
HAL Id: hal-04803508
https://laas.hal.science/hal-04803508v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lazy Load Scheduling for Mixed-criticality Applications
in Heterogeneous MPSoCs

Tomasz Kloda, Giovani Gracioli, Rohan Tabish, Reza Mirosanlou, Renato
Mancuso, Rodolfo Pellizzoni, Marco Caccamo

To cite this version:
Tomasz Kloda, Giovani Gracioli, Rohan Tabish, Reza Mirosanlou, Renato Mancuso, et al.. Lazy
Load Scheduling for Mixed-criticality Applications in Heterogeneous MPSoCs. ACM Transactions on
Embedded Computing Systems (TECS), 2023, 22 (3), pp.1-26. �10.1145/3587694�. �hal-04803508�

https://laas.hal.science/hal-04803508v1
https://hal.archives-ouvertes.fr

1

Lazy Load Scheduling for Mixed-Criticality Applications in
Heterogeneous MPSoCs

TOMASZ KLODA, LAAS-CNRS, Université de Toulouse, INSA, France

GIOVANI GRACIOLI, Federal University of Santa Catarina, Brazil

ROHAN TABISH, University of Illinois at Urbana-Champaign, USA

REZA MIROSANLOU, University of Waterloo, Canada

RENATO MANCUSO, Boston University, USA

RODOLFO PELLIZZONI, University of Waterloo, Canada

MARCO CACCAMO, Technical University of Munich, Germany

Newly emerging multiprocessor system-on-a-chip (MPSoC) platforms provide hard processing cores with

programmable logic (PL) for high-performance computing applications. In this paper, we take a deep look into

these commercially available heterogeneous platforms and show how to design mixed-criticality applications

such that different processing components can be isolated to avoid contention on the shared resources such

as last-level cache and main memory.

Our approach involves software/hardware co-design to achieve isolation between the different criticality

domains. At the hardware level, we use a scratchpad memory (SPM) with dedicated interfaces inside the PL

to avoid conflicts in the main memory. Whereas, at the software level, we employ a hypervisor to support

cache-coloring such that conflicts at the shared L2 cache can be avoided. In order to move the tasks in/out of

the SPM memory, we rely on a DMA engine and propose a new CPU-DMA co-scheduling policy, called Lazy
Load, for which we also derive the response time analysis. The results of a case study on image processing

demonstrate that the contention on the shared memory subsystem can be avoided when running with our

proposed architecture. Moreover, comprehensive schedulability evaluations show that the newly proposed

Lazy Load policy outperforms the existing CPU-DMA scheduling approaches and is effective in mitigating

the main memory interference in our proposed architecture.

CCS Concepts: •Computer systems organization→ Real-time systems;Other architectures; Embed-
ded systems; System on a chip;

Additional KeyWords and Phrases:Mixed-criticality real-time systems, heterogeneousmultiprocessor systems-

on-chip, schedulability analysis.

ACM Reference format:
Tomasz Kloda, Giovani Gracioli, Rohan Tabish, Reza Mirosanlou, Renato Mancuso, Rodolfo Pellizzoni,

and Marco Caccamo. 2021. Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous

MPSoCs. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2021), 26 pages.

https://doi.org/DOI

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1539-9087/2021/1-ART1 $15.00

https://doi.org/DOI

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/DOI
https://doi.org/DOI

1:2 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

1 INTRODUCTION
New emerging technologies like autonomous driving, unmanned aerial vehicles, cube satellites, or

smart manufacturing are significant examples of modern real-time systems. Unlike the past CPU-

intensive tasks, the workloads in today’s mission- and safety-critical systems are characterized by

much higher memory and I/O performance demands [10].

Hardware manufacturers have anticipated this shift by extending the multiprocessor systems-on-

chip (MPSoC) feature set, including hardware support for virtualization, the presence of multiple,

potentially heterogeneous processing elements, a rich ecosystem of high-bandwidth I/O devices and

communication channels, andmore recently, the co-location of traditional CPUs and programmable

logic (PL) implemented using Field Programmable Gate Array (FPGA) technology. This new class

of platforms offers the unprecedented ability to define new hardware components that can bring

determinism and tight latency bounds to real-time memory-intensive applications, closing the gap

between performance and real-time guarantees [17].

Our previous work in [17] demonstrated how to leverage the latest generation of partially

re-configurable MPSoCs to design high-performance embedded systems with strict real-time

requirements. We showed that it is possible to instantiate a critical set of PL-defined components

to (i) relieve interference on the shared memory hierarchy and achieve temporal isolation among

criticality domains; (ii) support efficient inter-domain communication; (iii) co-locate a traditional

task execution model with a multi-phase execution model; and (iv) overcome typical limitations of

traditional memory partitioning techniques.

However, no scheduling mechanism was integrated into the system model proposed in [17]. In

this work, we present a new scheduling technique for the proposed mixed-criticality architecture

based on a multi-phase task model to close the gap between the system design and theory. The

PL-based scratchpad that we employ can reduce memory inter-core interference but cannot

guarantee the same level of latency reduction as the standard, located close to the processor,

scratchpad memories, or caches that were used in the previous works implementing the multi-

phase model [42, 48]. Therefore, we propose a new scheduling technique that induces less low-

priority task blocking when compared with state-of-the-art approaches proposed in [45, 49], and

can take full advantage of our architecture. To summarize, the main contributions are:

(1) We extend our previous work [17] by proposing a new scheduling policy, called Lazy Load,
as well as a scheduler design and a schedulability analysis for real-time tasks running on

top of modern MPSoC platforms using a multi-phase execution.

(2) Compared to previous schedulability results in [45, 46, 48], the scheduling techniques

proposed in this work improve the schedulability performance for event-triggered mixed-

criticality applications (even 50% of improvement in terms of schedulability ratio). We

evaluate the proposed scheduling policy and contrast it with existing scheduling policies for

multi-phase task sets using synthetic task sets and hardware overheads that were measured.

(3) Differently from the previous three-phase models [48], which used TDMA arbitration with

fixed slot sizes, we propose a TDMA mechanism with a finer granularity that allows splitting

long memory transactions over multiple TDMA slots.

(4) We present an overview of the implementation, evaluation, and main results from our

previous paper [17], including an overview for the design and implementation of a hardware

block, named address translator, that prevents memory waste when cache partitioning based

on page coloring is used.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3

introduces the adopted system model and assumptions. Section 4 presents the response time

analysis for the new scheduling policy, Lazy Load. Section 5 discusses the design principles and

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:3

overviews the implementation. Section 6 compares previous implementation results and shows

the evaluation of the new schedulability analysis. Finally, Section 7 concludes the paper.

2 RELATEDWORK
Shared resource handling. Several recent works have proposed techniques to deal with shared

resources in multicore real-time systems at both OS and hypervisor levels. Cache partitioning

based on page coloring was used by several works to improve the predictability of multicore

real-time systems [16, 21, 52]. Page coloring together with cache locking was proposed in [28].

Similarly, some other works focused on making DRAM accesses more predictable [20, 23, 62, 63].

Regarding the use of hypervisors in multicore real-time systems, Modica et al. [31] proposed
a hypervisor-based architecture targeting critical systems similar to ours [17], including cache

partitioning for spatial isolation and DRAM bandwidth reservation for temporal isolation. The

techniques were implemented in the XVISOR open-source hypervisor and tested in a quad-core

ARM A7 processor [33]. Our hypervisor-based architecture, instead, explores the existence of

PL to handle data transfers between the processing system and programmable logic and data

prefetching. PL together with a processing systemwas first introduced in [27] to reduce interference

of mixed-criticality applications in uniprocessors without shared caches.

Other approaches used features available on modern multicore processors to handle contention

among the cores. MARACAS [61], for instance, used hardware performance counters (HPCs)

information to regulate the memory bandwidth of threads. Crespo et al. also used HPCs together

with control theory to regulate the memory bandwidth of critical and non-critical cores. Awan et
al. [2] proposed a memory regulation mechanism for mixed-criticality applications. vCAT used the

Intel’s Cache Allocation Technology (CAT) to provide cache partitioning for the hypervisor and

virtual machines [58]. However, this approach depends on a specific hardware feature and uses

non-real-time basic software support (Linux and Xen). vLLC and vColoring were two hypervisor

techniques proposed to enable cache-aware memory allocation for individual tasks running in a

virtual machine [22]. CHIPS-AHOy integrates hardware isolation mechanisms, such as memory

partitioning, with an observe-decide-adapt loop to achieve predictability, energy and thermal

management in a holistic hypervisor [32].

PRedictable ExecutionModel.Other research works proposed different task execution model

to bound or eliminate the contention for shared resources. The PRedictable Execution Model

(PREM) [3, 7, 34, 36, 53] splits the task execution into two separate phases, one dedicated for

memory transactions and another one for pure computation. During the memory phase, the data

required by a task is fetched from the shared main memory to a fast local memory (either a cache

or a scratchpad memory - SPM). During the computation phase, a task used the prefetched data

without the need to access the main memory. A memory scheduler is responsible for ensuring that

tasks do not overlap their memory phases. Several works [54–56] leverage the fact that the time

of memory fetches carried out together is less than the combined cost of individual cache misses.

The PREM’s loading phase takes the same advantage. However, as explained below, it also goes

one step further by allowing the cost of the load operations to be hidden.

Three-phasemodel. The original PREMmodel was later extended by the Acquisition Execution

Restitution (AER) [12] and three-phase [5, 48] models. Both models consist of a load phase, in

which code/data is loaded from main memory to the scratchpad (SPM), before a task starts, an

execution phase, and an unload phase in which code/data of the task is unloaded from the SPM

to main memory. A DMA component is responsible for the loading and unloading. The SPM is

divided in two halves, allowing one task to execute in one half, while DMA is active on the another

one, thus hiding the latency of loading and unloading phases. Due to its ability to avoid contention

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

at the memory level and the applicability to platforms that have SPM memories, we use the

three-phase model in this work.

Scheduling approaches in the three-phase model. Several works have implemented differ-

ent scheduling approaches within theAER or the three-phasemodels, ranging from round-robin [14]

or TDMA [17, 48, 53, 59] arbitration among processors, to static [1, 3, 12, 29, 40, 41] or priority-

based [30, 36, 60] schedule among tasks.

The SPM-centric scheduling policies considered in the previous works load the data for the next

task to be scheduled on a CPU either at the beginning of the current task’s CPU computation

phase [46, 53] or when an SPM partition becomes free [48, 49]. This can result in the blocking

from the low priority tasks. Our scheduling policy reduces the blocking from low priority tasks

by postponing the load decision until the current task enters the final part of its execution long

enough to overlap the loading phase that is going to be scheduled.

