
HAL Id: hal-04803556
https://laas.hal.science/hal-04803556v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability Analysis of Non-preemptive Sporadic
Gang Tasks on Hardware Accelerators

Binqi Sun, Tomasz Kloda, Jiyang Chen, Cen Lu, Marco Caccamo

To cite this version:
Binqi Sun, Tomasz Kloda, Jiyang Chen, Cen Lu, Marco Caccamo. Schedulability Analysis of Non-
preemptive Sporadic Gang Tasks on Hardware Accelerators. IEEE 29th Real-Time and Embed-
ded Technology and Applications Symposium (RTAS 2023), May 2023, San Antonio, United States.
pp.147-160, �10.1109/RTAS58335.2023.00019�. �hal-04803556�

https://laas.hal.science/hal-04803556v1
https://hal.archives-ouvertes.fr


Schedulability Analysis of Non-preemptive Sporadic
Gang Tasks on Hardware Accelerators

Binqi Sun∗, Tomasz Kloda†, Jiyang Chen∗, Cen Lu∗ and Marco Caccamo∗
∗Technical University of Munich, Germany

†LAAS-CNRS, Université de Toulouse, INSA, Toulouse, France
Email: {binqi.sun, jiyang.chen, cen.lu, mcaccamo}@tum.de, tkloda@laas.fr

Abstract—Non-preemptive rigid gang scheduling combines the
performance benefits of parallel execution with the low overhead
of non-preemptive scheduling and rigid task programming model.
This approach appears particularly well-suited for parallel
hardware accelerators where the context switch and migration
overheads are critical and should be avoided. One of the most
notable examples today is Google’s Edge Tensor Processing Unit
(TPU) used for neural network inference on embedded boards.

The paper studies sporadic non-preemptive rigid gang schedul-
ing applied to multi-TPU edge AI accelerators. Each gang task
spawns a fixed number of threads that must execute simultane-
ously on distinct processing units. We consider non-preemptive
fixed-priority gang (NP-FP-Gang) scheduling and propose the
first carry-in limitation for gang task response time analysis. The
gang task carry-in limitation differs from conventional sequential
tasks due to the intra-task parallelism. We formulate it as a
generalized knapsack problem and develop a linear programming
relaxation and a dynamic programming approach to solve the
problem under different time complexities. The performance
of the proposed schedulability analysis is evaluated through
randomly generated synthetic task sets and a case study using
neural network benchmarks executed on commercial off-the-shelf
multi-TPU edge AI accelerators. The evaluation results show that
the proposed response time analysis effectively improves the state-
of-the-art NP-FP-Gang schedulability test even by 85.7% for the
Edge TPU benchmarks in particular.

Index Terms—Response Time Analysis, Non-preemptive, Gang
Scheduling, Tensor Processing Unit.

I. INTRODUCTION

Gang scheduling appeared as an efficient solution to the
problem of job scheduling on highly-parallel embedded ar-
chitectures [1], [2]. Application threads grouped into a single
gang are scheduled concurrently on distinct processing units.
Scheduling them at the same time can avoid the overhead
of context switching [3] or busy waiting at synchronization
points [4] and help in utilizing the inter-thread cache bene-
fit [5]. Due to the prohibitively expensive preemption cost of
the parallel hardware accelerators, running the gang tasks non-
preemptively is often the only feasible solution. While the non-
preemptive rigid gang scheduling has already been addressed
in the literature in the context of power scheduling [6],
we propose new schedulability tests for fixed-priority non-
preemptive gang and show their applicability and potential on
the Edge Tensor Processing Units (TPUs) [7].

A. Motivating example: Edge TPU scheduling
Edge TPU is a custom ASIC designed for accelerating

neural network inference on edge devices. It can improve the

inference time by 30x compared with embedded CPUs [8].
Integrating Edge TPU accelerators into edge devices present
several challenges and can incur large memory and scheduling
overhead if configured incorrectly. To investigate these issues,
we benchmarked eight representative convolutional neural
network models of various sizes on commercial off-the-shelf
(COTS) Edge TPU hardware. Specific hardware setup and de-
tails of the neural network models are reported in Section V-B.
In what follows, we outline some key findings related to real-
time scheduling on multiple Edge TPUs.

Preemption cost. Edge TPU has small on-chip memory
(8MB), thus limiting the size of the neural network model that
can be stored in internal SRAM. Switching between different
models causes a significant overhead as the model needs to be
loaded into Edge TPU’s internal cache every time. This can be
observed in our experiments by comparing the neural network
inference latency with and without parameter loading. Take
Inception-v1 [9] as an example. The average inference latency
without parameter loading is 6.58 ms. However, it grows to
20.17 ms when including parameter loading time.

Parallel processing. Besides the context switch overhead,
running models larger than 8MB on an Edge TPU requires
fetching the model parameters from the main memory for ev-
ery inference, which incurs a high memory transaction latency.
One approach to avoid latency is to pipeline a large model with
multiple Edge TPUs. The model is divided into multiple seg-
ments using the Edge TPU Compiler, and each segment runs

2 4 6 8
0

50

100

150

Number of Edge TPUs

W
C

E
T

(m
s)

Inception-v1 [9]
Inception-v2 [10]
Inception-v3 [10]
Inception-v4 [11]
ResNet-50 [12]

ResNet-101 [12]
ResNet-152 [12]

Inception-
Resnet-v2 [11]

Fig. 1: Edge multi-TPU neural network benchmarks executed
on ASUS AI Accelerator CRL-G18U-P3D with 8 Edge TPUs.



on a different Edge TPU. Although a model can be segmented
with as many Edge TPUs as one likes, using more accelerators
does not necessarily mean better performance. Figure 1 shows
the relationship between neural network inference time and
the number of Edge TPUs used by the networks. For a large
network, e.g., ResNet-152 (57.53MB) [12], having more Edge
TPUs can indeed reduce inference time. However, for a small
network such as Inception-v1 (5.72MB) [9], the inference time
increases with the number of Edge TPUs. This is because
pipelining a model requires sending intermediate tensors from
one Edge TPU to another and adds I/O latency.

Memory space limitation. It can be beneficial to change the
number of segments of a model at run time when multiple
models are executed on multiple Edge TPUs. However, a
different segmentation of the same model generates a separate
model executable file. This will occupy extra disk space and
precious memory of the edge devices during run time. Given
these trade-offs, we assume only one segmentation is used for
each network model. We also assume that the segmentation is
given by the system designer. Determining the optimal number
of segments is out of the scope of this paper.

Rigid non-preemptive gang. In light of the above-discussed
Edge TPU characteristics (high preemption cost, parallel exe-
cution, and constrained memory space), we propose to model
neural networks running on Edge TPUs as non-preemptive
rigid gang tasks. The non-preemptive execution avoids the
slowdown caused by the model reloading. With pipelining,
each neural network task can take more than one acceler-
ator (intra-task parallelism). Such gang task runs simulta-
neously on a fixed number of distinct processing units in
parallel as the model segmentation is fixed. In contrast to
traditional multi-threaded scheduling, where the threads can
execute independently between the synchronization points,
gang scheduling starts all task threads simultaneously. While
we believe that new customized scheduling policies can be
proposed to efficiently overcome certain disadvantages of
non-preemptive gang execution, in this work, we assume
the traditional fixed-priority policy used in most embedded
real-time applications [13] and propose a gang task carry-in
limitation technique to reduce the pessimism of the analysis.

B. Contributions

We propose new schedulability tests for non-preemptive
rigid gang scheduling. Our contributions are as follows:

• We present the first TPU-Pipelining runtime performance
benchmarks on multi-TPU edge AI accelerators.

• We provide a linear-time utilization bound test for any
work-conserving non-preemptive rigid gang scheduling.

• We propose two schedulability tests with quadratic and
pseudo-polynomial complexity, respectively, for non-
preemptive fixed-priority (NP-FP) rigid gang scheduling.

• We demonstrate the effectiveness of our schedulability
test on both synthetic data and Edge TPU benchmarks.
Our proposed schedulability test can achieve up to 46.5%
and 85.7% additional task sets schedulable on synthetic

task sets and Edge TPU benchmarks, respectively, com-
pared to the state-of-the-art non-preemptive gang schedu-
lability analysis proposed in [6].

