38)

Using the above, we have for any initial Q ∈ Sn×n+ ,

∂tϕ
−1
t (Q) = −ϕ−1

t (Q)A−A⊤ϕ−1
t (Q)− ϕ−1

t (Q)GG⊤ϕ−1
t (Q)

+ λC⊤(Cϕt(Q)C⊤ + V )−1C.

Notice that

∂tϕt(Q) = (A− λKtC)ϕt(Q) + ϕt(Q)(A− λKtC)⊤ +GG⊤

+ λϕt(Q)C⊤(Cϕt(Q)C⊤ + V )−1Cϕt(Q)

(a)

≥ (A− λKtC)ϕt(Q) + ϕt(Q)(A− λKtC)⊤ +GG⊤

+ Lαϕt(Q)C⊤V −1Cϕt(Q) (39)

where inequality (a) holds for all t ≥ tQ (recalling Propos-
ition 6) and the scalar Lα is introduced in Proposition 6.
We let S := LαC

⊤V −1C in the calculation that follows.
Using (39) in (38), we have

∂tϕ
−1
t (Q) ≤ −ϕ−1

t (Q)(A− λKtC)− (A− λKtC)⊤ϕ−1
t (Q)

− ϕ−1
t (Q)GG⊤ϕ−1

t (Q)− S.

Rearranging the above, we have

∂tϕ
−1
t (Q) + ϕ−1

t (Q)(A− λKtC) + (A− λKtC)⊤ϕ−1
t (Q)

≤ −ϕ−1
t (Q)GG⊤ϕ−1

t (Q)− S. (40)

Now, using an argument similar as in the proof of [19,
Theorem 4.8], we can write,for t ≥ tQ,

∂t(E
⊤
s,t(Q)ϕ−1

t (Q)Es,t(Q)) = E⊤
s,t(Q)

[
∂tϕ

−1
t (Q)+

ϕ−1
t (Q)(A− λKtC) + (A− λKtC)⊤ϕ−1

t (Q)
]
Es,t(Q),

(41)

where Es,t(Q) = exp
(∫ t

s
(A− λKrC) dr

)
. Substituting

(40) into (41) yields,

∂t(E
⊤
s,t(Q)ϕ−1

t (Q)Es,t(Q)) ≤ −E⊤
s,t(Q)

[
S+

ϕ−1
t (Q)GG⊤ϕ−1

t (Q)
]
Es,t(Q).

Using the last inequality, we can write for all t ≥ t′ ≥ t,

E⊤
t′,t(Q)ϕ−1

t (Q)Et′,t(Q) ≤ ϕ−1
t′ (Q)−∫ t

t′
E⊤
s,t(Q)(ϕ−1

s (Q)GG⊤ϕ−1
s (Q) + S)Es,t(Q) ds. (42)

Now, the integral above is positive definite owing to the
observability of (A,C) and the controllability of (A,G)
(see [16, Lemma 4.1]). Notice that the equality in (39)
can be also written as

ϕt(Q) = Et′,t(Q)ϕt′(Q)E⊤
t′,t(Q) +

∫ t

t′
Es,t(Q)GG⊤E⊤

s,t(Q) ds

+λ

∫ t

t′
Es,t(Q)ϕs(Q)C⊤(Cϕs(Q)C⊤ + V )−1Cϕs(Q)E⊤

s,t(Q) ds.

When assumptions (A1), (A2) and condition (11)
hold, we already know that for t ≥ t′ ≥ t, ϕt(Q)
will be uniformly bounded below and above by the
expressions as in Prop. 5 and Prop. 7, respectively.
Thus

∫ t
t′
Es,t(Q)GG⊤E⊤

s,t(Q) ds and for that matter∫ t
t′
Es,t(Q)E⊤

s,t(Q) ds exists and is bounded for all t ≥ t.
Thus, we can always compute R ∋ ζt′,t > 0 such that∫ t

t′
E⊤
s,t(Q)(ϕ−1

s (Q)GG⊤ϕ−1
s (Q) + S)Es,t(Q) ds

≥ ζt′,t

∫ t

t′
Es,t(Q)E⊤

s,t(Q) ds,

holds for all t ≥ t′ ≥ t. Again, using the fact that ϕt(Q)
remains uniformly bounded for all times greater than a
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certain value, and that the integrals exist and is finite for
all such times, it is evident that there exists a global con-
stant ζ = min

t,t′,Q
ζt′,t > 0. Then, we can write

∫ t

t′
E⊤
s,t(Q)(ϕ−1

s (Q)GG⊤ϕ−1
s (Q) + S)Es,t(Q) ds

≥ ζ

∫ t

t′
Es,t(Q)E⊤

s,t(Q) ds

(a)

≥
ζγ

C

1 + γ
C
γrO

∫ t

t′
Es,t(Q)ϕ−1

s (Q)E⊤
s,t(Q) ds,

where inequality (a) is a simple application of the lower
bound in Proposition 5. Using this, we can rewrite (42) as

E⊤
t′,t(Q)ϕ−1

t (Q)Et′,t(Q)

≤ ϕ−1
t′ (Q)−

ζγ
C

1 + γ
C
γrO

∫ t

t′
Es,t(Q)ϕ−1

s (Q)E⊤
s,t(Q) ds

≤
γ
C

1 + γ
C
γrO

I −
ζγ

C

1 + γ
C
γrO

∫ t

t′
Es,t(Q)ϕ−1

s (Q)E⊤
s,t(Q) ds.