Recently, in [9], the authors addressed the problem of reducing the priority inversion introduced

in the multi-phased task scheduling policies. When a latency-sensitive task is released, an ongoing

lower priority task loading phase is aborted, and the processor prefetches the newly released

task data. This is orthogonal to our approach, where the low-priority task blocking is reduced by

postponing the scheduling decisions until the last time instant when the memory transaction can

be hidden with the remaining computation. The schedulability analysis in [9] is formulated as a

mixed-integer linear programming optimization problem.

In [41], the authors proposed an offline scheduling optimization technique to hide the com-

munication delay for parallel periodic real-time tasks in the three-phase model. The scheduling

technique selects the SPM contents offline to hide the cost of SPM loading/unloading. Our work

focuses on run-time scheduling instead. Similarly, [42] proposes a memory-centric scheduler for

PREM-compliant tasks that do not rely on any hardware support. The work used fixed-priority

scheduling and proposed a global memory preemption scheme to improve the system schedulabil-

ity. Although the proposed work has some similarities to ours (such as the use of a hypervisor),

our work targets the three-phase model and leverages a hardware with programmable logic.

An extension to the three-phase model to support streaming tasks that allows overlapping

the memory and computation phases of segments of the same task is presented in [45]. The

approach is implemented at the compiler level (using LLVM) together with an RTOS API to handle

load/unload requests.

3 SYSTEMMODEL AND ASSUMPTIONS
3.1 Criticality Domains
Our goal is to implement multiple criticality domains on a single multicore SoC. We consider a

system with up to C criticality domains, in which C is also the total number of cores in the SoC.

Thus, each core can have its own static criticality domain, isolated from each other, both in time

and space [8].

We consider three types of criticality domains: (i) a low-criticality domain running a general-

purpose operating system (OS) – e.g., Linux – responsible for handling I/O with complex devices,

processing large amounts of data, and using general-purpose libraries and applications. No strong

temporal guarantees can be expressed due to the best-effort nature of the software stack; a high-
criticality domain responsible for running hard real-time tasks with simple I/O devices; and (iii)

a mid-criticality domain responsible for running tasks with intermediate criticality. Within this

domain, and unlike the low-criticality domain, temporal guarantees for real-time tasks are still

provided; however, the degree of hardware resource isolation offered to the mid-criticality domain

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:5

is lower when compared to the high-criticality one. The number of cores allocated to high- and

mid-criticality domains is M (M ≤ C).

3.2 Processor and Programmable Logic
We consider an embedded MPSoC platform with two main subsystems, the processor subsys-

tem (PS) and the programmable logic (PL), and a communication engine, as detailed below.

Processor Subsystem (PS): The PS has a multicore embedded processor with C cores. Each

core has a private Level-1 (L1) cache, and all the cores share a Level-2 (L2) cache, which is also

the last level cache (LLC). We adopt a widespread model in modern multicore embedded systems,

although other memory hierarchy organizations are possible. Because our goal is to define strongly

isolated criticality domains, we assume that hardware support for virtualization exists in the PS.

Programmable Logic (PL): The PL is an on-chip block of Field Programmable Gate Ar-

ray (FPGA) cells that coexists with the embedded PS cores. We consider systems where high-

bandwidth, low-latency memory interfaces connect the PS to the PL and vice-versa. While we

assume that one or more PS-PL interfaces exist, it cannot be assumed that at least C interfaces

are available. The number and capacity, in terms of memory throughput, of the PL-PS interfaces

directly impact the performance and degree of temporal isolation that can be enforced among

criticality domains. The FPGA can also provide different memory blocks, such as scratchpad (SPM)

and PL-side DRAM. Examples of existing MPSoC platforms that fit into our system model are the

Intel Stratix 10 SoC FPGA, Intel Arria 10 SoC FPGA, Intel Cyclone SoC FPGA, Xilinx Ultrascale+

ZCU102, and Xilinx Zynq-7000.

Communication Engine: We assume that a Direct Memory Access (DMA) component is

available in either the PS or the PL, and it can act as the communication engine to transfer memory

from/to PL and PS memories. Differently from the previously implemented three-phase solution

in [48], which used TDMA arbitration with fixed slot sizes, we propose a TDMA mechanism

with finer granularity and per-core slots of different sizes. In this scheme, each real-time core j is
assigned a slot size σj , with T =

∑M
j=1

σj being the length of the TDMA round. We do not require

the slots to be sized based on the SPM dimension; instead, if a DMA phase cannot finish within

a slot, we break it down into multiple transfers and perform them over multiple TDMA rounds.

The price we pay is extra overhead: since it takes some time to re-program the DMA controller,

during each slot we can only perform DMA transfers for a maximum of σ̄j time. Hence, (σj − σ̄j)
represents the DMA overhead. Assume that two consecutive (un)load phases require k TDMA

slots. Then it is easy to see that the total transfer time Δ is upper bounded by:

Δ = k · T + σj ; (1)

the core receives one slot every T time, but its initial slot can be wasted if the first memory phase

arrives just after the beginning of the slot.

3.3 Application Model
We make no assumption on the behavior of applications operating in low-criticality domains. They

can perform complex I/O operations, and they can be arbitrarily memory intensive. Mid-/high-

criticality applications are structured as real-time tasks: a sequence of jobs whose activation is

time- (periodic) or event-triggered (sporadic). Mid-/high-criticality applications are also statically

assigned to cores, and locally scheduled using fixed-priority non-preemptive scheduling. Inter-task

communication is performed via message passing. Only input data —from other tasks or devices—

available by a given job’s activation instant are used by the job itself. Similarly, output data are

produced by a job only at its completion. We formalize the scheduling model in the next subsection.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

We assume that the memory footprint of mid-/high-criticality tasks is limited. On the one hand,

this allows to place code and data of real-time applications onto local memories of constrained size.

On the other hand, it allows to load and unload applications in and out of local memories —following

scheduling decisions— without incurring high overheads. Tasks follow the three-phase model, as

introduced in Section 2.

3.4 Scheduling Model
A system consists of a finite set of sporadic real-time tasks statically allocated to single processors.

Each task gives rise to a potentially infinite sequence of jobs released sporadically after some

minimum inter-arrival time Ti , and each job of τi must complete within a fixed time interval

from its release given by a relative deadline Di ≤ Ti (i.e., constrained deadlines). Each task τi
follows a three-phase model and is hence composed of three consecutive non-overlapping phases:

a load phase (L-phase), a computation phase (C-phase) and an unload phase (U-phase). The DMA

performs the load and the unload phases and the processor performs the computation phases.

The task’s code and data are first loaded into the scratchpad during its L-phase. Then, the task is

executed on the processor during its C-phase. Eventually, after the end of the task’s computation

phase, the task’s final results are unloaded from the scratchpad back to the main memory during

its U-phase. Both DMA and processor can handle only one task at a time. We denote by Ci the

worst-case execution time (WCET) of τi computation phase, by L the longest time needed by

any task to load its code, private and input data into the scratchpad using DMA, and by U the

longest time needed by any task to unload its computation results from the scratchpad to the

main memory using DMA. We assume that load and unload phase execution times already include

the DMA access delays related to the shared memory bus arbitration (e.g., see Equation (1) for

TDMA-arbitrated access). All of the aforementioned parameters are positive integers. We assume

that a scratchpad is large enough to accommodate the code and data of any two tasks at a time.

Since the DMA operations do not involve the processor, a task load or unload phase can overlap

with another task’s computation phase. The task τi worst-case response time Ri (WCRT) is the
longest response time from task release to completion of its unload phase for any of its jobs. A

task set is said to be schedulable if all jobs of all tasks always complete unload phases before their

respective deadlines, i.e., Ri ≤ Di .

Tasks are individually scheduled on each processor (i.e., partitioned scheduling) by a fixed-

priority non-preemptive scheduler. Task priorities are unique. We introduce notation hp(i) and lp(i)
for the set of tasks with priorities, respectively, higher than, and lower than the priority of task τi
assigned to the same processor as τi . Furthermore, we introduce notation hep(i) = hp(i) ∪ {τi} for
the set of tasks with priorities higher than or equal to the priority of task τi that are assigned to

the same processor as τi .
The scheduler selects the jobs for the execution on CPU and DMA. While the CPU executes a

computation phase of the task with its code and data stored in one scratchpad partition, the DMA

engine can reload another partition (i.e., unload the results of the completed task and load the code

and input data for the next task). The scheduling decisions are made as late as possible: L time

units before the end of the current task computation phase, the DMA is programmed to load the

task with the highest priority (Lazy Load). The unload operations are programmed immediately

after the end of the task computation phase. If there is no active task on the CPU, the scheduler

is invoked at the first task release. If the task execution time is shorter than the time needed to

reload the scratchpad partition, we inflate the task execution time to the end of the scratchpad

reload and consider as still running. Section 5.7 describes our Lazy Load policy in more detail.

Compared to [48, 53], where the scheduling decisions are made earlier (i.e., the next task load

phase starts when the current task computation phase starts, Eager Load), our approach reduces

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:7

the low-priority task blocking and, as shown by our experiments in Section 6.3, improves the

system schedulability. On the downside, our scheduling algorithm requires the knowledge of the

worst-case execution times of the particular tasks and might result in the increase of the average

response times (e.g., if a computation phase executes for L time units less than its worst-case

execution time, the next load phase cannot overlap with the computation phase).

Figure 1 shows two schedules for the same sequence of tasks’ releases: one for our Lazy Load,
shown in the lower part, and one for the standard Eager Load, shown in the upper part. It should be

noted that in this example, we assume that the tasks execute with their worst-case execution times

and can have different load and unload phases lengths. The DMA and CPU activities are shown in

the respective axes, separately for Eager and Lazy Load, and the scheduling events (e.g., task release,
task completion, task load, etc.) are shown in the Sched-axis. Three real-time tasks, high-priority τ1,

mid-priority τ2, and low-priority τ3, are released, respectively, at time instants, t3, t1, and t0.

CPU

DMA

SCHED

DMA

CPU

t0

τ3

τ3

t1

τ2

t2 t3

τ1

t5t4

τ2 τ1

t8

E
a
g
e
r
L
o
a
d

L
a
z
y
L
o
a
d

load phase

partition 1

computation phase

partition 1

unload phase

partition 1

load phase

partition 2

computation phase

partition 2

unload phase

partition 2

τ3 τ1

t6 t7

τ2

Fig. 1. Scheduling algorithm for three-phase task model under Eager and Lazy Load approaches.

Upon the first task release at t0, the system is idle, and both scratchpad partitions are empty,

and the scheduler immediately starts loading τ1’s data into the scratchpad. The loading completes

at t2, and the task τ3 computation phase starts. In the Eager Load, since the job of task τ2 released

at time instant t1 is already pending, the DMA starts loading τ2’s data into the second scratchpad

partition. In contrast, under the Lazy Load approach, the DMA scheduling decision is postponed

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

until the time t4: as the high-priority task τ1 was released at t3, its data will be loaded into the

scratchpad instead of mid-priority task τ2, and the job of τ1 will start at t5. Under Eager Load,
the τ1’s jobs must wait for the τ2 completion and starts at the time t8. A high-priority job of τ1

suffers from priority-inversion blocking caused by two jobs (τ2 and τ3). The Lazy Load reduces the

priority-inversion blocking to one lower-priority job (τ3) and results in a shorter response time of

the high-priority job of τ1. In the next section, we characterize the worst-case blocking for Lazy
Load and derive a proper response time analysis.