C. Paper organization

The remainder of this paper is organized as follows. Sec-
tion II gives the system model and notations used in the paper.
Section III opens with a sufficient schedulability condition for
any work-conserving non-preemptive rigid gang scheduling
algorithm. Then a simple utilization-based schedulability test
with linear-time complexity is given. Section IV addresses the
fixed-priority scheduling algorithms. First, two schedulability
conditions are derived, and second, a knapsack problem is
formulated to limit the number of interfering carry-in jobs. On
the basis of these results, a quadratic-time schedulability test
and a pseudo-polynomial response time analysis are derived.
Section V contains experimental evaluations of the proposed
schedulability tests using synthetic task sets and neural net-
work profiles measured on the Edge TPUs. Section VI covers
related work regarding non-preemptive and gang scheduling.
Section VII concludes the paper and discusses future re-
search directions.

II. SYSTEM MODEL AND NOTATIONS

Tasks and processors. We consider a multiprocessor plat-
form comprised of M identical processors. A task set τ =
{τ1, ..., τn} is comprised of n independent sporadic rigid gang
tasks τi (1 ≤ i ≤ n) running on M identical processors.
Each task τi ∈ τ gives rise to an infinite sequence of
jobs with consecutive jobs’ invocations (arrivals) separated
by at least Ti time units (i.e., sporadic activation model).
We use Ji to denote a job of task τi. Job Ji released at
time ri (arrival time) has an absolute deadline ri +Di and
must complete its execution by that time where Di ≤ Ti

(i.e., constrained deadlines). Each job of task τi executes
simultaneously on mi ≤ M processors for at most Ci time
units. Thus, the execution demand of a single job of task τi can
be represented as an Ci ×mi rectangle in time and processor
space. As a result, a gang task can be characterized by a 4-
tuple τi = (Ci, Ti, Di,mi). Additionally, we define for each
task τi ∈ τ its longest starting interval Si = Di − Ci such
that every τi’s job released at ri and starting within time
interval [ri, ri + Si] must meet its deadline if executed non-
preemptively. Without loss of generality, we assume that all
the above parameters are non-negative integers. Moreover, we
define the utilization of a task τi as Ui = Ci ·mi/Ti, and the
utilization of the task set τ as U =

∑
τi∈τ Ui.

Scheduling policy. In this paper, we consider global work-
conserving scheduling, which means each job can be sched-
uled on any processor, and no processor can be left idle
as long as at least one active job, whose requested number
of processors is no bigger than the current number of idle
processors, is not executing. Moreover, we focus on non-
preemptive scheduling, which means a job cannot be pre-
empted once it starts its execution. We also consider a fixed-
priority scheduling algorithm where each task has a constant



(static) priority determined offline and the active jobs with:
i) the highest priorities at a given time, and ii) the number
of required processors less than the number of processors that
are currently idle are selected for execution. We assume each
task has a unique priority, and the smaller the task index, the
higher the task priority (i.e., the priority of τi is higher than
that of τj if i < j).

Response time and schedulability. The worst-case response
time Ri of task τi is the maximum time duration between the
release of any job of τi and the time the job completes its
execution. We say that task τi is schedulable if each job of τi
always meets its deadline (i.e., Ri ≤ Di).

III. GENERAL UTILIZATION BOUND TEST

In this section, we give a general schedulability con-
dition and present a linear-time utilization-based schedu-
lability test for any work-conserving non-preemptive gang
scheduling algorithm.

A. Sufficient schedulability condition

Let us consider task τk ∈ τ and suppose that its job Jk
is the first job to miss its deadline. Since our scheduling
algorithm is non-preemptive, once a job starts its execution,
it will continue without interruption until full completion. If
job Jk misses its deadline then it must be unable to start
its execution from its release time rk until its latest starting
time at rk + Sk that could guarantee meeting the deadline.
Since our scheduling algorithm is work-conserving, the job
cannot start if mk processors needed for its execution are
never idle in the interval [rk, rk+Sk]. Consequently, other jobs
interfering with Jk’s execution should continuously occupy
at least M − mk + 1 processors. For the sake of notation
simplicity, we introduce Mk as:

Mk = M −mk + 1

Let us denote by Wk←i(∆) an upper bound on the task τi’s
workload interfering with job Jk’s execution within any
generic interval of length ∆ > 0. Since Jk misses its
deadline, the worst-case interference workload in any inter-
val [rk, rk +∆] is no less than Mk · ∆ for 0 < ∆ ≤ Sk.
Job Jk is assumed to be the first τk job to miss its deadline,
so all previous τk jobs meet their deadlines and do not execute
within the time interval [rk, rk+Sk] as we consider constrained
deadlines (i.e., Dk ≤ Tk). Then, a necessary condition for τk
to miss its deadline can be given as:

∀∆ : 0 < ∆ ≤ Sk :
∑

τi∈τ\{τk}

Wk←i(∆) ≥Mk ·∆

By negating the above condition, we obtain the following
sufficient condition for τk’s schedulability.

Lemma III.1. Given a gang task set τ running on M
processors, a task τk ∈ τ is schedulable by a work-conserving
non-preemptive scheduling algorithm if:

∃∆ : 0 < ∆ ≤ Sk :
∑

τi∈τ\{τk}

Wk←i(∆) < Mk ·∆ (1)

By applying this condition for each task τk ∈ τ , we can get
a sufficient schedulability test. Next, we show how to compute
the interfering workload Wk←i(∆).

B. Interfering workload computation

We compute an upper bound on the task τi’s work-
load Wk←i(∆) interfering with job Jk’s execution within any
generic interval of length ∆ > 0. If a job Jk is active but not
executing while a job of task τi is executing, we say that τi
is interfering with the execution of Jk.

Di

ŝi

Ti Ti Ci

∆

t1 t2

Fig. 2: Task τi’s worst-case workload in time interval [t1, t2]
of length ∆ > 0.

We first evaluate how many τi jobs’ execution can fall
within the interval of interest [t1, t2] with length ∆ = t2 − t1
where t2 > t1 ≥ 0. The approach follows the same logic
as outlined in [14]–[16]. In the worst-case (see Figure 2), the
start of the first interfering job Ji of task τi is at the beginning
of the interval (i.e., t1) and the job starts its execution Ci

time units before its deadline (i.e., as late as possible). Then,
all subsequent jobs arrive as soon as possible. Given such
an arrival sequence, there are at most Ni(∆) job releases of
task τi within a time interval of length ∆ (e.g., the three job
releases are marked in red in Figure 2):

Ni(∆) =

⌊
∆+ ŝi
Ti

⌋
(2)

where ŝi is the latest starting time of task τi, and we consider
ŝi = Si if not stated otherwise. The execution of the last job of
τi in the interval ∆ might terminate after t2. The overlapping
part of its execution time can be upper bounded as follows:

ξi(∆) = min(Ci,∆+ ŝi −Ni(∆) · Ti) (3)

Therefore, the interference time Ii(∆) of task τi within any
interval of length ∆ > 0 can be upper bounded by:

Ii(∆) = min(∆, Ni(∆) · Ci + ξi(∆)) (4)

We compute Wk←i(∆) by bounding the number of proces-
sors τi can occupy to prevent Jk starting execution. The jobs
of task τi reserve mi processors. However, if mi > Mk, only
Mk processors are accounted for in the interference workload,
since we need to know whether the sum of all busy processors
at each time instant is no smaller than Mk = M −mk + 1.
Therefore,

Wk←i(∆) = mk
i · Ii(∆) (5)

where
mk

i = min(mi,Mk)



The task τi’s interfering jobs can be considered in three
separate categories:

• Carry-in: jobs released before t1 and having remaining
execution at t1 (e.g., the first job in Figure 2).

• Body: jobs with both release time and deadline in the
interval [t1, t2] (e.g., the second and third job in Figure 2).

• Carry-out: jobs released before t2 and with deadline
after t2 (e.g., the last job in Figure 2).

In Section IV, we will differentiate between task τi’s workload
with carry-in WCI

k←i(∆) (computed the same way as Wk←i(∆)
in Equation (5)) and without carry-in WNC

k←i(∆) (computed
as Wk←i(∆) in Equation (5) by considering ŝi = 0 in
Equations (2) and (3)).

C. Utilization bound

Based on Lemma III.1, we can derive a sufficient utilization
bound test of linear-time complexity for an arbitrary work-
conserving non-preemptive gang scheduling algorithm.