(43)

Applying Grönwall’s lemma to the above we have∥∥E⊤
t′,t(Q)ϕ−1

t (Q)Et′,t(Q)
∥∥

≤
γ
C

1 + γ
C
γrO

exp

(
−

ζγ
C

1 + γ
C
γrO

(t− t′)

)
. (44)

Using Proposition 6, we have

∥∥E⊤
t′,t(Q)ϕ−1

t (Q)Et′,t(Q)
∥∥ ≥

1 + γs
O
γC

γs
O

∥Et′,t(Q)∥2 .

Combining this with (44) we have

∥Et′,t(Q)∥2

≤
γ
C
γs
O(

1 + γ
C
γrO
)(

1 + γs
O
γC

) exp

(
−

ζγ
C

1 + γ
C
γrO

(t− t′)

)
,

and this completes the proof.

Example 2. Let us revisit Example 1 using the same
system parameters and mean sampling rate. This time,
we simulate the Euclidean norm of the expected error (8)
in figure 2. The initial value of the expected error is chosen

as χ0 =

(
3
−3

)
.

7. Conclusions

We studied the filtering problem for continuous-time lin-
ear stochastic systems with Poisson-sampled discrete ob-
servations. The focus was in particular on deriving con-
ditions for existence of fixed point and studying analyt-
ical bounds on the expected error covariance matrix. The

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 2: Time evolution of the expected error norm ∥χt∥.

analytical bounds on the error covariance matrix and the
first moment of estimation error provided in Theorem 2
and Theorem 3 allow us to analyze the performance of the
proposed filter.

Based on the analysis presented in this paper, several
interesting directions could be investigated. Analyzing fil-
ters with Poisson-sampled observations has also been in-
vestigated in the distributed setting where multiple filters
interact with each other based on the information being
exchanged between them [20], and it would be interesting
to see whether bounds on sampling rate allow us to study
the optimal solution for such cases. Similarly, when look-
ing at ensemble filters, some recent work has also investig-
ated convergence of such filters using the system class and
observation model studied here [21], and one could again
draw connections with the sampling bounds. In the long
run, we can study the filtering while taking other models
of the communication channel into consideration, such as,
quantization and decoding errors.

Appendix

In this Appendix, we collect two lemmas which describe
the matrix identities that have been used in the results
developed in this paper.

Lemma 3. Let P ∈ Rn×n, V ∈ Rp×p, and C ∈ Rp×n be
constant matrices. If P ≥ 0 and V > 0, then the following
matrix equalities hold:

(I + PC⊤V −1C)−1 = I − PC⊤(CPC⊤ + V )−1C (.1a)

(I + PC⊤V −1C)−1PC⊤V −1 = PC⊤(CPC⊤ + V )−1

(.1b)

Proof. Proof of the identities in Lemma 3 follows from
[9, Appendix 7B]. For (.1a) it can be easily proved by
multiplying the inverse of the expression of the left-hand
side on both sides of the identity, thus giving

(I + PC⊤V −1C)(I − PC⊤(CPC⊤ + V )−1C)

= I + PC⊤V −1C − PC⊤V −1V (CPC⊤ + V )−1C

− PC⊤V −1CPC⊤(CPC⊤ + V )−1C

= I.
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On the other hand, (.1b) can be proved by multiplying
PC⊤V −1 on the right-hand side of (.1a). From there, it
follows that

(I + PC⊤V −1C)−1PC⊤V −1

= PC⊤V −1 − PC⊤(CPC⊤ + V )−1CPC⊤V −1

+
[
PC⊤(CPC⊤ + V )−1 − PC⊤(CPC⊤ + V )−1V V −1

]
= PC⊤(CPC⊤ + V )−1,

which is the desired equality.

Lemma 4. Let K1 = P1C
⊤(CP1C

⊤ + V )−1 and K2 =
P2C

⊤(CP2C
⊤ + V )−1, then it holds that

(I−K1C)P1−(I−K2C)P2 = (I−K1C)(P1−P2)(I−K2C)
⊤.

Proof. Let K = PC⊤(CPC⊤+V )−1. It then follows from
(.1a) and (.1b) that

0 = (I −KC)PC⊤V −1 −K = (I −KC)PC⊤ −KV

= (I −KC)PC⊤K⊤ −KVK⊤

= (I −KC)P (I −KC)⊤ +KVK⊤ − (I −KC)P.
(.2)

Using (.2), and the expressions for K1 and K2 given in
Lemma 4, it follows that

(I −K1C)P1 − (I −K2C)P2

= (I −K1C)P1 −K1V K
⊤
2 +K1V K

⊤
2 − (I −K2C)P2

= (I −K1C)P1 − (I −K1C)P1C
⊤K⊤

2 +K1CP2(I −K2C)
⊤

− P2(I −K2C)
⊤

= (I −K1C)P1(I −K2C)
⊤ − (I −K1C)P2(I −K2C)

⊤

= (I −K1C)(P1 − P2)(I −K2C)
⊤

which completes the proof.
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