4 SCHEDULABILITY ANALYSIS
We now introduce the response time analysis for the three-phase task model under the Lazy Load
scheduling policy described in Section 3.4. Since we employ partitioned scheduling for real-time

tasks, we focus only on the core executing task under analysis τi . We do not consider single-task

sets as the task worst-case response time is straightforward to obtain in this case: R1 = L + C1 + U.
The scheduling problem of the Lazy Load policy is similar to non-preemptive fixed-priority

scheduling on a single processor. The difference is that the scheduling decisions are made L time

units before the end of current task execution, while in the classic non-preemptive fixed-priority

scheduling, these decisions are made at task completion. We first derive the bounds on the three-

phase task processing and blocking times. Using these bounds, we characterize the busy-period in

the context of the three-phase model and derive the upper bounds on task response times.

Processing Time: A computation phase can run in parallel with at most one unload and one

load phase. The maximal time that can elapse between the start of task τj computation phase and

the start of the next task computation phase is given by:

Ĉj = max(Cj , L + U), (2)

where L + U is the maximal time it takes to reload the scratchpad partition content (for the TDMA

specific delays, please refer to Equation (1) or [49]).

Blocking: The non-preemptive scheduling policy might introduce blocking due to priority
inversion. A job must wait for the last L time units of the current job execution to start its loading

phase. If the job is released right after the start of the lower priority job loading phase, then the

blocking is maximal, and any hep(i) task computation phase start is delayed by no more than:

L + Bi , (3)

where Bi = max{Ĉj |τj ∈ lp(i)} is the longest scheduling interval with a computation phase of the

task having a priority lower than τi . If τi has the lowest priority, then we consider Bi = L + U as

the processor can be idle for at most one load and one unload. Consider a task that arrives too late

to be loaded (i.e., within the L-window before the current task completion), and the memory time

for loading is totally wasted. The next DMA operation is an unload, and only then can the ready

task start its load phase. During that time, the processor remains idle.

Critical Instant: With the above-obtained bounds on task execution (Equation (2)) and task

blocking (Equation (3)), we can now reduce the schedulability problem of the three-phase model

to the non-preemptive fixed-priority scheduling. A critical instant for a task is a task arrival instant
at which that task has the longest response time [26]. For our transformed model, task τi ’s critical
instant is the synchronous release of all hp(i) tasks when the longest low-priority blocking Bi

has just started. The reasoning is the same as in [26]. Advancing the hp(i) job release would not

increase its interference on τi . Releasing the hp(i) job before the task τi’s critical instant could
increase the interference on τi only if the hp(i) task could be blocked or suspended. However,

the task cannot suspend and all the tasks that might increase τi’s response time are taken into

account. These tasks are lp(i) tasks—and the blocking that they can introduce—is captured by Bi ,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:9

the other hp(i) tasks, and the task τi itself (the analysis, if necessary, covers more than one job of

τi as further explained below).

Busy Window: A level-i busy window is a contiguous time interval within which jobs of

priority τi or higher are processed [25]. Bril et al. [6] and Davis et al. [11] showed that under

non-preemptive fixed-priority scheduling, all task instances within the task’s busy window should

be verified. The self-pushing might cause a second or later task instance to have a longer response

time than the first task instance. Task τi during its non-preemptive execution might block the

higher priority tasks more than the lower priority tasks at the critical instant. Hence, at the next τi
release, more high-priority task interference can be accumulated (i.e., knock-on effect).
As the scheduling decisions are made earlier than the current task completion, the priority

inversion can occur more than once within the task busy window. Consider, for instance, that L
time units before task τi completion there are only lp(i) jobs pending. A hp(i) job can arrive later

while τi is still running on the CPU, but the DMA has already been programmed for an lp(i) job,
leading to a priority inversion. However, if there are no hp(i) jobs pending L time units before

the τi completion, then the jobs released later cannot be blocked more than at the τi’s critical
instant (see Formula (3)). Therefore, we can consider the i-level busy window until no more than L
computation units are pending. The length of the i-level busy window Wi can be upper bounded

by the minimum positive integer satisfying the following recurrent relation:

Wi = L + Bi +
∑

j∈hep(i)

nj(Wi − L) · Ĉj , (4)

where

nj(t) =
⌈
t
Tj

⌉
. (5)

is the maximal number that task τj jobs that can be released in any interval of length t > 0 and

the convergence condition for the iteration for Equation (4) is:∑
j∈hep(i)

Ĉj

Tj
< 1 (6)

If the above condition is satisfied (i.e., the processor is not infinitely busy with the hep(i) jobs),
we can solve Equation (4) using iteration starting with Wi = Ĉi . To find the task τi worst-case
response time, we must check its ⌈Wi/Ti⌉ first instances within the longest i-level busy window.

Worst-Case Response Time: We compute the task τi k-th instance worst-case response time

upper bound Ri,k . Figure 2 illustrates the notation used in the further analysis (task τi k-th instance

load phase start li,k , computation start si,k , unload start ui,k , and finish time fi,k).

Let li,k and si,k be respectively the task τi k-th instance loading and computation phase start.

The computation phase starts L time units after the load phase starts:

si,k = li,k + L (7)

All hp(i) tasks released before li,k must be loaded and executed before si,k :

si,k = L + Bi +
∑

j∈hp(i)

nj(li,k) · Ĉj + (k − 1) · Ĉi

= L + Bi +
∑

j∈hp(i)

nj(si,k − L) · Ĉj + (k − 1) · Ĉi (8)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

CPU

DMA

li,k

si,k ui,k

fi,k

τi

Fig. 2. Task τi response-time analysis for three-phase tasks scheduling policy under Lazy Load.

The solution of the above equation can be found through iterations with the initial value of

si,k = L + Bi + (k − 1) · Ĉi . The k-th instance of task τi starts its unload phase at or before:

ui,k = si,k + Ĉi (9)

which completes at or before:

fi,k = ui,k + U (10)

The worst-case response time of the k-th instance of task τi is upper-bounded by:

Ri,k = fi,k − (k − 1) · Ti (11)

Finally, the task τi worst-case response time upper bound is given by:

Ri = max

k∈ ⌈Wi/Ti ⌉
Ri,k (12)

5 DESIGN AND IMPLEMENTATION OVERVIEW
5.1 Design Overview
Figure 3 represents the ideal software stack and assignment of resources to domains. The main idea

is to provide spatial and temporal isolation to higher-criticality domains. Thus, a lower-criticality

domain cannot interfere with a higher-criticality one. The opposite, however, although undesirable,

may happen.

A thin static partitioning hypervisor provides isolation to each domain in self-contained address

spaces. The partitioning hypervisor has a number of roles, including (1) providing spatial isolation

for RTOSes that do not support virtual memory; (2) partitioning cores to criticality domains; (3)

enforcing LLC partitioning via page coloring
1
[15]; (4) performing tasks’ relocation to/from DRAM

into local memories; and (5) providing message-passing channels for inter-domain communication.

To prevent the memory waste caused by cache coloring, we leverage the Programmable Logic

(PL) and propose a bus translator to prevent coloring-induced memory waste and, to avoid the

contention for the sharedmainmemory, we define new hardware components in PL. Programmable

Logic (PL). We use dual-ported memories that are only accessible by a single criticality domain and

dedicated a PL-PS interface to criticality domains. On each PL-PS interface, we instantiate two

memory controllers inside the PL (one handling the accesses from application cores and another

one handling the accesses from the DMA).

Finally, to support task relocation when data and code are loaded/unloaded to/from DRAM/SPM,

we propose to compile tasks against absolute intermediate physical addresses (IPA). Then, after

1
In this work we use the terms cache coloring and page coloring interchangeably.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:11

Fig. 3. Ideal software and hardware stack organization.

the communication engine has located a new task at a potentially new physical location in local

memory, a hypervisor routine is invoked to map the new physical addresses (PAs) to the set of IPAs

against which tasks have been compiled. In the next subsections, we present the implementation

details of our design decisions.

5.2 Architectural Overview of the Chosen Platform
For our implementation, we have used the Xilinx UltraScale+ ZCU102 MPSoC [57]. On this

platform, the PS comprises two ARM Cortex-R5 cores, each having its own tightly coupled memory

of 128 KB. There are also four application (ARM Cortex-A53) cores, each having its own local

instruction and data cache (32 KB each). The Last Level Cache (LLC) of 1 MB is shared by all

application cores. There is no dedicated SPM provided for the application cores. The PS includes a

DDR4-2666 (main memory) controller with a data bus width of 64-bit connected to a 4GB DDR4

memory module. The PL includes a separate, 16-bit synthesized memory controller wired to a

512 MB DDR4 memory module.

Multiple interfaces between the PL and the PS exist. There are three interfaces going from

the PS
2
to the PL. Out of the three, two are high-performance master interfaces (HPM0 and

HPM1), whereas the third interface is the low-performance domain (LPD) interface. There are

also interfaces from the PL to the PS, specifically the high-performance coherent (HPC) and

high-performance (HP – non-coherent). Finally, there are 3 MB of block RAM (BRAM) inside the

PL. For the rest of the paper, we will use BRAM and SPM interchangeably.

5.3 Implementation Overview
Based on the design space exploration carried out in [17], our final hardware design is depicted in

Figure 4. We assign one of the A53 cores to be a low-criticality core, two of them to be mid-criticality

cores, and one of them to be a high-criticality core. The mid- and high-criticality cores run their

own Real-Time Operating Systems (RTOS). A few noticeable features of our proposed design are:

(i) the low-criticality domain is assigned direct access to PS DRAM, because this domain features

applications with sizable footprints; (ii) each mid- and high-criticality domain is assigned a private

2
Here the direction of the interface indicates which side of the system can initiate transactions towards the other side. On

an interface from PS to PL, the PS is the master of the interface, while the PL is the slave.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

SPM; (iii) each of these SPMs is dual-ported, and a controller is instantiated on each port to prevent

contention between DMA and core at the SPM controller; and (iv) the high-criticality domain also

occupies a dedicated PS-PL interface to access its private SPM. In our platform, the maximum size

of all SPMs is 3 MB. Thus, we set the size of the SPM used by the high-criticality domain to 2 MB,

while the size of the other two SPMs used by mid-criticality domains was set to 512 KB each.

Fig. 4. Proposed system design and usage of PS-PL interfaces. Note the placement of the hardware translator

blocks (PL-side, in yellow) between the SmartConnects and SPM controllers.