Theorem III.2. (UB-NP-Gang). A gang task set τ is schedu-
lable by a work-conserving non-preemptive scheduling algo-
rithm on M processors if for all tasks τk ∈ τ :

U < Mk + Uk

(
2 +

Tk

Sk

)
− 1

Sk

∑
τi∈τ

Ui (Si + Ti) (6)

Proof: We prove the theorem by contradiction. Suppose
there exists a task τk ∈ τ that satisfies Inequality (6) but is
not schedulable. Let Jk be the first job missing its deadline.
By Lemma III.1 and Equation (5), we have:∑

τi∈τ\{τk}

mk
i · Ii(Sk) ≥ Mk · Sk

Since Ii(Sk) ≤
⌊
Sk + Si

Ti

⌋
· Ci + Ci ≤

Ci

Ti
(Sk + Si + Ti),

we have: ∑
τi∈τ\{τk}

mi ·
Ci

Ti
(Sk + Si + Ti) ≥Mk · Sk

By extracting τk from the summation in the LHS, we have:

LHS =
∑
τi∈τ

Ui (Sk + Si + Ti)− Uk · (2Sk + Tk)

= U · Sk +
∑
τi∈τ

Ui (Si + Ti)− Uk · (2Sk + Tk)

Apply it back to the above inequality, we have:

U ≥Mk + Uk

(
2 +

Tk

Sk

)
− 1

Sk

∑
τi∈τ

Ui (Si + Ti)

which contradicts our assumption that τk ∈ τ satisfies
Inequality (6).

The above utilization bound test can be done within linear
time complexity by first computing

∑
τi∈τ Ui (Si + Ti), and

then checking Inequality (6) for each τk ∈ τ .

IV. SCHEDULABILITY CONDITIONS FOR NP-FP GANG

We derive our schedulability tests for the fixed-priority non-
preemptive rigid gang scheduling. Our approach is based on
the concept of problem window. We use two different ap-
proaches for bounding the start of the problem window leading
to two distinct schedulability conditions. In both approaches,
we assume that a job Jk is not schedulable if released within its
problem window. By negating the necessary unschedulability
conditions, we formulate sufficient schedulability tests. The
general idea of our approach is similar to many previous
works [17], [18] including non-preemptive scheduling [19]–
[21]. The new challenges lie in the reasoning and accounting
of the interference of non-preemptive gang jobs that can run
on more than one processor.

A. Interfering tasks

We now identify the interfering jobs with regards to their
priorities and volumes (i.e., mi). We consider the job under
analysis Jk is interfered by another active job Ji. The inter-
fering job Ji falls into one of the following five categories:
• higher-priority and lower-or-equal-volume hplev(k):

Job Ji can always start before Jk as Ji has higher priority
and requires fewer or equal processors.

• higher-priority and higher-volume hphv(k): Job Ji re-
quires more processors than Jk so it is possible that
the latter starts first. Unfortunately, we must assume the
worst-case scenario in which mi processors become idle
at the same time and Ji starts execution before Jk as it
has higher priority.

• lower-priority and lower-volume lplv(k): Job Ji can start
before Jk if the number of idle processors is sufficient
for Ji but not for Jk. Such priority-inversion can occur
multiple times [22] (see Figure 3).

• lower-priority and higher-or-equal-volume lphev(k):
Job Ji released at or after rk while Jk is waiting for the
processor(s) cannot start before Jk as Ji requires more or
equal processors than Jk. If Ji is released before rk and
starts its execution before rk, it can execute while Jk is
active and not executing. Consequently, only one job of
task τi can interfere with τk and we can note that the total
number of processors occupied by lower-priority higher-
volume jobs cannot be greater than M .

• τk previous instance: Job Jk cannot be directly blocked
by the previous τk jobs since the tasks have constrained
deadlines (i.e., Dk ≤ Tk). Nonetheless, the other inter-
fering jobs released before the Jk’s arrival might suffer
from blocking from the previous τk job [23], [24].

Additionally, we also use lephev(k) to denote task set
lphev(k) ∪ {τk} for ease of presentation.

B. Problem window: job’s release time (rk)

We first define the problem window as the time interval
between Jk’s release time rk and its starting time rk + ∆
that can guarantee meeting its deadline, [rk, rk + ∆], where



t

CPUs

1

2

3

4

τ6

τ5 τ4

τ3 τ2

τ1

τ5 τ6 τ1 τ4 τ3 τ2

Fig. 3: Lower-priority and lower-volume jobs blocking. Lower-
priority tasks (τ2, τ3, τ4, τ5, τ6) require 2 processors while task
τ1 requires 4 processors. Arrows show the jobs releases.

0 ≤ ∆ ≤ Sk. We assume that task τk is not schedulable and
Jk is its first job that misses its deadline. This means that
Jk cannot start its execution within time interval [rk, rk +∆]
since mk processors required by Jk are never idle (i.e., among
all M processors, at least Mk must be running other jobs).

We recall that the critical instant (i.e., task arrival leading
to the longest task response time) in multiprocessor schedul-
ing might be unknown [25] and postponing the arrival of
consecutive jobs of a task can have a detrimental effect on
the task set schedulability [26]. Consequently, we assume
that the interfering jobs can have carry-ins and we will try
to limit the interference of such carry-in jobs. We do not
include the previous τk job in the interference as it must
finish its execution before the start of the problem window
rk considering that Jk is the first job missing its deadline and
we consider constrained deadlines.

To reduce the pessimism of our analysis, we limit the
interference of lphev(k) jobs as observed in the previous
section. The following lemma constrains each lphev(k) to
have at most one job interfering with Jk.

Lemma IV.1. At most one job of each lphev(k) task can
execute while a job Jk of task τk is active and not executing.

Proof: Job Jk is assumed to be non-schedulable so it
cannot start within the problem window [rk, rk + ∆]. This
implies that no job with lower priority and higher or equal
volume can start within the problem window [rk, rk+∆]. Such
jobs can execute within the problem window [rk, rk+∆] only
if they start before rk. Since tasks have constrained deadlines,
only one job of each task can be active at a time.

Furthermore, we limit the number of lphev(k) tasks having
a job running within the problem window [rk, rk +∆].

Lemma IV.2. The number of processors occupied by lphev(k)
carry-in jobs is at most M .

Proof: By Lemma IV.1, job Ji of task τi ∈ lphev(k) can
execute within the problem window [rk, rk+∆] only if Ji has
started its execution before rk. If Ji is interfering with Jk, it
must still be running at rk. All jobs execute non-preemptively
and cannot be preempted or suspended until the end of
execution. At each time instant, the number of processors
occupied by the executing jobs cannot be greater than the total

number of available processors M . Consequently, lphev(k)
jobs that started before rk and that are still running at rk
cannot occupy more than M processors.

We can now derive a sufficient schedulability condition for
task τk by applying Lemma III.1 and the observations from
Lemmas IV.1 and IV.2 limiting the interference of lphev(k)
carry-in jobs:

Theorem IV.3. Consider a gang task set τ , a task τk ∈ τ
is schedulable by a fixed-priority non-preemptive scheduling
algorithm on M processors if:∑

τi∈τ\lephev(k)

WCI
k←i(∆) +

∑
τi∈τB(k)

W one
k←i(∆) < Mk ·∆ (7)

where:
WCI

k←i(∆) is workload comprising a carry-in job generated by
the jobs of task τi within a time interval of length ∆ > 0
and can be computed with Equation (5),

W one
k←i(∆) is the maximum workload that can be generated
within time interval of length ∆ > 0 by a single job of
task τi and can be computed as follows:

W one
k←i(∆) = mk

i ·min(Ci,∆) (8)

τB(k) is the set of lphev(k) jobs with the maximal workload
that fulfills the conditions of Lemma IV.2.

The interference of lphev(k) jobs (i.e., τB(k)) can be
computed by solving an instance of the knapsack problem.
The entire procedure is described in Section IV-D.

C. Problem window: processors’ busy time (t0 ≤ rk)

We now consider a problem window that can start earlier
than the release time rk of the non-schedulable job Jk. Shifting
the problem window will permit to get tighter bounds of carry-
in interference. In particular, we will limit the interference of
hplev(k) carry-in jobs. As in the previous case, we assume
that task τk is non-schedulable and Jk is the first job that
misses its deadline. Job Jk is released at rk but its release
can be pulled backwards without letting it start execution as
long as: at least one active hplev(k) job is not executing (such
a job will prevent Jk to start) or hplev(k) jobs are running
on at least Mk processors (hence Jk does not have enough
processors to start). Similar to [19], we define a problem
window [t0, t0+∆], where t0 is defined as follows.

Definition IV.1. Let t0 < rk denote the earliest time instant
that ∀t ∈ [t0, rk) one of the following two conditions holds:

1) At least Mk processors are occupied by tasks in hplev(k)
and all active tasks in hplev(k) are executing at t;

2) at least one active task in hplev(k) is not executing.
If there does not exist such a t0, we set t0 = rk.