We propose creating separate SPM in the PL for all the mid- and high-criticality cores. Thus, a

dedicated or fast interface such that each core can access its own SPM without seeing a delay from

another core is required. Unfortunately, there are only two high-performance (HPM) interfaces

between PL and PS available in the platform and three A53 cores. Therefore, in our design, we

assign one shared high-performance interface to two A53 cores while the third core has a dedicated

interface to its own SPM memory (see Figure 4). A low-performance domain (LPD) interface is

assigned to the DMA engine to transfer data to/from SPM/DRAM. The HPM and LPD interfaces

are connected to the dual-ported SPMs to allow the execution of a currently running task and the

loading/unloading performed by the DMA. The scheduling of the loading and unloading DMA

operations is handled by the R5 core in the I/O domain.

In order to avoid the contention between A53 cores in different criticality domains, we partition

the LLC via coloring. The use of coloring generally results in portions of physical memory being

unusable to applications. This is generally acceptable for main memory because its size is not

constrained (few GBs). Conversely, SPMs in the PL are usually limited in size (few KBs or MBs).

For instance, if coloring is used to define four equally sized LLC partitions, this would reduce the

size of each SPM to 1/4. To avoid this side effect of coloring, we introduce an address translator

between the A53 and the SPM. Since the cache is physically indexed, coloring both the PS DRAM

and SPM is required to avoid interference (otherwise, there would be a cache interference at every

SPM access).

In the following subsections, we provide a brief discussion on each of the main components that

form our architecture. For a complete overview, please refer to [17].

5.4 Jailhouse and Page Coloring
We use Jailhouse as a hypervisor because it provides static partitioning of hardware resources and

low-overhead, which is ideal for hard real-time systems [35]. Jailhouse runs as a Linux driver, thus

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:13

requiring at least one core to be assigned to Linux —the root cell. Once the driver is loaded, it takes

control of the entire hardware and reassigns a partitioned view of the hardware resources back to

Linux, based on a configuration file. We assign non-critical tasks to the Linux cell, while critical

tasks run on isolated partitions (cells) on top of an RTOS. The RTOS used for mid-/high-criticality

domains is Erika Enterprise version 3, which is open-source and OSEK/VDX certified [13]. Erika

supports fixed-priority scheduling and has a porting for the Xilinx Ultrascale+ platform.

To enforce strong inter-domain (inter-cell) and hence inter-core performance isolation, we

leverage page coloring [15]. We use the virtualization extensions of the processor to implement

coloring by enforcing appropriate restrictions on the color of pages that Jailhouse maps to in-

termediate physical addresses (IPAs) of virtualized cells. Specifically, we impose that physical

pages with non-overlapping colors are assigned to cells activated on different cores. The advan-

tage of this approach is twofold: (i) it allows us to localize the changes required to implement

coloring-based partitioning in a single software component (Jailhouse); and (ii) it allows deploying

unmodified and possibly closed-source OS inside our criticality domains. A similar technique was

used in [22, 24, 31]. A publicly available version of Jailhouse that implements cache coloring is the

Jailhouse-RT project [43, 44].

5.5 Address Translator to Overcome Limitations of Cache Coloring
To overcome the problem of memory waste imposed by coloring, we designed an address translation

hardware IP. The component performs physical address translation for memory transactions

originating from the PS towards the PL. To better understand how the component operates, let us

consider our specific setup.

To access an SPM with a size of 2 MB, 21 bits of the address are provided for requests originated

from the PS. With cache coloring enabled (and four colors, one for each core), only one in four

memory pages can be used, with addresses aligned at 16 KB boundaries (each page has a size

of 4 KB). The adopted solution is the following. Instead of receiving 21 bits of an address, the

translator IP receives 23 bits (8 MB) from the PS, removes the specific color bits from that, and

passes it to the SPM controller.

Given the geometry of the LLC (1 MB, 16 ways), the color bits that can be used to perform

partitioning are bits 12 to 15 of each physical address. To create four partitions, one could use

bits 12 and 13. Pages with bits [12, 13] = 0b0 would be assigned to partition 1; pages with bits [12,

13] = 0b1 to partition 2; and so on. In this way, four sequential physical pages will be assigned to

four different partitions. This is not ideal, however, because the L1-Data cache in this platform is

Physically Indexed, Physically Tagged (PIPT), and fits two pages per way. If a CPU is only given

access to one every four pages, only half of the L1-D cache will be utilized. To avoid this problem,

we use bits 14 and 15 as the LLC color bits. In this configuration, each partition is given four

consecutive pages.

Let us assume that the address of the translator in Figure 4 responds under the address range

0xA0000000 to 0xA07FFFFFF (8 MB). Following the discussion above, bits 14 and 15 are used as

LLC coloring bits. Figure 5 shows an example where a request address of 0xA0023456 (offset

0x023456) from a core arrives to the translator IP. Bits 14 and 15 of the offset are dropped by the

translator, and the resulting offset is 0x0B456 in a 2 MB non-colored space.

This PL-aided address translation is a special case of the cache bleaching technique presented

in [39]. Apart from address manipulation, memory transaction scheduling [19] and on-the-fly

data reorganization [38] are other possible PL-aided management strategies for scratchpad data.

Moreover, additional performance improvements when accessing in-PL scratchpad data can be

unlocked by leveraging coherence backstabbing and the CAESAR approach described in [37]. The

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

use of the aforementioned more advanced techniques, however, is currently out of the scope of

this paper.

0xA0023456

0 2 3 4 5 6

00110010

1011

0 B 4 5 6

Offset (0x)

0xA00B456

Translator IP

Fig. 5. Translator IP operation. The two most significant bits from the fourth byte (in red) of the input address

are dropped.

In our design (Figure 4), there are three translators to handle the requests coming from each

core. With this mapping mechanism, the SPM capacity is not affected by the cache coloring (we

do not lose space), and since the translator IP is burst-capable, we do not lose bandwidth nor

increase latency in accessing the SPMs. Besides that, the area overhead of the module in terms of

the numbers of Flip-Flops (FF) and Lookup tables (LUTs) compared with the design without any

translation IP are 0.57% and 0.41%, respectively, while the block RAM cell count remains the same.

5.6 Code/Data Relocation
We use code/data relocation to support the loading and unloading of Erika tasks’ code and data.

Relocation is initiated by the Erika RTOS when its scheduler decides to load or unload a task as

required. Recall, however, that applications in Erika are statically compiled against a set of virtual

addresses (or intermediate physical addresses, since Erika does not support virtual memory). As

such, relocation is performed by modifying the mapping from intermediate physical addresses to

physical addresses (IPA→PA) managed by Jailhouse [24].

Erika first informs Jailhouse that a relocation must be performed. This is done via a hypercall

(i.e., hvc assembly instruction), which was added to Erika. In Jailhouse, two new hypercalls were

added to handle either load or unload operations. The source/destination address, the offset in

pages from the beginning of the SPM where the task needs to be loaded to/unloaded from, and

the size of the task that needs to be loaded/unloaded are passed as parameters to the hypercalls.

Once Jailhouse receives a request to relocate a task’s code/data, it performs the following steps.

First, it determines the absolute source (resp., destination) in DRAM and destination (resp., source)

in SPM for a load (resp., unload) operation. Next, it modifies the IPA→PA mapping so that the

range of intermediate physical addresses starting at the provided source address (resp., destination)

and spanning for the number of pages specified by the size parameter, map to the destination

address. After the remapping is completed, Jailhouse returns control to Erika. The effective copy of

the task into/from SPM is performed by the DMA engine.

5.7 Lazy Load Scheduler Support
The most straightforward implementation of the proposed Lazy Load policy is to rely on a time-

triggered approach: when a task starts its computation phase, the next load phase is programmed L
time units before the task’s worst-case finishing time but not earlier than after U time units (i.e., in
the case that the task worst-case execution time is shorter than L + U). The unloading phase of

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:15

the completed job is programmed at the current job’s computation phase start. If the system is

idle and there are no pending jobs, the new task load phase starts immediately.

The time-triggered approach can result in the processor under-utilization when the tasks execute

faster than their worst-case execution times (i.e., the actual execution time can be less than the

worst-case execution time). To avoid unnecessary processor stall, the next load operation can be

triggered immediately if the current computation phase finishes earlier. Note that if there is a

way to estimate an early completion of the task at run-time, then loading no earlier than L time

before the end of the task is safe. In what follows, we detail the scheduler implementation using

this approach. Figure 6 depicts the scheduler and the various states that a task can lie in during

execution.

The scheduler maintains three queues: load queue, ready queue, and unload queue. The tasks in
the load and unload queues are waiting for the DMA, respectively, to load and unload their code

and data into/from a scratchpad partition, while the tasks in the ready queue are waiting for the
CPU to start the computation. The load queue capacity should be sufficient to hold all tasks while

the ready and unload queues should only hold a single task. A task can be in the waiting state

in each queue, as well as in the load (i.e., DMA is loading task code and data), run (i.e., CPU is

executing task computation phase), and unload state (i.e., DMA is unloading the task data). Since

we assume a single DMA engine and a partitioned system where tasks are assigned to a single

processor, there can only be one task in the run state and one task in either the unload or load
state at any given time. Efficient implementation requires an alarm timer that triggers the load of

the next task L time units before the latest finish time of the running task.

activation

load queue

load

ready queue

run

unload queue

unload termination

SL
CL

SR

CR

SU

3

2

1

12

11

10

9

8

7

6

5

4

alarm

set

c
h
e
c
k

s
ta
rt
lo
a
d

Fig. 6. Task states and transitions in Lazy Load CPU-DMA scheduler for three-phase task model.

Whenever the processor becomes idle, and there is a ready task in the ready queue, the ready

task computation phase is dispatched for the execution (SR). The computation start triggers an

unload of the previously completed task (SU). We denote the task in the run state by τrun. When τrun
starts execution, and the scratchpad is full, the timer alarm is set to tload = max{frun − L, srun + U}
where srun is the start of the τrun’s computation phase and frun = srun + Crun is the τrun’s worst-case
finish time. If only one scratchpad partition is occupied (i.e., there is no need to unload another

scratchpad partition), the timer is set to tload = max{frun−L, srun}. A timer expiration signal triggers

a load of a task with the highest priority among all tasks in the load queue, if any (SL). If τrun

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

completes after tload , then the DMA starts the τrun’s unload immediately if the DMA is idle or after

the end of the ongoing load operation. If τrun completes before tload , the timer is disarmed, and a

load of the highest priority task from the load queue is triggered (SL). Task τrun is placed into the

unload queue (CR) and, as soon as the DMA becomes available, its unload starts (SU).