Based on Definition IV.1, the following lemma is derived,
which is a necessary condition for Jk to miss its deadline.

Lemma IV.4. ∀t ∈ [t0, t0 + ∆], at least Mk processors are
busy at time instant t.



Proof: We consider interval [t0, rk) and interval [rk, t0+
∆] separately. For interval [t0, rk), let us consider the two
conditions in Definition IV.1. For any time instant t ∈ [t0, rk),
if the first condition holds, obviously at least Mk processors
are busy; if the second condition holds, there must also be
at least Mk processors busy as some active jobs of hplev(k)
cannot execute under a work-conserving policy. For interval
[rk, t0 + ∆], since Jk misses its deadline, it cannot start its
execution before t0 + ∆ ≤ rk + ∆. Therefore, we know at
least Mk processors are busy during [rk, t0 +∆].

Furthermore, we investigate which jobs can execute within
the problem window [t0, t0 +∆].

Lemma IV.5. ∀t ∈ [t0, t0 +∆], a job of lephev(k) task can
execute at time instant t only if it starts execution before t0.

Proof: We prove the lemma by contradiction. Suppose
there is a job Ji of task in lephev(k) starting its execution
within [t0, t0 +∆]. We consider interval [t0, rk) and interval
[rk, t0 + ∆] separately. If Ji starts execution at t ∈ [t0, rk),
we know that at most M − mi processors are occupied by
hplev(i) jobs, and there are no active hplev(i) jobs waiting
for execution. Given that mi ≥ mk, hplev(k) ⊆ hplev(i),
it contradicts Definition IV.1. If Ji starts execution at t ∈
[rk, t0+∆], it obviously contradicts the assumption that Jk is
the first job missing its deadline.

By Lemma IV.4 and IV.5, we know that at least Mk

processors must be occupied by the interfering jobs within
the entire problem window, as illustrated in Figure 4.

t0−1 t0 rk t0 +∆

M

mk mk

Fig. 4: Problem window [t0, t0 +∆].

Next, we show how to limit the carry-in interference within
problem window [t0, t0+∆] in Lemmas IV.6 and IV.7. Like in
the previous subsection, it is possible to limit the interference
of lphev(k) carry-in jobs by applying similar reasoning as
before. Moreover, by redefining the problem window, we can
also limit the carry-in interference of hplev(k) tasks. On the
downside, since we consider time interval that starts before rk,
we need to consider that the previous τk’s job can run within
the problem window (i.e., the sub-interval [t0, rk]).

Lemma IV.6. The number of processors occupied by hplev(k)
carry-in jobs is at most M −mk.

Proof: Since t0 is the earliest instant that some active
task in heplev(k) is not executing (the second condition of
Definition IV.1), we know that all active hplev(k) jobs must
be executing at t0−1. Therefore, hplev(k) tasks can have

carry-in jobs only if they are executing at t0−1. Moreover,
since t0 is the earliest instant such that at least Mk processors
are occupied by tasks in hplev(k) (the first condition of
Definition IV.1), hplev(k) tasks can only occupy at most
M−mk processors at t0−1. Hence, the number of processors
occupied by hplev(k) carry-in jobs is at most M −mk.

Lemma IV.7. The number of processors occupied by hplev(k)
and lephev(k) carry-in jobs is at most M .

Proof: By Lemma IV.5 and IV.6, we know that lephev(k)
and hplev(k) carry-in jobs exist only if they start executing
before t0. Hence, the number of processors occupied by
lephev(k) and hplev(k) carry-in jobs cannot exceed the total
available processor number M .

Now, we derive a sufficient schedulability condition for
task τk by negating the necessary condition in Lemma IV.4 and
applying the observations from Lemmas IV.5, IV.6 and IV.7
limiting the number of carry-in jobs:

Theorem IV.8. Consider a gang task set τ , a task τk ∈ τ
is schedulable by a fixed-priority non-preemptive scheduling
algorithm on M processors if:∑

τi∈hphv(k)
∪

lplv(k)

WCI
k←i(∆) +

∑
τi∈hplev(k)

WNC
k←i(∆) +

∑
τi∈τ0(k)

W diff
k←i (∆) < Mk ·∆

(9)

where:
WCI

k←i(∆) is the maximum workload including a carry-in job
generated by task τi within a generic time interval of
length ∆ and can be computed with Equation (5),

WNC
k←i(∆) is the maximum workload without a carry-in job
generated by task τi within a generic time interval of
length ∆ and can be computed with Equation (5) con-
sidering ŝi = 0 in Equations (2) and (3),

W diff
k←i (∆) is defined as follows:

W diff
k←i (∆) =

{
WCI

k←i(∆)−WNC
k←i(∆) if τi ∈ hplev(k)

W one
k←i(∆) if τi ∈ lephev(k)

(10)
and W one

k←i(∆) is the maximum workload that can be
generated within a time interval of length ∆ by a single
job of task τk that can be computed with Equation (8),

τ0(k) is the set of hplev(k) ∪ lephev(k) with the maximal
workload that fulfils the constraints on carry-in jobs in
Lemmas IV.6 and IV.7.

The carry-in tasks included in set τ0 satisfying constraints
in Lemmas IV.6 and IV.7 are selected by solving an instance
of the knapsack problem as described in the next subsection.

D. Knapsack problems

Now we show how to calculate the maximum workload with
carry-in limitation in Inequality (7) and (9) by formulating
them as knapsack problems. In Inequality (7), our objective
is to maximize the total workload by selecting tasks from
lphev(k) under the constraint that the number of processors



occupied by the selected tasks cannot exceed the total number
of processors M (Lemma IV.2). This is obviously equivalent to
the 0-1 knapsack problem, where M processors are interpreted
as a knapsack with capacity M , and tasks are interpreted as
the items to be packed into the knapsack. In Inequality (9),
the problem is slightly different, since we have two types of
tasks in the candidate set, i.e., tasks in hplev(k) and tasks in
levhev(k). On the one hand, both types of tasks need to share
the capacity of M processors (Lemma IV.7), which is the same
as the ordinary 0-1 knapsack problems. On the other hand, for
tasks in hplev(k), we have an additional constraint that the
processors occupied by such tasks cannot exceed a capacity
of M −mk (Lemma IV.6). This can be seen as a generalized
version of 0-1 knapsack problem, where an additional capacity
constraint needs to be ensured for a special type of items
(i.e., hplev(k) tasks in our case).

There have been many solutions proposed for 0-1 knapsack
problem in the literature. Next, we generalize two existing
approaches to solve our generalized knapsack problem by
handling the additional constraint arisen in Inequality (9). The
first approach is a linear-time complexity upper bound gener-
alized from the linear programming (LP) relaxation approach
proposed in [27]. The second is dynamic programming (DP),
which is an exact approach widely used in many knapsack
problems [28]. Note that our generalized approaches can also
be used to solve the knapsack problem in Inequality (7), since
it is a special case of the generalized problem.

For simplicity, in the remaining part of this subsection, we
use a generic notation Wi to denote the interference workload
W one

k←i(Sk) in Inequality (7) and the interference workload
difference W diff

k←i (Sk) in Inequality (9). Moreover, we use
τ to denote the candidate task set, which is lphev(k) in
Inequality (7) and hplev(k) ∪ lephev(k) in Inequality (9).

1) LP relaxation upper bound:
We first formulate our optimization problem in Inequal-

ity (9) as an integer linear programming (ILP):

maximize
∑
τi∈τ

Wi · xi (11)

subject to:
∑
τi∈τ

mi · xi ≤M (12)∑
τi∈hplev(k)

mi · xi ≤M −mk (13)

xi ∈ {0, 1} ∀τi ∈ τ (14)

where xi is a binary decision variable to determine whether
Wi is included in the total interference. An LP relaxation can
be derived by replacing the integrality constraints (14) with
continuous constraints:

0 ≤ xi ≤ 1 ∀τi ∈ τ (15)

where xi is a continuous decision variable representing the
proportion of Wi included in the total interference.

Then, we obtain the optimal solution of LP relaxation in
two steps:

• Step 1. We define the workload density of task τi as
Wi/mi and sort the tasks in the candidate task set ac-
cording to the decreasing order of their workload density:

W(1)

m(1)
≥

W(2)

m(2)
≥ ... ≥

W(n)

m(n)
(16)

where (i) denotes the index of task with the i-th biggest
workload density, and n is the number of candidate tasks.