Implementation Overhead. As demonstrated in Figure 6, the implementation overhead is

composed of the activities to manage the queues (load, unload, and ready queues), plus the

overhead of programming a timer and its interrupt service routine (ISR). We have measured

such overheads (obtained worst-case time from 1000 repetitions): the measured worst-case timer

programming overhead is 3.89 µs, the worst-case ISR overhead is 989 ns, and the time to dispatch

the queue requests is 717 ns. Thus, the total worst-case implementation overhead is 5.59 µs.

6 EVALUATION
In this section, we present the evaluation of our system design and the proposed schedulability

test. We start showing an evaluation of the DMA performance, including the time to transfer

different data sizes from PS DRAM to the SPM and its programming overhead. We then present

the schedulability analysis evaluation through randomly generate synthetic task sets.

6.1 DMA Evaluation
The DMA engine in our architecture implements a fine granularity TDMA-based scheduling to

move data between the PS DRAM and SPM memory located in the PL. The DMA scheduling runs

on an ARM Cortex-R5 core as a bare-metal firmware (generated using the armr5-none-eabi-gcc
compiler with -DARMR5 -W -Wall -O0 -g3 flags). To avoid contention between DMA transfers

and application cores, the DMA uses the dedicated low-power domain (LPD) interface.

We measured the DMA transfer time for different data sizes, extracting the average transfer time,

standard deviation (STD), and the worst-case transfer time among 1000 samples. Table 1 shows

the obtained results. Recall that 1 MB represents half the size of the largest SPM in our design.

The obtained standard deviation varies from 0.057 to 0.1. The bandwidth increases proportionally

to the amount of contiguous memory transferred.

Table 1. DMA transfer time (in µs) and bandwidth for different data sizes.

Transfer Size Transfer Time Bandwidth (MB/s)Average (µs) STD Worst-case (µs)
2 KB 4.92 0.057 5.11 397.0

4 KB 7.15 0.04 7.27 546.3

8 KB 11.63 0.01 12.01 671.8

9.1 KB 12.91 0.05 13.11 688.4

16 KB 20.62 0.08 20.96 757.8

22 KB 27.42 0.10 27.72 783.5

32 KB 38.52 0.05 38.81 811.3

1 MB 1149.44 0.05 1149.78 870.0

We denote the time to program and start a DMA transfer as the DMA programming overhead.

Considering all the experiments, the worst-case DMA programming overhead we obtained was

3.89 µs. For small data sizes (2 and 4 KB, for instance), the relation between the programming

overhead and the transfer time is significant. In this case, it may be beneficial to avoid small data

transfer whenever possible or use the own task’s core instead of the DMA. We would like to point

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:17

out that the model behaves well as long as task execution times are longer than the time required

to reload an SPM partition. As an example, if we consider a partition of 256 KB (half the size of a

512 KB scratchpad) and a TDMA slot with a transfer size of 32 KB for each core, then based on

Equation (1), we obtain σj = 38.81 + 3.89 = 42.7 µs, T = 3 · 42.7 = 128.1 µs, and k = 2 · 256/32 = 16

as the number of slots required to unload/load the partition. This results in a memory reload

timeΔ = 2092.3 µs, meaning that tasks should execute for at least 2.1 ms to hide the memory time.

6.2 Case Study: Image Processing
To evaluate our system design, we consider a systemwhere video frames captured from a camera are

processed in a high-criticality domain. Video frames are processed using the disparity benchmark

from the SD-VBS suite [51]. Disparity computes depth information for objects represented in

two input images, obtaining relative positions of objects in the scene. This kind of algorithm is

useful in applications such as cruise control, pedestrian tracking, and collision control [51]. The

objective of this evaluation is to demonstrate how the proposed system behaves in a realistic setup

and to show its limits in terms of achievable hard real-time guarantees.

To this end, the disparity benchmark is executed as a periodic task. During each activation, it

computes the disparity of two input images. At every new period, disparity reuses one image

from the previous iteration and uses a new image transferred by the communication engine. We

performed two experiments with two different image resolutions, i.e., 64x48 and 128x96 (SQCIF).

We only used these image resolutions due to limitations in the size of the SPM. Also, disparity
requires input images in the bitmap image file (BMP) format, which is uncompressed. Thus, for a

resolution of 64x48, an image has a size of around 9.1 KB, while for 128x96 an image has a size of

22 KB. We use a set of 20 images of a scene from the KITTI vision benchmark suite dataset [47] (the

2015 stereo multiview dataset). The original images had a resolution of 1241x376. We converted the

frames to the lower resolutions described above. We move the I/O data of the tasks from/to DRAM

to/from the SPM at the load/unload phase of the task using the same approach as described in [49].

Table 1 shows the DMA transfer time for both image resolutions (9.1 KB and 22 KB). Erika RTOS

consumes 294 KB of memory (including data and code) and it is fixed on the SPM (we do not

load nor unload code/data of the RTOS). Disparity using image resolution of 64x48 consumes

349 KB, while for 128x96 it consumes 745 KB, also including data and code. Although not required

in this case study, note that when input data is too large to fit into the SPM, it is possible to use

compiler-level techniques to break the load/unload phases into small chunks [46].

We considered four scenarios as described in [17]: Lcy-Solo, Lcy-Stress, Our-Solo, and Our-

Stress. We run disparity alone in the system from the PS DRAM on top of Linux (Lcy-Solo), next

disparity runs from the PS DRAM with three bandwidth (BW) benchmark instances [18] also

executing and accessing the PS DRAM (Lcy-Stress). The disparity benchmark is then executed

from SPM on top of Erika/Jailhouse with coloring and using our hardware design without (Our-

Solo) or with (Our-Stress) interference from the rest of the system. Ideally, when disparity
runs with contention from the SPM (Our-Stress), it should exhibit comparable performance with

respect to the case when disparity runs without interference from the SPM (Our-Solo). The case

when disparity runs solo from PS DRAM (Lcy-Solo) serves as a baseline, while the case when it

runs from PS DRAM under contention (Lcy-Stress) provides an idea of what we gain in terms of

isolation and performance thanks to the proposed set of software/hardware techniques. Periodic

execution of the disparity task was achieved under Linux by using a CLOCK_REALTIME timer

to invoke a handler at the desired frequency. The handler then releases the disparity thread

using a semaphore. The disparity benchmark, Erika OS, and the BW benchmark instances were

compiled using gcc version 5.4 for the ARM64 architecture with the -O2 flag.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

First, we present the execution time of disparity in each of the four cases using an image

resolution of 64x48 in Table 2 and a resolution of 128x96 in Table 3. We measured the execution time

of 1000 individual processing jobs and extracted the average execution time, standard deviation

(STD), BCET, WCET, and variability window. The variability window is calculated as (WCETstress −
BCETsolo)/WCETstress . Time measurements were taken using the processor cycle counter and

converted to ms. Note that when working at 64x48 resolution, the two input images (9 KB each) fit

into the L1 cache (32 KB). Thus, the observed worst-case when disparity is running alone is similar

for both memories (PS DRAM and SPM). However, when contention is introduced, the benchmark

suffers visible interference in the Lcy-Stress setup. Note that there is still some contention when

disparity uses the dedicated HPM interface and cache coloring in the Our-Stress setup. This

may be due to contention over Miss Status Holding Registers (MSHRs) in the last level cache [50].

Table 2. Average, standard deviation, BCET, and WCET obtained from 1000 executions for the considered

four cases with input image size of 64x48. All values in ms. Highlighted values in bold are used to

calculate the variability window.

Lcy-Solo Lcy-Stress Our-Solo Our-Stress

Average 15.89 17.86 15.94 16.49

STD 0.01 0.07 0.01 0.06

BCET 15.88 17.69 15.92 16.34

WCET 16.00 18.18 15.96 16.73
Var. Window 12.6% 4.8%

Table 3. Average, standard deviation, BCET, and WCET obtained from 1000 executions for the considered

four cases with input image size of 128x96. All values in ms. Highlighted values in bold are used to

calculate the variability window.

Lcy-Solo Lcy-Stress Our-Solo Our-Stress

Average 61.50 75.09 66.04 69.80

STD 0.02 0.34 0.07 0.26

BCET 61.45 74.32 65.79 69.04

WCET 61.80 77.09 66.30 70.59
Var. Window 20.2% 6.8%

Based on the observed WCET in the various experiments, we vary the image processing task

period and study when disparity starts missing deadlines in each case. Table 4 presents the

obtained results for image size of 64x48. We vary the frequency from 55 Hz (18.18 ms period)

to 63 Hz (15.87 ms period). A tick mark in the table indicates that the desired image processing

rate was sustainable. In other words, that no instance of disparity missed its relative deadline

(equal to the period). In contrast, a cross mark indicates that the desired rate was not sustainable.

From the results in Table 4, we can see that by running disparity without any interference, the

maximum sustainable rate is 62 Hz. However, when running under contention and with no isolation

enforcement (Lcy-Stress case), the sustainable image processing rate drops to 55 Hz. Conversely,

a rate of 59 Hz is sustainable if disparity executes from within a high-criticality domain defined

using the proposed software/hardware techniques. Note that in this setup, each image processing

job has to wait for an image to be transferred in input by the DMA before it can start execution.

Because DMA accesses to DRAM can experience contention, a decrease in sustainable rate is

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:19

visible between the Lcy-Solo and the Lcy-Stress cases. Nonetheless, this experiment shows that

our design provides better predictability and enables higher processing rates when the system is

under heavy load.

Table 4. Supported frequencies for image size of 64x48.

Freq. (Hz) Period (ms) Lcy-Solo Lcy-Stress Our-Solo Our-Stress

55 18.18 ✓ ✓ ✓ ✓

56 17.86 ✓ ✗ ✓ ✓

57 17.54 ✓ ✗ ✓ ✓

58 17.24 ✓ ✗ ✓ ✓

59 16.95 ✓ ✗ ✓ ✓

60 16.67 ✓ ✗ ✓ ✗

62 16.13 ✓ ✗ ✓ ✗

63 15.87 ✗ ✗ ✗ ✗

Table 5 shows results for input images with resolution 128x96 when running the disparity
benchmark. The average execution time for disparity with image resolution of 128x96 when

running solo from PS DRAM is 61.5 ms — see Table 3, Lcy-Solo case. Thus, we vary the frequency

from 10 Hz until 17 Hz and observe that the image processing task starts missing deadlines when

activated at 17 Hz. With 128x96 input images, the disparity benchmark under contention can

sustain a rate of 14 Hz in spite of heavy system load when isolated in a high-criticality container

(Our-Stress case). Conversely, the sustainable rate decreases to 12 Hz when no isolation is enforced.