• Step 2. We select tasks according to the order in (16)
consecutively and fill them into the processors until all
M processors are full. The proportion x(i) of each task
τ(i) is set as large as possible without violating constraints
(12), (13) and (15). Formally, we have:

Lemma IV.9. The optimal solution x of the LP relaxation is

x(j) =
min(m(j),M

′
j)

m(j)
τ(j) ∈ lephev(k)

x(j) =
min(m(j),M

′
j ,M

′′
j )

m(j)
τ(j) ∈ hplev(k)

where M ′j denotes the remaining number of processors after
assigning the first j − 1 tasks, and M ′′j denotes the remain-
ing number of processors that can be occupied by tasks in
hplev(k) after assigning the first j − 1 tasks:

M ′j = M −
∑

1≤i≤j−1

x(i) ·m(i) 1 ≤ j ≤ n

M ′′j = M −mk −
∑

1≤i≤j−1
τ(i)∈hplev(k)

x(i) ·m(i) 1 ≤ j ≤ n

Proof: We prove the lemma by contradiction. Let x∗ be
the optimal solution of the LP relaxation. Observe that any
optimal solution x of the LP relaxation must be maximal, in
the sense that

∑
mi · xi = M . Suppose x∗(p) < x(p) for some

x(p) > 0, then we must have x∗(q) > x(q) for at least one q > p.
Given a sufficiently small ϵ > 0, we could increase the value
of x∗(p) by ϵ and decrease that of x∗(q) by ϵ ·m(p)/m(q), thus
increasing the value of the objective function by ϵ · (W(p) −
W(q) ·m(p)/m(q)). Since W(p)/m(p) > W(q)/m(q), we know
ϵ · (W(p)−W(q) ·m(p)/m(q)) > 0, which contradicts with our
assumption that x∗ is an optimal solution. In the same way
we can prove that ∀p, x∗(p) > x(p) is impossible. Hence, there
does not exist any solution better than x.

The optimal objective value of LP relaxation follows:

obj =
∑
τi∈τ

W(i) · x(i)

Since obj is the optimal objective value of LP relaxation, it is
a valid upper bound of the original ILP. Moreover, because of
the integrality of W(i) and m(i), a valid upper bound of ILP
is thus

⌊
obj

⌋
.

For clarity, specific procedures to compute UB are given
in Algorithm 1. It is clear that the time complexity of line
2-11 in Algorithm 1 is O(n), where n is the number of tasks
in τ . If we take line 1 into account, it will take O(n log n)



Algorithm 1: LP relexation upper bound
Input: Number of processors M , task under analysis τk,

candidate task set τ ;
Output: Interference workload upper bound UB;

1 Sort tasks in τ according to Formula (16);
2 UB← 0, M ′ ←M , M ′′ ←M −mk, i← 1;
3 while M ′ > 0 do
4 if τ(i) ∈ hplev(k) then
5 UB← UB +

min(m(i),M
′,M′′)

m(i)
·W(i);

6 M ′ ←M ′ −min(m(i),M
′,M ′′);

7 M ′′ ←M ′′ −min(m(i),M
′,M ′′);

8 else
9 UB← UB +

min(m(i),M
′)

m(i)
·W(i);

10 M ′ ←M ′ −min(m(i),M
′);

11 i← i+ 1;

12 return UB;

time complexity for task sorting. However, we can apply
the acceleration technique proposed in [29] to make our
computation still performed in O(n) time. Algorithm 1 can
be used to solve the knapsack problem in Inequality (7) by
initializing M ′′ = M ′. The complexity remains the same.

2) Dynamic programming:
The general idea of DP is to simplify a complex op-

timization problem by breaking it down into simpler sub-
problems and solving them in a recursive manner [28]. For
our generalized knapsack problem, this is achieved by dividing
the solution process into n stages, where n is the number
of tasks in the candidate set τ . In each stage i = 1, ..., n,
we solve a sub-problem of computing Wi,m,m′ , which is
defined as the maximum interference workload of the first
i tasks on m processors with the constraint that the number
of processors occupied by hplev(k) tasks cannot exceed m′.
The sub-problems can be solved in an iterative manner starting
from W0,1,1 towards Wn,M,M−mk

, as shown in Algorithm 2.
The time complexity of Algorithm 2 is O(nM2) for the

generalized knapsack problem in Inequality (9). For the prob-
lem in Inequality (7), the time complexity reduces to O(nM),
since there is no additional constraint on hplev(k) tasks so
that we do not need to iterate m′ from 1 to M −mk.

E. Schedulability tests

We derive two sufficient schedulability tests based on the
conditions obtained in Sections IV-B and IV-C and the knap-
sack problem formulations discussed in Section IV-D.

The first test Fixed consists in checking the schedulability
conditions expressed with Formulas (7) and (9) for each
task τk ∈ τ with ∆ = Sk and solving the knapsack problem
using the LP relaxation upper bound given in Algorithm 1.
The time complexity of the resulting test is O(n2).

The schedulability test proposed above can be further re-
fined by applying an iterative procedure to restrict the end of
the problem interval [14]. The previously proposed test checks
the schedulability only in one fixed problem window ending
after ∆ = Sk. The sufficient schedulability condition given by

Algorithm 2: Dynamic programming
Input: Number of processors M , task under analysis τk,

candidate task set τ , in which each task τ i has
volume mi and interference workload W i;

Output: Maximum interference workload Wn,M,M−mk ;
1 Initialize Wi,m,m′ ← 0, ∀i = 0, ..., n,m = 0, ...,M,m′ =

0, ...,M −mk;
2 for i← 1 to n do
3 for m← 1 to M do
4 for m′ ← 1 to M −mk do
5 if τi ∈ hplev(k) then
6 if mi > min (m,m′) then
7 Wi,m,m′ ←Wi−1,m,m′ ;
8 else
9 Wi,m,m′ ← max (Wi−1,m,m′ ,

Wi−1,m−mi,m′−mi
+W i);

10 else
11 if mi > m then
12 Wi,m,m′ ←Wi−1,m,m′ ;
13 else
14 Wi,m,m′ ← max (Wi−1,m,m′ ,

Wi−1,m−mi,m′ +W i);

15 return Wn,M,M−mk ;

Formula (1) can hold for any integer ∆ ∈ (0, Sk] at which or
before which job under analysis can start its execution. The
goal of the response time analysis is to find an upper bound
on the task τk’s latest starting time sk ∈ (0, Sk] such that:∑

τi∈τ\{τk}

Wk←i(sk) < Mk · sk (17)

We can solve the above inequality by the fixed-point iteration
on the value sk as described in [30], [31]:

sk ←
⌊∑

τi∈τ Wk←i(sk)

Mk

⌋
+ 1 (18)

When testing the entire task set τ , once a new upper bound
on the task τk’s worst-case response time is obtained as Rk =
sk+Ck, we can update the value of ŝk ← sk. This information
can be exploited to reduce the overestimation in τk’s workload
computation (see Equations (2) and (3)) when testing the next
tasks in τ . We continue the test until: i) all tasks are deemed
schedulable, or ii) the tasks’ worst-case response times remain
unaffected. The analysis is outlined in Algorithm 3.

In our second test, RTA, we apply the response time analysis
for the schedulability conditions described in Formulas (7)
and (9). We apply both conditions for each task and consider
the shortest worst-case response time upper bound (line 9 in
Algorithm 3). To limit the number of carry-in jobs, we use the
dynamic programming approach given in Algorithm 2.

The RTA test time-complexity is O(n3M2D2
max), where

Dmax = max{Di|τi ∈ τ} is the longest relative deadline
among all tasks. Computing the worst-case response time
using fixed-point iteration on Equation (18) can take at most
n ·Sk < n ·Dk steps for each task τk and at each iteration step
we solve the knapsack problem using Algorithm 2 having the



Algorithm 3: Response time analysis

Input: Task set under analysis τ ;
Output: Schedulability of τ ;

1 sched← True, updated← True,∀ τk ∈ τ : ŝk ← Sk;
2 while sched is False and updated is True do
3 updated← False; sched← True;
4 foreach τk ∈ τ do
5 sk ← 1;
6 while sk ≤ ŝk do
7 Wk←min (LHS Eq. (7) and (9)) with ∆=sk;
8 if Wk/Mk ≥ sk then
9 sk ← ⌊Wk/Mk⌋+ 1;

10 else
11 if sk < ŝk then
12 updated← True;
13 ŝk ← sk;

14 break;
15 if sk > Sk then
16 sched← False;

17 return sched;

worst-case time complexity of O(nM2). We repeat the entire
procedure as long as there is at least one unschedulable task
and as long as we can obtain improvement on at least one task
worst-case response time. In such a way, the schedulability
analysis of the entire task set can be performed multiple times
which can be upper-bounded by n ·Dmax.