In the Our-Solo case, disparity can run at a maximum frequency of 15 Hz, which is slightly

lower than what can be achieved in the Lcy-Solo case (16 Hz). The drop arises from the fact that

the SPM memory in PL is a bit slower than the PS DRAM [57]. We did not see the same behavior

for an image resolution of 64x48 due to the cache. Importantly, however, the sustainable rate

in the Our-Solo case is very close to the Our-Stress case. Thus, it can be concluded that our

software/hardware co-design is able to deliver performance to highly critical applications that are

close to the best-case. It is also important to highlight the low performance achieved by disparity

for higher resolution images. We plan to investigate how to achieve better processing rates for

image applications on top of the platform in future work.

Table 5. Supported frequencies for image size of 128x96.

Freq. (Hz) Period (ms) Lcy-Solo Lcy-Stress Our-Solo Our-Stress

10 100.00 ✓ ✓ ✓ ✓

11 90.91 ✓ ✓ ✓ ✓

12 83.33 ✓ ✓ ✓ ✓

13 76.92 ✓ ✗ ✓ ✓

14 71.43 ✓ ✗ ✓ ✓

15 66.67 ✓ ✗ ✓ ✗

16 62.50 ✓ ✗ ✗ ✗

17 58.82 ✗ ✗ ✗ ✗

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

6.3 Schedulability Analysis Evaluation
In this subsection, we present an empirical evaluation using synthetic task sets of the Lazy Load
and standard Eager Load three-phase task scheduling policies as well as tasks executing on the

system without SPM that suffer main memory congestion or run with no memory interference.

The task set utilization U is varied from 0.05 to 1.00 in steps of 0.05. For each utilization value

examined, 100000 task sets were generated. The default cardinality of the task set is n = 8. We used

the UUniFast algorithm [4] to generate a set of n task utilization values U1,U2, … ,Un, with total

utilization of

∑n
i=1

Ui = U. For each task τi , its period Ti was drawn from a log-uniform distribution

in the range of [100, 1000] ms and its worst-case execution time Ci was calculated as Ui · Ti . The
task load phase and unload phase transfer times are assumed to be equal and are drawn from a

uniform distribution in the range of [40, 200] µs (according to Table 1, this is a sufficient time to

transfer 32-160 KB). Tasks have implicit deadlines and priorities assigned by the Rate-Monotonic
policy [26]. The experiments investigate the performance of the following scheduling policies:

(LL) Our proposed scheduling policy Lazy Load described in Section 3.4. We recall that the

Lazy Load policy schedules the next load operation as late as possible.

(EL) The three-phase tasks SPM-oriented scheduling policy from [45, 46] where the DMA is

reprogrammed at the task computation phase start, hereinafter called Eager Load. The
analysis in [45, 46] supports multi-segment tasks, but it can be applied to single-segment

tasks, like those considered in this work, without any loss of precision.

(NP) A standard fixed-priority non-preemptive scheduling policy assuming an ideal system,

where tasks execute from the main memory without suffering any contention. A non-

preemptive policy is used to avoid cache-related preemption delays. The response time

analysis from [11] was applied to verify task set schedulability.

(NPc) As above, a standard fixed-priority non-preemptive scheduling policy but assuming a

realistic multiprocessor system, where tasks suffer contention when accessing main

memory. The contention-related overhead, with respect to the execution from SPM, is

assumed to be 8% of the task worst-case execution time, as demonstrated in our previous

case study in Section 6.2 (see WCET for Lcy-Stress and Our-Stress in Tables 2 and 3).

The first two policies (LL and EL) require task data to be transferred frommain memory to SPM.We

use a TDMA-based memory bus arbitration: the processor under study is assigned a unique time

slot σ within which it is granted exclusive access to the memory. The TDMA round length is then set

to TDMA fixed slot size multiplied byM = 4 (i.e., the number of mid- and high-criticality processors

available in the system). We consider four fixed slot lengths σ of 25 µs, 50 µs, 100 µs, 200 µs, andmax
where the slot length is set to the longest DMA transaction that the tasks can issue. If a DMA

transaction cannot fit into a single TDMA slot, we split it into multiple smaller transactions. While

doing so, we account for overhead to program the DMA. As shown in Section 6.1, this overhead in

the ZCU102 platform is 3.98 < 4.00 µs per slot (e.g., if a transaction spans over ten slots, we add an

overhead of 40.00 µs). Equation (1) is used to compute the total transfer time of load and unload

phases. Unless stated otherwise, we run the simulation for all slot lengths σ and show the results

giving the best schedulability performance.

The results of our schedulability study are shown in Figure 7, which includes four graphs with

different parameters of the above experimental setup. For each scheduling policy, the percentage of

generated task sets that were deemed schedulable is shown on y-axis, while the task sets utilization

is shown on x-axis of the graphs. In what follows, we detail each set of experiments.

Varying taskmemory time. In the first experiment, we analyze the impact of the task memory

transfer times on schedulability. We assume four ranges from which the task memory times are

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:21

0 0.2 0.4 0.6 0.8 1

0%

25%

50%

75%

100%

Utilization

S
c
h
e
d
u
l
a
b
l
e
T
a
s
k
s

LL [5,40] EL [5,40] NP

LL [200,400] EL [200,400] NPc

LL [400,800] EL [400,800]

LL [800,1200] EL [800,1200]

(a) Varying range of task memory time [smin, smax] µs.

0 0.2 0.4 0.6 0.8 1

0%

25%

50%

75%

100%

Utilization

S
c
h
e
d
u
l
a
b
l
e
T
a
s
k
s

LL r=2 LL r=3 LL r=4

EL r=2 EL r=3 EL r=4

NP r=2 NP r=3 NP r=4

NPc r=2 NPc r=3 NPc r=4

(b) Varying range of task periods [10, 10
r] ms.

0 0.2 0.4 0.6 0.8 1

0%

25%

50%

75%

100%

Utilization

S
c
h
e
d
u
l
a
b
l
e
T
a
s
k
s

LL σ=max EL σ=max NP

LL σ=400 EL σ=400 NPc

LL σ=100 EL σ=100
LL σ=25 EL σ=25

(c) Varying TDMA slot size σ µs.

0 0.2 0.4 0.6 0.8 1

0%

25%

50%

75%

100%

Utilization

S
c
h
e
d
u
l
a
b
l
e
T
a
s
k
s

LL n=16 LL n=8 LL n=4
EL n=16 EL n=8 EL n=4
NPc n=16 NPc n=8 NPc n=4
NP n=16 NP n=8 NP n=4

(d) Varying number of tasks n.

Fig. 7. Schedulability ratios for Lazy Load (LL), standard PREM Eager Load (EL), and fixed-priority non-

preemptive policy with and without contention-related overhead (respectively NPc and NP).

drawn using a uniform distribution: [5, 40] µs, [200, 400] µs, [400, 800] µs, and [800, 1200] µs. The

other parameters have their default values. The results are shown in Figure 7a. The LL performance

for the shortest transfer times, [5, 40] µs, is close to the ideal NP scheduling. The DMA memory

transfers can be easily overlapped with the task CPU computation, and the blocking factor

they constitute is relatively small. However, increasing the transfer times results in a gradual

schedulability decrease. For the transfer times longer than 400 µs, LL cannot bring any benefit

compared to NPc where the tasks suffer main memory contention. The performance of the standard

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

three-phase task policy EL is always less than the LL and NPc. The EL policy can suffer blocking

from up to two low-priority tasks [46] and the execution time reduction on the SPM assumed in

this paper is not sufficient to compensate for it.

Varying task periods. In the second experiment shown in Figure 7b, we vary the range of task

periods (i.e., the ratio between the maximal and minimal possible task period) and show how it

affects the task set schedulability. We consider three task periods ranges: [10, 100] ms (r = 2),

[10, 1000] ms (r = 3), and [10, 10000] ms (r = 4). The other parameters have their default values.

The results of our evaluation are shown in Figure 7b. We observe that increasing the range of task

periods degrades the schedulability test performance. This is explained by the fact that tasks with

short deadlines cannot tolerate being blocked by tasks with large worst-case execution times (e.g.,
due to the task generation technique, tasks with long periods are susceptible to have also long

worst-case execution times). The gap between different policies is accordingly narrowing. The

three-phase task scheduling policies induce worst-case inflation to account for overlapping of

computation and memory phases (see Equation 2). This can degrade the schedulability when the

worst-case execution time is relatively short. In that case, a hybrid approach can be applied: tasks

with the worst-case execution times shorter than scratchpad reload time use main memory while

other tasks with longer worst-case execution times scratchpad.

Varying TDMA slot size. In the third experiment shown in Figure 7c, we assign different TDMA

slot durations and assess their impact on task set schedulability. Four TDMA slot durations σ are

evaluated: 25 µs, 100 µs, 400 µs, and max . The transfer times are drawn from a uniform distribution

in the wide range of [5, 1200] µs. As shown in the first experiment, long transfer times can have

a negative impact on the performance of LL and EL scheduling policies. However, such values

allow testing TDMA slot assignment in scenarios where long transactions must be split, and

the DMA must be reprogrammed multiple times. All the other parameters have their default

values. The evaluation results are shown in Figure 7c. The schedulability improves for TDMA

slots σ ∈ {25, 100, 400} µs compared to the slot length set to the largest DMA transaction max.
The latter approach results in time within a slot that might not be fully used and hence wasted.

Recall that the memory-related delay in Equation (3) for blocking depends on L (the longest

time of any task to load its code and data), which in turn depends on the TDMA slot and cycle

length (see Equation (1), by assigning longer TDMA slots, we also increase the total length of the

TDMA cycle). The performance with TDMA slots of 25 and 400 µs is similar (lines in Figure 7c

are overlapping), and the best performance is achieved with the TDMA slot of 100 µs. However,

a closer examination of the results revealed that among the TDMA slots σ ∈ {25, 100, 400} µs,

none is strictly dominant. We conjecture that the DMA reprogramming overhead (4 µs) has no

detrimental effect on the TDMA performance, and splitting long transactions into multiple slots

can improve task set schedulability.

Varying number of tasks. In our last experiment, we vary the task set cardinality n within a

set {4, 8, 16}. The results are shown in Figure 7d. We observe that schedulability improves with

increasing task set cardinality. Larger task sets equate to shorter worst-case execution times and,

consequently, smaller blocking factors for non-preemptive scheduling.

In summary, the evaluations demonstrate that the LL policy implemented in the proposed

system design achieves the schedulability performance close to the ideal NP scheduling for the

tasks with transfer times below 40 µs and can mitigate the main memory congestion for the

tasks with transfer times up to 400 µs. In all of the schedulability experiments, LL performs

significantly better than the standard EL policy. Its effectiveness is due to the reduced low-priority

task blocking (two low-priority tasks in EL and only one low-priority task in LL). Finally, breaking
long memory transactions into multiple TDMA slots and thus keeping TDMA cycles short does

not incur substantial overheads and improves task set schedulability.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:23

7 CONCLUSION
This paper has explored the rich hardware features found in modern heterogeneous MPSoC

architectures to define multiple criticality domains for real-time applications. We have used the PL

to define dedicated PS-PL interfaces, scratchpad memories, and an address translator component

to avoid the contention for the shared main memory by applications running on different cores

and to provide a better utilization of the scratchpad when cache partitioning is applied. From the

software side, we have used an RTOS and a hypervisor to provide isolation and cache partitioning

for the criticality domains. We described our full-stack implementation of the proposed techniques

and evaluated the system using realistic SD-VBS benchmarks.