F. Priority assignment

A priority assignment policy P is optimal with respect
to a schedulability test S, if and only if there are no task
sets that are deemed schedulable by test S using another
priority assignment policy but not deemed schedulable by
test S using policy P [32]. An Optimal Priority Assignment
(OPA) algorithm was proposed for uniprocessor fixed-priority
feasibility analysis by Audsley [33]. Later, OPA was extended
to the multiprocessor case in [34] by proving that OPA is
compatible to a global fixed-priority schedulability test S if
and only if the following three conditions hold:

1) The schedulability of a task τk may, according to test S,
depend on any independent properties of tasks with
priorities higher than k, but not on any properties of those
tasks that depend on their relative priority ordering.

2) The schedulability of a task τk may, according to test S,
depend on any independent properties of tasks with
priorities lower than k, but not on any properties of those
tasks that depend on their relative priority ordering.

3) When the priorities of any two tasks of adjacent priority
are swapped, the task being assigned the higher priority
cannot become unschedulable according to test S, if it
was previously schedulable at the lower priority.

According to the above three conditions, [34] classifies
global fixed-priority schedulability tests into OPA-compatible
and OPA-incompatible. For OPA-compatible tests, Audsley’s
OPA algorithm should be used. For OPA-incompatible tests,

it is recommended to use a priority assignment heuristic DkC,
which was demonstrated to be highly effective in multiproces-
sor scheduling and applicable to any schedulability test [34].

Next, we show that schedulability tests Fixed and RTA
are unfortunately OPA-incompatible due to a conflict between
schedulability condition (9) and the above condition 3). There-
fore, we use the priority assignment heuristic DkC recom-
mended by [34] for performance evaluation in Section V.

Theorem IV.10. The proposed NP-FP Gang schedulability
tests Fixed and RTA are OPA-incompatible.

Proof: It suffices to show that condition 3) does not hold
for (9). We consider two tasks τx and τy with mx < my . Tasks
τx and τy are initially at priorities k and k+1, respectively. τy
is schedulable, and τx /∈ τ0(y). If we swap the priorities of the
two tasks, task τx moves from set hplev(y) to lplv(y). As a
result, when checking the schedulability of τy , the interference
workload generated by task τx needs to be excluded from
the first term

∑
τi∈hplev(y) W

NC
y←i(∆) and included in the

second term
∑

τi∈hphv(y)∪lplv(y) W
CI
y←i(∆). (The third term∑

τ0(y) W
diff
y←i (∆) does not change because τx /∈ τ0(y).)

Since WCI
y←x(∆) ≥WNC

y←x(∆), the LHS of (9) may increase,
which may turn task τy from schedulable to unschedulable.

V. PERFORMANCE EVALUATION

This section evaluates the schedulability performance of
our proposed schedulability tests. We first perform simula-
tions on synthetic task sets generated randomly with various
parameters using a standard task set generation technique.
Then, we conduct a case study on task sets generated from
real-world Edge TPU benchmarks with eight representative
convolutional neural networks widely used in computer vision
applications. For each task set, we compare the acceptance
ratio (the percentage of task sets deemed schedulable) achieved
by our proposed schedulability tests and the one proposed in
[6], which is, to our best knowledge, the only schedulability
test proposed for non-preemptive fixed-priority rigid gang
scheduling. In the following subsections, we use UB to denote
the utilization bound test proposed in Section III, Fixed and
RTA introduced in Section IV to denote the schedulability test
with fixed time window and the response time analysis with
fixed-point iteration, respectively. We use Kim2016 to denote
the schedulability test proposed in [6].

As discussed in Section IV-F, the proposed schedulability
tests Fixed and RTA are not OPA-compatible, thus we use
DkC [34] as the priority assignment for Fixed and RTA
as recommended by [34]. However, since Kim2016 is OPA-
compatible (proof see Appendix), we use OPA to provide the
optimal priority ordering for Kim2016.

A. Performance evaluation on synthetic task sets

We generate synthetic task sets using DRS [35],
a generalized version of the UUnifast [36] and
RandFixedSum [37] algorithms. To evaluate the
schedulability performance in various scenarios, we consider



0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s
UB

Fixed
RTA

Kim2016

(a) n = 4

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(b) n = 8

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(c) n = 16

Fig. 5: Schedulability ratios on synthetic task sets with M = 8,m ∈ [1, 8].

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(a) m ∈ [1, 4] (low volume)

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s
UB

Fixed
RTA

Kim2016

(b) m ∈ [4, 7] (medium volume)

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(c) m ∈ [7, 10] (high volume)

Fig. 6: Schedulability ratios on synthetic task sets with M = 16, n = 16.

two sets of problem settings: (i) we fix the number of
available processors M = 8, sample the task volume m from
the range [1, 8], and vary the task set size n ∈ {4, 8, 16}; (ii)
we set M = 16, n = 16 and vary the task volume sampling
range from [1, 4] (low volume), [4, 7] (median volume), and
[7, 10] (high volume). Additionally, the task set utilization
U is varied from [0.1,M ] with a step of 0.1 in both sets of
problem settings.

We generate 10,000 random task sets for each combination
of the above parameters. For each task set, we first set the U
and then generate utilization for every task using DRS such
that their sum equals U . The utilization of every single task
should not be larger than the maximum volume mmax of the
task set. Then we generate volume for each task from range
[max (mmin, ⌈Ui⌉),mmax] with uniform distribution. We take
the maximum of mmin and ⌈Ui⌉ as the left side of the range
since the utilization of each task should be no bigger than
the volume. Otherwise, the task is not schedulable (Ci > Ti).
Next, we generate Ci for each task from a uniform distribution
in the range [10, 100] ms. We select this range since it is
close to the benchmark results in our case study. Finally, we
calculate the period of each task by Ti = ⌈Ci ·mi/Ui⌉.

Figure 5 shows the evaluation results with varied task set
sizes. From the figure, we can see that the proposed schedula-
bility tests Fixed and RTA outperform Kim2016 for all task
set sizes. Specifically, test RTA achieves up to 30.3%, 38.4%,

and 46.5% additional task sets deemed schedulable compared
to Kim2016 for n = 4, n = 8, and n = 16, respectively.
Moreover, the improvement of RTA over Kim2016 increases
with the task set size n because RTA can limit more carry-in
jobs when there are more tasks in the task set, while Kim2016
does not limit any carry-in jobs. By comparing Fixed with
RTA, we can see that the performance gain of RTA over
Fixed is getting smaller for larger task sets.

Figure 6 shows the evaluation results with varied task
volume ranges. It can be seen from the figure that both
Fixed and RTA outperform Kim2016 for all task volume
levels. Specifically, RTA achieves up to 39.1%, 28.5%, and
29.1% additional task sets deemed schedulable compared
to Kim2016 for low, medium, and high volume task sets,
respectively. Moreover, it can be observed that UB gets more
pessimistic for higher volume tasks. This can be interpreted
by Inequality (6). The lower the RHS value of (6), the more
pessimistic the utilization bound test. From (6), it can be seen
that the RHS value decreases with the increase of both the task
volume mk and period Ti. According to Ui = Ci ·mi/Ti, a
task with higher volume tends to have a larger period under the
same utilization and WCET distribution. As a result, the RHS
value of in Inequality (6) decreases with the task volumes, and
therefore, UB is more pessimistic for higher volume tasks.

We note that the above results of the proposed tests Fixed
and RTA can be further improved by using an optimal priority



TABLE I: Edge TPU benchmarking results

Model Inception-v1 Inception-v2 Inception-v3 Inception-v4 ResNet-50 ResNet-101 ResNet-152 Inception-ResNet-v2

Model Size (MB) 5.72 10.19 21.56 40.90 23.40 42.46 57.53 54.13
WCET (ms) 6 10 15 31 24 44 55 40
Volume 1 2 4 6 4 6 9 9

assignment policy, which we plan to study in the future work.

B. Case study on Edge TPU benchmarks

To evaluate the performance of our proposed schedulability
tests in real-world applications, we benchmark the execution
times of 8 representative deep neural networks on COTS Edge
TPU devices and generate task sets based on the benchmarked
task profiles. We use two hardware configurations in the
benchmarking. One is ASUS AI Accelerator card CRL-G18U-
P3D integrated with 8 Edge TPUs. The other one is ASUS AI
Accelerator card CRL-G116U-P3D integrated with 16 Edge
TPUs1. Both cards are connected via PCIe to a workstation
with Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz. It should
be noted that although we use a desktop platform to host the
Edge TPUs, the neural networks will be running on the Edge
TPUs entirely, as long as the operations2 defined in the neural
network models are supported by Edge TPU. To this end, we
select eight representative neural networks fully compatible
with Edge TPU. The list of the neural network models used
in our benchmark is reported in Table I.

The table also shows that the selected neural networks have
a wide range of sizes, from 5.72 MB to 57.53 MB. Recall that
the benefit of running a model on multiple Edge TPUs is to
cache the entire neural network parameters on the Edge TPU
on-chip memory and avoid memory transaction latency. Our
preliminary experiments found that the first six neural network
models can be fully cached on 8 Edge TPUs. However,
the last two neural networks i.e., ResNet-152 and Inception-
ResNet-v2, will occupy more than 8 Edge TPUs. Based on
this observation, we benchmark the first six models with the
hardware integrated with 8 Edge TPUs and benchmark the last
two models with the hardware integrated with 16 Edge TPUs.

The benchmarking process is as follows. For each neural
network, we run it on the pipelines with different number of
Edge TPUs varied from 1 to the maximum number of Edge
TPUs available on the card (i.e., 8 for CRL-G18U-P3D and
16 for CRL-G116U-P3D). For each number of Edge TPUs,
we perform 1,000 inferences and take the maximum inference
time as its WCET. Then, we select the lowest WCET and
the corresponding Edge TPU number as the network setup
used in the case study. Specific results are shown in Table I.
Since the neural networks are benchmarked on two hardware
configurations with different number of available Edge TPUs,
we generate two suites of neural network task sets accordingly.
In the first suite of task sets, the available number of Edge
TPUs M is set as 8, and each task set includes 6 tasks
corresponding to the first six neural network models in Table I.

1https://iot.asus.com/products/AI-accelerator/AI-Accelerator-PCIe-Card/
2https://coral.ai/docs/edgetpu/models-intro/#supported-operations/

0 1 2 3 4
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(a) 8 Edge TPUs, 6 neural network inference tasks

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la

bl
e

Ta
sk

s

UB
Fixed
RTA

Kim2016

(b) 16 Edge TPUs, 8 neural network inference tasks

Fig. 7: Schedulability ratios on Edge TPU benchmark tasks.

In the second suite, M is set to 16, and each task set includes
all eight benchmarked neural networks. In each test suite,
the target task set utilization U varies in [0.1,M ] with a
step of 0.1. For each target utilization, we generate 10,000
task sets with random task utilization generated by DRS. The
upper bound of each task utilization is set as its volume to
ensure Ci/Ti ≤ 1,∀τi ∈ τ . The task periods are calculated as
Ti = ⌈Ci ·mi/Ui⌉ accordingly.

Figure 7 shows the schedulability results on the Edge TPU
benchmark task sets. It can be observed from the figure that
our proposed Fixed and RTA outperform the existing test
Kim2016 on both test suites. In particular, RTA achieves up to
85.7% additional schedulable task sets compared to Kim2016
on the test suite with 8 Edge TPUs, and 73.2% on the test
suite with 16 Edge TPUs. The improvement of RTA over
Kim2016 on the Edge TPU benchmark task sets is larger
than synthetic task sets. This is as expected because, in the
Edge TPU benchmark task sets, a large-size neural network
usually requires a large WCET and large volume (as shown
in Table I). As a result, the variance of the task execution
demands (i.e., Ci ×mi) is larger on the neural network task



sets. In Fixed and RTA, the interference workload generated
by extremely high-demand tasks can be effectively limited by
the developed gang task carry-in limitation technique, which
is not investigated in Kim2016.

VI. RELATED WORK

The problem of rigid gang scheduling was shown to be
NP-hard [38]. Goossens et al. [39] provided and proved an
exact schedulability test for preemptive fixed-priority rigid
gang scheduling. Further, Goossens and Richard [40] used
the idea of proportionate progress [41], [42] to propose an
optimal scheduling algorithm for periodic implicit deadline
rigid gang tasks. Collette et al. [43] also leveraged the idea
of proportional progress and proposed a theoretically optimal
scheduling algorithm for malleable (i.e., the scheduler can
change the number of processors the job is running on at any
point during the job execution) periodic tasks with implicit
deadlines. Berten et al. [44] considered moldable (i.e., the
scheduler can decide the number of processors allocated to
a parallel job and this decision is made before the job starts)
gang scheduling and showed that by using the information
on the past and future scheduling events, the scheduler can
better adjust the number of processors dedicated to each job.
Nelissen et al. [45] proposed the response time analysis under
the job-level fixed-priority policy for moldable gang tasks
with a periodic activation model. Kato and Ishikawa [46]
apply Earliest Deadline First (EDF) to the gang scheduling
for preemptive rigid tasks while Dong and Liu [47], [48]
studied Global EDF for gang task systems. Dong et al. [2]
also explored the gang scheduling problem for soft real-
time systems and proposed a tardiness bound under Global
EDF. Ueter et al. [49] proposed a stationary gang scheduling
algorithm and showed that it can be reduced to the single
processor self-suspension scheduling problem. Ali et al. [50]
proposed a real-time preemptive gang scheduling framework
that enforces only one gang executing at any time in the system
to limit memory interference. They further explored how to
form virtual-gangs from a group of parallel real-time tasks
in [51]. They proposed gang formation algorithms and an intra-
gang synchronization framework for multicore platforms.

The sufficient schedulability tests for sporadic sequen-
tial tasks executing on multiprocessors were proposed for
non-preemptive Global EDF [20], [30], [52] and Fixed-
Priority [19], [20], [30], [31], [53], [54]. For non-preemptive
rigid gang scheduling, Dong and Liu [22] derived a utilization-
based schedulability test under Global EDF. The closest work
to ours is Kim et al. [6], who consider the non-preemptive
fixed-priority scheduling of rigid gang tasks in power systems.
Our analysis enhances their work mainly by reducing the
number of carry-in interfering jobs and applying a classic
iterative response time analysis.

VII. CONCLUSION

In this paper, we propose new schedulability analysis tech-
niques for non-preemptive rigid gang scheduling. For any
work-conserving non-preemptive gang scheduling algorithm,

we propose a utilization bound test with linear-time complex-
ity. For NP-FP Gang scheduling, we propose two schedu-
lability tests based on the concept of problem window and
carry-in workload limitation. The first test is of quadratic time
complexity, and the second test is pseudo-polynomial since we
further refine the analysis by applying fixed-point iteration. We
evaluate our proposed schedulability analysis on both synthetic
task sets and neural network task benchmarks on multi-TPU
edge AI accelerators. The evaluation results demonstrate the
effectiveness of the proposed analyses by comparing them
with the state-of-the-art schedulability test proposed for NP-FP
Gang scheduling.

Future directions include extending the proposed schedula-
bility analysis to moldable and malleable gang scheduling al-
gorithms. Additionally, designing optimal priority assignment
algorithms for the proposed NP-FP gang schedulability tests
is also interesting to study.

APPENDIX

Theorem A.1. The NP-FP Gang schedulability test Kim2016
(19) is OPA-compatible.∑
τi∈τ\lephev(k)

WCI
k←i(∆) +

∑
τi∈lphev(k)

W one
k←i(∆) < Mk ·∆ (19)

Proof: We show that the three conditions for OPA com-
patibility hold for (19). In (19), the computation of workload
WCI

k←i(∆) and W one
k←i(∆) depend on independent properties

of task τi ∈ τ \ lephev(k) and lphev(k), respectively, but
not on their relative priority ordering. Therefore, the first two
conditions hold. For the third condition, we consider two tasks
τx and τy initially at priorities k and k + 1, respectively, and
τy is schedulable. There are three circumstances to consider:

1) mx < my . If we swap the priorities of the two tasks, task
τx moves from hplev(y) to lplv(y).

2) mx = my . If we swap the priorities of the two tasks, task
τx moves from hplev(y) to lphev(y).

3) mx > my . If we swap the priorities of the two tasks, task
τx moves from hphv(y) to lphev(y).