We used a TDMA-scheduled DMA engine to support external I/O and data transfers to/from the

mid-/high-criticality domains. We measured the DMA reprogramming overhead and showed that

splitting long memory transactions into a small batch of separate transactions can significantly

improve the system schedulability. The proposed Lazy Load scheduling policy for multi-phased

tasks aims at reducing the low-priority tasks blocking. As demonstrated by our scheduling experi-

ments, the Lazy Load significantly outperforms state-of-the-art scheduling policies for multi-phase

tasks (even 50% improvement in the terms of system schedulability) and can ensure the temporal

isolation of critical tasks.

8 ACKNOWLEDGMENTS
The material presented in this paper is based upon work supported by the National Science

Foundation and ONR under grants numbers CNS 18-15891, CNS 19-32529, CCF-2008799 and

N00014-17-1-2783. The work was also supported through the Red Hat Research program. Marco

Caccamo was supported by an Alexander von Humboldt Professorship endowed by the German

Federal Ministry of Education and Research. Giovani Gracioli was supported by Fundação de

Desenvolvimento da Pesquisa - Fundep Rota 2030/Linha V 27192.02.01/2020.09-00. Any opinions,

findings, and conclusions or recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of the sponsors.

REFERENCES
[1] Ahmed Alhammad and Rodolfo Pellizzoni. 2014. Time-Predictable Execution of Multithreaded Applications on

Multicore Systems. In 2014 Design, Automation Test in Europe Conference Exhibition (DATE) (Dresden, Germany). 1–6.

https://doi.org/10.7873/DATE.2014.042
[2] Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto, Benny Akesson, and Eduardo Tovar. 2018. Mixed-

Criticality Scheduling with Dynamic Memory Bandwidth Regulation. In 2018 IEEE 24th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). 111–117. https://doi.org/10.1109/RTCSA.2018.
00022

[3] Matthias Becker, DakshinaDasari, Borislav Nicolic, BennyAkesson, Vincent Nélis, and ThomasNolte. 2016. Contention-

Free Execution of Automotive Applications on a Clustered Many-Core Platform. In 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). 14–24. https://doi.org/10.1109/ECRTS.2016.14

[4] Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the Performance of Schedulability Tests. Real-Time Systems 30,
1-2 (2005), 129–154. https://doi.org/10.1007/s11241-005-0507-9

[5] Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. 2012. Deterministic Execution Model on COTS Hard-

ware. InArchitecture of Computing Systems – ARCS 2012. Springer, 98–110. https://doi.org/10.1007/978-3-642-28293-5_9
[6] Reinder J. Bril, Johan J. Lukkien, and Wim F.J. Verhaegh. 2007. Worst-Case Response Time Analysis of Real-Time

Tasks under Fixed-Priority Scheduling with Deferred Preemption Revisited. In 19th Euromicro Conference on Real-Time
Systems (ECRTS’07). 269–279. https://doi.org/10.1109/ECRTS.2007.38

[7] Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. 2015. A memory-centric approach to enable

timing-predictability within embedded many-core accelerators. In 2015 CSI Symposium on Real-Time and Embedded
Systems and Technologies (RTEST). 1–8. https://doi.org/10.1109/RTEST.2015.7369851

[8] Alan Burns and Robert I. Davis. 2017. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. 50, 6,
Article 82 (Nov. 2017), 37 pages. https://doi.org/10.1145/3131347

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.7873/DATE.2014.042
https://doi.org/10.1109/RTCSA.2018.00022
https://doi.org/10.1109/RTCSA.2018.00022
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/978-3-642-28293-5_9
https://doi.org/10.1109/ECRTS.2007.38
https://doi.org/10.1109/RTEST.2015.7369851
https://doi.org/10.1145/3131347

1:24 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

[9] Daniel Casini, Paolo Pazzaglia, Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. 2020. Predictable Memory-

CPU Co-Scheduling with Support for Latency-Sensitive Tasks. In 2020 57th ACM/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218640

[10] Jon Perez Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Cazorla, Kim Grüttner, Irune Agirre, Hamidreza

Ahmadian, and Imanol Allende. 2020. Multi-Core Devices for Safety-Critical Systems: A Survey. ACM Comput. Surv.
53, 4, Article 79 (Aug. 2020), 38 pages. https://doi.org/10.1145/3398665

[11] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller Area Network (CAN) Schedulability

Analysis: Refuted, Revisited and Revised. Real-Time Systems 35, 3 (April 2007), 239–272. https://doi.org/10.1007/
s11241-007-9012-7

[12] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, and Wolfgang Puffitsch. 2014.

Predictable Flight Management System Implementation on a Multicore Processor. In Embedded Real Time Software
(ERTS’14). Toulouse, France. https://hal.archives-ouvertes.fr/hal-01121700

[13] Evidence. 2020. Erika Enterprise RTOS v3. http://www.erika-enterprise.com/ Online.
[14] Björn Forsberg, Luca Benini, and Andrea Marongiu. 2018. HePREM: Enabling predictable GPU execution on

heterogeneous SoC. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 539–544. https:
//doi.org/10.23919/DATE.2018.8342066

[15] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni. 2015. A

Survey on Cache Management Mechanisms for Real-Time Embedded Systems. ACM Comput. Surv. 48, 2, Article 32
(Nov. 2015), 36 pages. https://doi.org/10.1145/2830555

[16] Giovani Gracioli and Antônio Augusto Fröhlich. 2017. Two-phase colour-aware multicore real-time scheduler. IET
Computers & Digital Techniques 11 (July 2017), 133–139(6). Issue 4. https://digital-library.theiet.org/content/journals/
10.1049/iet-cdt.2016.0114

[17] Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and Marco Caccamo. 2019.

Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 133), Sophie Quinton

(Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 27:1–27:25. https://doi.org/10.4230/
LIPIcs.ECRTS.2019.27

[18] Heechul Yun. 2019. Latency and Bandwidth Utilities. https://github.com/heechul/misc
[19] Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. 2021. A Memory Scheduling Infrastructure for Multi-Core

Systems with Re-Programmable Logic. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 196), Björn B. Brandenburg (Ed.). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, Dagstuhl, Germany, 2:1–2:22. https://doi.org/10.4230/LIPIcs.ECRTS.2021.2
[20] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, OnurMutlu, and Ragunathan Rajkumar. 2014. Bounding

memory interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 145–154. https://doi.org/10.1109/RTAS.2014.6925998

[21] Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. 2013. A Coordinated Approach for Practical OS-Level

Cache Management in Multi-core Real-Time Systems. In 2013 25th Euromicro Conference on Real-Time Systems. 80–89.
https://doi.org/10.1109/ECRTS.2013.19

[22] Hyoseung Kim and Ragunathan (Raj) Rajkumar. 2017. Predictable Shared Cache Management for Multi-Core Real-

Time Virtualization. ACM Trans. Embed. Comput. Syst. 17, 1, Article 22 (Dec. 2017), 27 pages. https://doi.org/10.1145/
3092946

[23] Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, Cheng-Yang Fu, James H. Anderson, and F. Donelson Smith.

2016. Attacking the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-Criticality

Provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 1–12. https:
//doi.org/10.1109/RTAS.2016.7461323

[24] Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente, and Marko Bertogna. 2019. Deter-

ministic Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 1–14. https://doi.org/10.1109/RTAS.2019.00009

[25] John P. Lehoczky. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In [1990] Proceedings
11th Real-Time Systems Symposium. 201–209. https://doi.org/10.1109/REAL.1990.128748

[26] C. L. Liu and JamesW. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.

J. ACM 20, 1 (Jan. 1973), 46–61. https://doi.org/10.1145/321738.321743
[27] Méndez Miguel Macías, José L. Gutierrez, David Fernández, and Javier Díaz. 2013. Open platform for mixed-criticality

applications. In Proceedings of the Workshop on Industry-Driven Approaches for Cost-effective Certification of Safety-
Critical, Mixed-Criticality Systems (WICERT 2013). 1–7. http://atcproyectos.ugr.es/wicert/downloads/wicert_papers/
wicert2013_submission_8.pdf

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/DAC18072.2020.9218640
https://doi.org/10.1145/3398665
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1007/s11241-007-9012-7
https://hal.archives-ouvertes.fr/hal-01121700
http://www.erika-enterprise.com/
https://doi.org/10.23919/DATE.2018.8342066
https://doi.org/10.23919/DATE.2018.8342066
https://doi.org/10.1145/2830555
https://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2016.0114
https://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2016.0114
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://github.com/heechul/misc
https://doi.org/10.4230/LIPIcs.ECRTS.2021.2
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/ECRTS.2013.19
https://doi.org/10.1145/3092946
https://doi.org/10.1145/3092946
https://doi.org/10.1109/RTAS.2016.7461323
https://doi.org/10.1109/RTAS.2016.7461323
https://doi.org/10.1109/RTAS.2019.00009
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
http://atcproyectos.ugr.es/wicert/downloads/wicert_papers/wicert2013_submission_8.pdf
http://atcproyectos.ugr.es/wicert/downloads/wicert_papers/wicert2013_submission_8.pdf

Lazy Load Scheduling for Mixed-Criticality Applications in Heterogeneous MPSoCs 1:25

[28] RenatoMancuso, RomanDudko, Emiliano Betti,Marco Cesati,Marco Caccamo, and Rodolfo Pellizzoni. 2013. Real-Time

Cache Management Framework for Multi-core Architectures. In 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 45–54. https://doi.org/10.1109/RTAS.2013.6531078

[29] Joel Matějka, Björn Forsberg, Michal Sojka, Luca Benini, Zdeněk Hanzálek, and Andrea Marongiu. 2019. Combining

PREM Compilation and Static Scheduling for High-Performance and Predictable MPSoC Execution. Parallel Comput.
85 (12 2019), 27–44. https://doi.org/10.1016/J.PARCO.2018.11.002

[30] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Giorgio Buttazzo. 2015.

Memory-Processor Co-Scheduling in Fixed Priority Systems. In Proceedings of the 23rd International Conference on
Real Time and Networks Systems (Lille, France) (RTNS ’15). Association for Computing Machinery, New York, NY, USA,

87–96. https://doi.org/10.1145/2834848.2834854
[31] Paolo Modica, Alessandro Biondi, Giorgio Buttazzo, and Anup Patel. 2018. Supporting Temporal and Spatial Isolation

in a Hypervisor for ARM Multicore Platforms. In 2018 IEEE International Conference on Industrial Technology (ICIT).
1651–1657. https://doi.org/10.1109/ICIT.2018.8352429

[32] Tiago Mück, Antonio A. Fröhlich, Giovani Gracioli, Amir M. Rahmani, João Gabriel Reis, and Nikil Dutt. 2018.

CHIPS-AHOy: A Predictable Holistic Cyber-Physical Hypervisor for MPSoCs. In Proceedings of the 18th International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (Pythagorion, Greece) (SAMOS
’18). Association for Computing Machinery, New York, NY, USA, 73–80. https://doi.org/10.1145/3229631.3229642

[33] Anup Patel, Mai Daftedar, Mohamed Shalan, and M. Watheq El-Kharashi. 2015. Embedded Hypervisor Xvisor: A

Comparative Analysis. In 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 682–691. https://doi.org/10.1109/PDP.2015.108

[34] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo, and Russell Kegley. 2011.

A Predictable Execution Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. 269–279. https://doi.org/10.1109/RTAS.2011.33

[35] Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang Mauerer. 2017. Look Mum, no VM Exits! (Almost). In

Proceedings of the 13th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT
’17). http://arxiv.org/abs/1705.06932

[36] Juan M. Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo. 2019. Implementation of Memory Centric

Scheduling for COTS Multi-Core Real-Time Systems. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 133), SophieQuinton (Ed.). Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:23. https://doi.org/10.4230/LIPIcs.ECRTS.2019.7
[37] Shahin Roozkhosh, Denis Hoornaert, and Renato Mancuso. 2022. CAESAR: Coherence-Aided Elective and Seamless

Alternative Routing via on-chip FPGA. In 2022 IEEE Real-Time Systems Symposium (RTSS). 356–369. https://doi.org/10.
1109/RTSS55097.2022.00038

[38] Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun, Tarikul Islam Papon, Ulrich Drepper, Renato Mancuso, and

Manos Athanassoulis. 2023. Relational Memory: Native In-Memory Accesses on Rows and Columns. In 2023 Interna-
tional Conference on Extending Database Technology (EDBT). Ioannina, Greece. https://doi.org/10.48786/edbt.2023.06

[39] Shahin Roozkhosh and Renato Mancuso. 2020. The Potential of Programmable Logic in the Middle: Cache Bleaching.

In 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 296–309. https://doi.org/10.
1109/RTAS48715.2020.00006

[40] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. 2017. Tightening Contention Delays While Scheduling Parallel

Applications on Multi-Core Architectures. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 164 (Sept. 2017), 20 pages.
https://doi.org/10.1145/3126496

[41] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. 2019. Hiding Communication Delays in

Contention-Free Execution for SPM-Based Multi-Core Architectures. In 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 133), Sophie Quinton (Ed.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 25:1–25:24. https://doi.org/10.4230/LIPIcs.ECRTS.
2019.25

[42] Gero Schwäricke, Tomasz Kloda, Giovani Gracioli, Marko Bertogna, and Marco Caccamo. 2020. Fixed-Priority

Memory-Centric Scheduler for COTS-Based Multiprocessors. In 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 165), Marcus Völp (Ed.). Schloss Dagstuhl–

Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:24. https://doi.org/10.4230/LIPIcs.ECRTS.2020.1
[43] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2020. E-WarP: A System-wide Framework for

Memory Bandwidth Profiling and Management. In 2020 IEEE Real-Time Systems Symposium (RTSS). 345–357. https:
//doi.org/10.1109/RTSS49844.2020.00039

[44] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2022. Profile-Driven Memory Bandwidth

Management for Accelerators and CPUs in QoS-Enabled Platforms. Real-Time Syst. 58, 3 (Sep 2022), 235–274.

https://doi.org/10.1007/s11241-022-09382-x

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1016/J.PARCO.2018.11.002
https://doi.org/10.1145/2834848.2834854
https://doi.org/10.1109/ICIT.2018.8352429
https://doi.org/10.1145/3229631.3229642
https://doi.org/10.1109/PDP.2015.108
https://doi.org/10.1109/RTAS.2011.33
http://arxiv.org/abs/1705.06932
https://doi.org/10.4230/LIPIcs.ECRTS.2019.7
https://doi.org/10.1109/RTSS55097.2022.00038
https://doi.org/10.1109/RTSS55097.2022.00038
https://doi.org/10.48786/edbt.2023.06
https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.1145/3126496
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
https://doi.org/10.4230/LIPIcs.ECRTS.2020.1
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1007/s11241-022-09382-x

1:26 T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni, M. Caccamo

[45] Muhammad R. Soliman, Giovani Gracioli, Rohan Tabish, Rodolfo Pellizzoni, and Marco Caccamo. 2019. Segment

Streaming for the Three-Phase Execution Model: Design and Implementation. In 2019 IEEE Real-Time Systems
Symposium (RTSS). 260–273. https://doi.org/10.1109/RTSS46320.2019.00032

[46] Muhammad R. Soliman and Rodolfo Pellizzoni. 2019. PREM-Based Optimal Task Segmentation Under Fixed Priority

Scheduling. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 133), SophieQuinton (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 4:1–4:23. https://doi.org/10.4230/LIPIcs.ECRTS.2019.4
[47] The KITTI Vision Benchmark Suite. 2020. KITTI. http://www.cvlibs.net/datasets/kitti/ Online.
[48] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak, Rodolfo Pellizzoni, and Marco

Caccamo. 2016. A real-time scratchpad-centric os for multi-core embedded systems. In 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 1–11. https://doi.org/10.1109/RTAS.2016.7461321

[49] Rohan Tabish, Renato Mancuso, Saud Wasly, Rodolfo Pellizzoni, and Marco Caccamo. 2019. A real-time scratchpad-

centric OS with predictable inter/intra-core communication for multi-core embedded systems. Real-Time Systems 55,
4 (2019), 850–888. https://doi.org/10.1007/s11241-019-09340-0

[50] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. 2016. Taming Non-Blocking Caches to Improve Isolation

in Multicore Real-Time Systems. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
1–12. https://doi.org/10.1109/RTAS.2016.7461361

[51] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie, Saturnino Garcia, Serge

Belongie, andMichael Bedford Taylor. 2009. SD-VBS: The San Diego Vision Benchmark Suite. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 55–64. https://doi.org/10.1109/IISWC.2009.5306794

[52] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson. 2013. Outstanding Paper Award:

Making Shared Caches More Predictable on Multicore Platforms. In 2013 25th Euromicro Conference on Real-Time
Systems. 157–167. https://doi.org/10.1109/ECRTS.2013.26

[53] Saud Wasly and Rodolfo Pellizzoni. 2014. Hiding Memory Latency Using Fixed Priority Scheduling. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS). 75–86. https://doi.org/10.1109/RTAS.2014.
6925992

[54] Jack Whitham and Neil C. Audsley. 2012. Explicit Reservation of Local Memory in a Predictable, Preemptive

Multitasking Real-Time System. In 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium.

3–12. https://doi.org/10.1109/RTAS.2012.19
[55] Jack Whitham, Neil C. Audsley, and Robert I. Davis. 2014. Explicit Reservation of Cache Memory in a Predictable,

Preemptive Multitasking Real-Time System. ACM Trans. Embed. Comput. Syst. 13, 4s, Article 120 (apr 2014), 25 pages.
https://doi.org/10.1145/2523070

[56] Jack Whitham, Robert I. Davis, Neil C. Audsley, Sebastian Altmeyer, and Claire Maiza. 2012. Investigation of

Scratchpad Memory for Preemptive Multitasking. In 2012 IEEE 33rd Real-Time Systems Symposium. 3–13. https:
//doi.org/10.1109/RTSS.2012.54

[57] Xilinx. 2019. Zynq UltraScale+ Device - Technical Reference Manual. https://www.xilinx.com/support/documentation/
user_guides/ug1085-zynq-ultrascale-trm.pdf

[58] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT: Dynamic Cache Management Using

CAT Virtualization. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 211–222.
https://doi.org/10.1109/RTAS.2017.15

[59] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. 2012. Memory-Centric Scheduling

for Multicore Hard Real-Time Systems. Real-Time Systems 48, 6 (Nov. 2012), 681–715. https://doi.org/10.1007/
s11241-012-9158-9

[60] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, andMarco Caccamo. 2016. Global Real-TimeMemory-Centric

Scheduling forMulticore Systems. IEEE Trans. Comput. 65, 9 (2016), 2739–2751. https://doi.org/10.1109/TC.2015.2500572
[61] Ying Ye, Richard West, Jingyi Zhang, and Zhuoqun Cheng. 2016. MARACAS: A Real-Time Multicore VCPU Scheduling

Framework. In 2016 IEEE Real-Time Systems Symposium (RTSS). 179–190. https://doi.org/10.1109/RTSS.2016.026
[62] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014. PALLOC: DRAM Bank-Aware Memory

Allocator for Performance Isolation on Multicore Platforms. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 155–166. https://doi.org/10.1109/RTAS.2014.6925999

[63] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013. MemGuard: Memory Bandwidth

Reservation System for Efficient Performance Isolation in Multi-core Platforms. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). 55–64. https://doi.org/10.1109/RTAS.2013.6531079

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/RTSS46320.2019.00032
https://doi.org/10.4230/LIPIcs.ECRTS.2019.4
http://www.cvlibs.net/datasets/kitti/
https://doi.org/10.1109/RTAS.2016.7461321
https://doi.org/10.1007/s11241-019-09340-0
https://doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/IISWC.2009.5306794
https://doi.org/10.1109/ECRTS.2013.26
https://doi.org/10.1109/RTAS.2014.6925992
https://doi.org/10.1109/RTAS.2014.6925992
https://doi.org/10.1109/RTAS.2012.19
https://doi.org/10.1145/2523070
https://doi.org/10.1109/RTSS.2012.54
https://doi.org/10.1109/RTSS.2012.54
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://doi.org/10.1109/RTAS.2017.15
https://doi.org/10.1007/s11241-012-9158-9
https://doi.org/10.1007/s11241-012-9158-9
https://doi.org/10.1109/TC.2015.2500572
https://doi.org/10.1109/RTSS.2016.026
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2013.6531079

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Assumptions
	3.1 Criticality Domains
	3.2 Processor and Programmable Logic
	3.3 Application Model
	3.4 Scheduling Model

	4 Schedulability Analysis
	5 Design and Implementation Overview
	5.1 Design Overview
	5.2 Architectural Overview of the Chosen Platform
	5.3 Implementation Overview
	5.4 Jailhouse and Page Coloring
	5.5 Address Translator to Overcome Limitations of Cache Coloring
	5.6 Code/Data Relocation
	5.7 Lazy Load Scheduler Support

	6 Evaluation
	6.1 DMA Evaluation
	6.2 Case Study: Image Processing
	6.3 Schedulability Analysis Evaluation

	7 Conclusion
	8 Acknowledgments
	References