For circumstance 1), the computation of the LHS of (19) does
not change since hplev(y) and lplv(y) are both within set
τ \ lephev(y). For circumstance 2) and 3), the workload of
task τx needs to be excluded from

∑
τi∈τ\lephev(k) W

CI
y←i(∆)

and included in
∑

τi∈lphev(k)
W one

y←i(∆). Since WCI
y←x(∆) ≥

W one
y←x(∆), the change will result in an equal or smaller

LHS of (19), thus cannot turn task τy from schedulable to
unschedulable. Hence, the third condition holds.

ACKNOWLEDGMENT

Marco Caccamo was supported by an Alexander von Hum-
boldt Professorship endowed by the German Federal Ministry
of Education and Research. The authors would like to thank
the anonymous reviewers for their valuable comments and
suggestions.



REFERENCES

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
pp. 7–17, 2011.

[2] Z. Dong, K. Yang, N. Fisher, and C. Liu, “Tardiness bounds for sporadic
gang tasks under preemptive global EDF scheduling,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 12, pp. 2867–2879,
2021.

[3] S. Wasly and R. Pellizzoni, “Bundled scheduling of parallel real-time
tasks,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019, pp. 130–142.

[4] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits
for fine-grain synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, no. 4, pp. 306–318, 1992.

[5] M. A. Jette, “Performance characteristics of gang scheduling in multipro-
grammed environments,” in ACM/IEEE Conference on Supercomputing,
1997, pp. 1–12.

[6] E. Kim, J. Lee, L. He, Y. Lee, and K. G. Shin, “Offline guarantee
and online management of power demand and supply in cyber-physical
systems,” in IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 89–
98.

[7] “Edge TPU,” https://cloud.google.com/edge-tpu, accessed: 2022-10-25.
[8] “Edge TPU Performance Benchmarks,” https://coral.ai/docs/edgetpu/

benchmarks, accessed: 2022-10-25.
[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1–9.

[10] S. Christian, V. Vincent, S. Ioffe, S. Jon, and W. Zbigniew, “Rethinking
the Inception architecture for computer vision,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–
2826.

[11] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI Conference on Artificial Intelligence, 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[13] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “A
comprehensive survey of industry practice in real-time systems,” Real-
Time Systems, vol. 58, no. 3, pp. 358–398, 2021.

[14] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in IEEE Real-Time
Systems Symposium (RTSS), 2007, pp. 149–160.

[15] T. P. Baker, “Multiprocessor EDF and Deadline Monotonic schedulabil-
ity analysis,” in IEEE Real-Time Systems Symposium (RTSS), 2003, pp.
120–129.

[16] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor scheduling for
real-time systems. Springer Cham, 2015.

[17] S. Baruah, “Techniques for multiprocessor global schedulability analy-
sis,” in IEEE Real-Time Systems Symposium (RTSS), 2007, pp. 119–128.

[18] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds for
fixed priority multiprocessor scheduling,” in IEEE Real-Time Systems
Symposium (RTSS), 2009, pp. 387–397.

[19] N. Guan, W. Yi, Q. Deng, Z. Gu, and G. Yu, “Schedulability analysis
for non-preemptive fixed-priority multiprocessor scheduling,” Journal of
Systems Architecture, vol. 57, no. 5, pp. 536–546, 2011.

[20] N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu, “New schedulability test
conditions for non-preemptive scheduling on multiprocessor platforms,”
in IEEE Real-Time Systems Symposium (RTSS), 2008, pp. 137–146.

[21] H. Leontyev and J. H. Anderson, “A unified hard/soft real-time schedula-
bility test for global EDF multiprocessor scheduling,” in IEEE Real-Time
Systems Symposium (RTSS), 2008, pp. 375–384.

[22] Z. Dong and C. Liu, “Work-in-progress: Non-preemptive scheduling of
sporadic gang tasks on multiprocessors,” in IEEE Real-Time Systems
Symposium (RTSS), 2019, pp. 512–515.

[23] R. J. Bril, J. J. Lukkien, R. I. Davis, and A. Burns, “Message response
time analysis for ideal controller area network (CAN) refuted,” the 5th
International Workshop on Real-Time Networks, pp. 5–10, 2006.

[24] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[25] S. Lauzac, R. Melhem, and D. Mosse, “Comparison of global and
partitioning schemes for scheduling rate monotonic tasks on a multi-
processor,” in the 10th EUROMICRO Workshop on Real-Time Systems,
1998, pp. 188–195.

[26] B. Andersson and J. Å. Jönsson, “Some insights on fixed-priority
preemptive non-partitioned multiprocessor scheduling,” in IEEE Real-
Time Systems Symposium (RTSS), 2000, pp. 53–56.

[27] G. B. Dantzig, “Discrete-variable extremum problems,” Operations
Research, vol. 5, no. 2, pp. 266–288, 1957.

[28] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[29] E. Balas and E. Zemel, “An algorithm for large zero-one knapsack
problems,” Operations Research, vol. 28, no. 5, pp. 1130–1154, 1980.

[30] J. Lee and K. G. Shin, “Improvement of real-time multi-
coreschedulability with forced non-preemption,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 5, pp. 1233–1243, 2014.

[31] J. Lee, “Improved schedulability analysis using carry-in limitation for
non-preemptive fixed-priority multiprocessor scheduling,” IEEE Trans-
actions on Computers, vol. 66, no. 10, pp. 1816–1823, 2017.

[32] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A review
of priority assignment in real-time systems,” Journal of Systems Archi-
tecture, vol. 65, pp. 64–82, 2016.

[33] N. C. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[34] R. I. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, vol. 47, pp. 1–40, 2011.

[35] D. Griffin, I. Bate, and R. I. Davis, “Generating utilization vectors for
the systematic evaluation of schedulability tests,” in IEEE Real-Time
Systems Symposium (RTSS), 2020, pp. 76–88.

[36] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1, pp. 129–154, 2005.

[37] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the syn-
thesis of multiprocessor tasksets,” in the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2010, pp. 6–11.

[38] M. Kubale, “The complexity of scheduling independent two-processor
tasks on dedicated processors,” Information Processing Letters, vol. 24,
no. 3, pp. 141–147, 1987.

[39] J. Goossens and V. Berten, “Gang FTP scheduling of periodic and
parallel rigid real-time tasks,” arXiv preprint arXiv:1006.2617, 2010.

[40] J. Goossens and P. Richard, “Optimal scheduling of periodic gang tasks,”
Leibniz Transactions on Embedded Systems, vol. 3, no. 1, pp. 04:1–
04:18, 2016.

[41] S. Baruah, “Fairness in periodic real-time scheduling,” in IEEE Real-
Time Systems Symposium (RTSS), 1995, pp. 200–209.

[42] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[43] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” Information Processing Letters, vol. 106,
no. 5, pp. 180–187, 2008.

[44] V. Berten, P. Courbin, and J. Goossens, “Gang fixed priority scheduling
of periodic moldable real-time tasks,” in 5th Junior Researcher Work-
shop on Real-Time Computing, 2011, pp. 9–12.

[45] G. Nelissen, J. Marcè i Igual, and M. Nasri, “Response-time analysis for
non-preemptive periodic moldable gang tasks,” in Euromicro Conference
on Real-Time Systems (ECRTS), vol. 231, 2022, pp. 12:1–12:22.

[46] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task
systems,” in IEEE Real-Time Systems Symposium (RTSS), 2009, pp.
459–468.

[47] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” in IEEE Real-Time Systems Symposium
(RTSS), 2017, pp. 128–138.

[48] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” Real-Time Systems, vol. 55, no. 3, pp. 641–
666, 2019.

[49] N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen, “Hard real-
time stationary gang-scheduling,” in Euromicro Conference on Real-
Time Systems (ECRTS), 2021, pp. 10:1–10:19.

[50] W. Ali and H. Yun, “RT-Gang: Real-time gang scheduling framework for
safety-critical systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2019, pp. 143–155.



[51] W. Ali, R. Pellizzoni, and H. Yun, “Virtual gang scheduling of parallel
real-time tasks,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2021, pp. 270–275.

[52] S. K. Baruah, “The non-preemptive scheduling of periodic tasks upon
multiprocessors,” Real-Time Systems, vol. 32, no. 1–2, p. 9–20, 2006.

[53] H. Baek and J. Lee, “Improved schedulability test for non-preemptive
fixed-priority scheduling on multiprocessors,” IEEE Embedded Systems
Letters, vol. 12, no. 4, pp. 129–132, 2020.

[54] J. Lee and K. G. Shin, “Controlling preemption for better schedulability
in multi-core systems,” in IEEE Real-Time Systems Symposium (RTSS),
2012, pp. 29–38.


